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Starting with the noncommutation requirements among different components of a conserved source
tensor for a massive spin-2 field, we discuss the resulting noncommutation requirements between the
source and the field variables, and the field dependence of the source that this necessitates.

1. INTRODUCTION

In theories involving vector fields and currents, an
important consideration is the noncommutation
among certain components of the currents and its
relation to the field dependence of the currents.’-®
For instance, the vacuum expectation value (VEV) of
the equal-time commutator (ETC) [jy(x, ), ju(y, )]
cannot vanish in a Lorentz-invariant theory with a
positive-definite metric. This in turn implies that
7, (x)/0A (y) must be nonvanishing, where j,(x) is the
source of the vector field 4,(x).

In this paper we briefly discuss the corresponding
requirements for the sources of massive spin-2 fields
and their field dependence. These requirements are
important in theories involving spin-2 fields, e.g., in
attempts to formulate tensor-meson dominance of
matrix elements of the energy-momentum tensor by
spin-2 mesons.” The related question of the metric
dependence of the stress tensor for a system involving
matter fields coupled to the gravitational field has been
discussed in detail by Boulware and Deser.®

In Sec. 2, we write down the noncommutation
requirements among different components of the
source tensor J,,. In Sec. 3 we note the noncommuta-
tion requirements that this implies between the source
J,v and the field variables, and the field dependence of
the source that this necessitates. We indicate how the
explicit field dependence can be determined in
specific models.

2. NONCOMMUTATION REQUIREMENTS
AMONG SOURCE COMPONENTS

We consider a massive spin-2 meson field U,
coupled to a divergenceless source tensor J,, :

9., = 0. 2.1)

We first note the noncommutation requirements
following from (2.1), Lorentz invariance, and a
positive-definite metric.

For a divergenceless, symmetric tensor J,,, we may
write the decomposition
Ji(%) = J(%) + 3d,,(9),j(x), 22
where
J(x) = J%(x) 2.3)

is the trace of J,,(x) and where J,,(x) is traceless as
well as divergenceless. In (2.2), we have used the
notation

duv(a) = n,uv - auav( D2)ﬁl’ (24)
where %, is the Minkowski metric (1, —1, —1, —1).
As usual, we use u and » to denote Lorentz indices
0,1,2,3,and i, j, k, and / the spatial indices.
We can write, in general,
O] [Ju(x), T, 10) = Dy 16(Dg(x ~ ¥), (2.5)

where g(x — y) is a Lorentz-invariant function of the
4-vector (x — y) and

ﬁ)uv,lo(a) = l(du}.dvo- + d;wdv}.) - %duvd}.a . (26)
It follows that

O [J,(x), i(»)1 10y = 0 2.7

and

O [J(x); J16(110)
= O} (), T2a(110)
+ 54,,(0.)d35(9,) 01 [i(x), J (1 10).  (2.8)
The following results are then obtained.

Theorem 1: 1If

O i), Jia(¥)] 10) = 0, (2.9)
then J,,(x)[0) =0. (Here and in the following,
commutators of operators with arguments X, y, etc.,
denote ETC’s.)

Theorem 2: If

O] [J4x(%), T pn(1] 10y = O,
then J,,(x) [0) = 0.

(2.10)
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For a local source operator J,(x), the result
J,,(x)10) = 0 would imply that J,,(x) = 0,° which
would mean that the relations (2.9) and (2.10) are not
compatible with a theory with a nontrivial interaction.

Proof: The proof of Theorem 1 is direct. For in-
stance, suppose the relation (2.10) holds. Operating
with

0 d 0

0%, 0y,, 0y,
and using (2.1) and (2.8), one obtains
(0] [0Ja0(X), 83T0o(¥)1 10)
+ 30| [0,V (%), BVE(N] [0) = 0, (2.11)

where {(x) = (%) (x).2% From (2.11), it follows
that

O] T x)P2 o) 10) + 101 ' (x)P2P2P2(y) |0) = 0.

(2.12)
Positive definiteness now implies that
Joo(x) 10y = 0, {(x)[0)=0 (2.13)
and therefore that
Joo(x) 10) = 0, (2.14)
which leads to
J,(x)10) =0 (2.15)

in a Lorentz-invariant theory. Theorem 2 may be
proved similarly.

Theorems 1 and 2 are contained in the spectral
representations written by Boulware and Deser® for
the VEV’s of the ETC’s in (2.9) and (2.10) for a
divergenceless, symmetric tensor. We have here shown
how they may be obtained directly!!; we shall use
them to derive the results of the next section.

Another result that may be obtained similarly is the
following:

Theorem 3: The vacuum expectation value of the
ETC
(2.16)

[T(x), ()]
cannot vanish unless j(y) [0) = 0.
Proof: If this VEV did vanish, one would obtain
(O™ 01 V330 (0, J1]10) = 0, (2.17)
which gives
O1 {j PP j(¥) + jWPPoj(x)} 10) = 0. (2.18)
Positive definiteness then implies that j(x) [0) = 0.
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A difference between the results obtained here, for
J,» and those holding for a vector current j, is that,
whereas the latter follow in the same way for a non-
conserved vector current, there is an important
difference between a divergenceless source tensor J,,
and a source tensor with nonvanishing divergence.

For a source tensor J,, for which 0,0,J,,(x) =
x(x) # 0 and J,°(x) = j{x) # 0, there are two scalar
operators x(x) and j(x) contained in the decomposition
of J,,(x). Since the VEV (0] x7(x)j(y) |0) would, in
general, not vanish and since its sign is not definite,
results such as those noted here will not follow
directly for a source tensor with a nonvanishing
divergence 0,0,J,,,(x).

3. FIELD DEPENDENCE OF THE SOURCE

We now examine the implications of the non-
commutation properties of J, (x) discussed in the
last section for the field dependence of the sources.

We consider a massive spin-2 field described by the
field operators U,,(x) and I1, (x), interacting with a
divergenceless source J,,(x), and described by the
following equations?-16;
apHpuv - %(aunv + aan) - %nuva).(nl - H/l)

= %m2(qu - ﬂuvu) - %g']uvs (31)
(P — 3841 + (1% — 3o3T1) — o°IL,
= 0,W*" — §8,"(0, W) — 46,9, W*), (3.2)

where

we = U — pu, 11, =117, = n-,,

3.3)
and

0,J" =0. 3.4)
Equations (3.1)—(3.4) lead to the following equations:
a,u(qu - 771,wu) = 0’ (3'5)
Hluv = %[auU).v + avU).u - a).Upv]’ (36)
u=—%j =% (3.7)

m

(O + m)U,, — [0,0, + m™n,,Ju = gJ,,. (3.8)

From Egs. (3.1)-(3.8), we may separate out the
following constraint equationst?:

gJOO = amaiU}‘ni - %Vz - mz)Umm’
gJxo = m* Uy — 2amH(7]nk + 2akH2nm'

3.9
(3.10)
In Eq. (3.9), UL, denotes the transverse part of U,,;:

UL, =U,; —%6,,Uy,. 3.11)



NONCOMMUTATION REQUIREMENTS

From these equations, we may derive the following
noncommutation requirements of the source with the
field variables:

Theorem 4. If

O] [Jio(x), UL(y)] 10y = 0 (3.122)

and
O] [Eo(X), Uppm¥)]10) = 0,
then it follows that J,,(x) |0) = 0.

(3.12b)

This is obtained by using Theorem | and the
constraint equation (3.9) to express Jy, in Theorem 1 in
terms of U, .

Theorem 5: If

O] [16(%), U (1110 = 0 (3.13a)

and
O] [J o), IS (N1 10) = 0,
then J,,(x) [0) = 0.

(3.13b)

To obtain this, we first use Theorem 1, together
with (3.10), to obtain the following result: If

O [750(x), Upo(y)110) = 0
and
O [J3o(x), T ()] [0) = 0,
then J,,(x) |0) = 0.
Using Lorentz covariance, we may write

O] [34(x), (U35() = 3,41 [0)

= :Duv,i.d(a)Fl(x - y) + duv(a)d}.a(a)F2(x - y),

(3.14)
where F; and F, are Lorentz-invariant functions of the
4-vector (x — y). From (3.14), it is seen that the rela-
tion
Ol o), Uno(1)110) = 0

implies (3.13a). Theorem 5 follows.

Theorem 6: If

O] [T4(x), IS, ()] 10) = O (3.15)

and
O] [J1,6(3), (Up(y) — mu(yN]110) = 0, (3.16)
then J,,(x) |0) = 0.

To prove this, we use Theorem 2 and the constraint
equation (3.10) to show that, if (3.15) holds and if
(0| [J,L(x), U,.c(110) = 0, thenJ, (x) [0) = 0. Using
(3.14), we then obtain Theorem 6.
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We finally note the following result:
Theorem 7: If
Ol [j'(x), Upo()] 10) = 0, (3.17)

then j(x) |0) = 0.

Proof: Using (3.14) and (3.7), we can show that
(3.17) implies that

(O] (), j(¥)] 10) = 0.
Theorem 3 then leads to Theorem 7.

(3.18)

The noncommutation requirements between the
source and field may be used for obtaining information
about the form of the field dependence of the source.
For instance, we may write the spectral representation

O] [J1,(x), J 1,11 10)

- f " dST0e) Dy 1o0) + 00(5) Ao diuDIAG — , 5)
(3.19)

and evaluate the spectral functions in terms of a
truncated sum over intermediate states.
We then obtain

O ['(%), Up)110) = —j— O [ (%), Ja(¥)1 10)

g (ds
=— 3 f " 309(5)0,0(x — ).
(3.20)
Expressing Uy, in terms of the dynamical variable =;,,

1

m2

2
dym + o a4 0400, 1

Vo = = 3m

g 2
+ -W'l;(-]ozc - 3—m2 akamJo,,,), (3.21)

we may obtain from (3.20) the relation

(o] [j*(x), al(my) - nmajamw,.mm)} 0y

m4

2
8 0117 %), 80 ndamM)] 10)
3m

— ds
= =% | Z ooVt — ), (322)
3m s
which constrains the dependence of j(x) on UZL(x).
We remark that Eq. (3.22) may be written as a
differential equation for the function

9j(x)

5 UTa(y)

0),
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which could, in principle, be solved in particular
models to find the VEV of this functional derivative.

We finally note that, in a Lagrangian theory, care
must be taken in relating the source tensor J** to the
interaction terms in the Lagrangian. For instance, the
interaction term in the Lagrangian cannot be merely
of the form U*'J#, with J#¥ taken as a divergenceless
tensor constructed from a set of matter fields ¢ such as,
for instance, the stress tensor for the field ¢. Such an
interaction term cannot lead to a source J* in the field
equations that would satisfy the field-dependence
requirements; further, this interaction term would
make J*' nonconserved.

In this paper we have examined the constraints on
the field dependence of the source following because
the source is divergenceless. Further constraints are
imposed by the hypothesis of a field-source identity’;
these will be discussed elsewhere.

We hope to examine the explicit nature of the field
dependence in particular models in a separate work.
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is established.

1. INTRODUCTION
A class of unitary irreducible representations of
the group O(4,2) [SO(4,2) extended with parity]
have found important applications in the dynamical
problems in atomic and particle physics (Sec. 7). The
problem of reduction of these representations with
respect to the two chains [given in the abstract or

in the Eqs. (2.5) and (2.6) below] arise in these
applications, and is also of mathematical interest.
The purpose of this paper is to give an algebraic
characterization of the class of representations
(“representation relation™), and to present the rather
remarkable features that occur when these representa-
tions are reduced according to the above chains. In
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Sec. 6 we establish the equivalence of these repre-
sentations with those obtained by means of boson
creation operators (oscillator representations).

2. CHARACTERIZATION OF S04, 2):
REPRESENTATIONS

A. Notations

The following notations are used for SO(4,2):
The generators of SO(4, 2) are

Sz, A4,B,C=5,0,1,2,34 2.1
They obey the commutation relations
(S5, Scpl
= —i(g4cSpp + &ppSac — §scSap — 8apSuC);
2.2)

with 855 = +1, goo= +1, gu = -1, 8o = —1,
g33 = _1: and g44 = ‘_1- We deﬁne

T,=S,, a=0,1,2,3,4, 2.3)

and use the letters a, b, ¢, d for the indices 0, 1, 2, 3, 4.
There are two SO(4, 1) subgroups

SO, 1)s, and SO®, I s, . f=1,234.

We indicate the generators of a subgroup as subscripts.
We use the letters o, f, y, - - - for the indices 1, 2, 3, 4.
SO(4) is generated by S,;. For the indices 1,2, 3 we
use the letters 7, 7, k, - - - . SO(3) generated by *S;; is
the rotation group. For the indices 0, 1, 2, 3 we use
the letters u, v, 8, - - -. SO(3, l)g,, generated by S,,
is the Lorentz group. There is another SO(3, 1)
subgroup: SO(3, l)r,.s,.,.- For the indices 5, 0, 1, 2, 3
we use the letters &, n, {, - -+ . There is one SO(3, 2)
subgroup SO(3, 2)35,1.

B. Representation Relation

The first problem solved in this paper is to find all
unitary irreducible representations of SO(4, 2) which
fulfill the additional condition (representation rela-
tion)!

{Sup, 8¢} = —2agpc, (2.4)

where a is a number. It will turn out that only for
special values of @ are there nontrivial representations.
Our task is therefore to determine the possible values
of a and to give a complete classification of the
corresponding irreducible representations.

The second problem solved is to reduce the repre-
sentations characterized by (2.4) according to the
reduction chains

SO(4, 250123 @ SO(3, 2)50123 > SO(3)12a

® SOQ2)s, (2.5)
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SO(4, 2)501231 2 SO(4, Dgrz3s @ SO(4)1234
> SO(3)yss-
Although there are two distinct SO(4, 1) subgroups,
it is sufficient to consider in the reduction one of

them; the other reduction is algebraically identical to
this one.

(2.6)

C. Algebraic Relations which Follow from the
Representation Relation (2.4)

From Eq. (2.4) it follows immediately that

so that @ can only be real and is essentially the quad-
ratic Casimir operator of SO(4, 2). From (2.4) and
the definition (2.3) it follows further that

{ry,,T} + {Su, S%} = —2ag,,, a,b=0,1,2,3,4.
(2.8)
Equation (2.7) can be rewritten as
Fbe + %Sabsab = _3a5 (2'9)
and from (2.8) we obtain
LI+ 8,8 = —5a, (2.10)
so that (2.9) and (2.10) give
388 = —2a (2.11)
and
"= —a 2.12)

Thus, the second-order Casimir operator of the
subgroup SO(4, 1)41034 is & constant. We must also
evaluate the fourth-order Casimir operator

W = —328"%8,7"S,,S4,S,Sn; (2.13)

of SO(4, 1)41034 for the representations characterized
by (2.4). A lengthy but straightforward calculation
using (2.2) and (2.8) gives

W= a(l — a), (2.14)

1.e., also a constant.

In a similar way we evaluate the second- and
fourth-order Casimir operators of the subgroup
SO(3, 2)50123 and obtain

1S, 8% = —2a, £1=15,0,1,2,3, (2.15)
and
_Pl = —Eligxgngegxg'"'cIGISEnS&S&’n’Sc’e’
= a(l — a). (2.16)

Finally, we derive two relations involving the
SO(@)yy ® SO(2)r, and SO(, 1),, ® SO(1, 1)r, sub-
groups. From (2.8) we obtain

T2 + SuS™ = —a, (2.17)
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and with (2.11)

S0S® + 1S,,5% = ~2a, @, f=1,2,3,4. (2.18)

We find
I = 1S,,5% + a. (2.19)
Similarly, from (2.4) we have
s0 that {Sis 8%} + {See, S5} = —2ag,  (220)
T2 — 5;58% = a.
From this and (2.15) we obtain
I'?=—a—4S,,S" (2.21)

3. REDUCTION WITH RESPECT TO SO, 1)5153

According to (2.11) and (2.13), both the second-
and fourth-order Casimir operators of the subgroup
SO(4, 1)g1034 are constants for representations of
S0O(4, 2) characterized by (2.4). We suspect therefore
that these irreducible representations of SO(4,2)
will remain irreducible also under the subgroup
SO(4, 1). However, so far we only know that the
irreducible representations into which it reduces must
have the same values of the second- and fourth-order
Casimir operators. If the irreducible representations
remain irreducible under SO(4, 1), then the SO(4) >
SO(3) = SO(2) basis of SO(4, 1) is already a com-
plete basis of the SO(4, 2) irreducible representation.
We shall therefore investigate this point, making
use of the complete classification of the irreducible
representations of SO(4,1) given by Newton? and
by Dixmier.?

The irreducible representations of SO(4);, are
characterized by two numbers (kq, n), where |k,| is
integer or half-integer and 7 is a natural number.*
These two numbers are related to the values of the
Casimir operators by

%Saﬂsap = k02 + (lkol + n)2 -1,
%8aﬂyésaﬂsya = ko(lko| + n).
From (2.19) and (3.1) we see that

3.1

spectrum ') = a — 1 + k2 + (ko] + n)%, (3.2)
so that the spectrum of I'y (up to a sign) is deter-
mined by the spectrum of SO(4),,4, in the irreducible
representation of SO(4,2). We shall now compare
our irreducible representations characterized by
(2.11) and (2.14) with the complete list of irreducible
representations of SO(4,1) of Newton®* and as
corrected by Dixmier.® For this purpose we divide
our representations into subclasses:

(1) a=1. Then W=0 [Eq. (2.14)], and Q =
—18,,8°=2. This is a class I representation of
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Newton,? and its reduction with respect to SO(4) is
given by

I(a=l) — 2 @ (ko - 0’ n).
S0(4) n=1,2,8--
There are no other representations in other classes
with this value of a.
(2) a=0. Then W =0 and @ = 0. There is one
class II representation with these values of W and Q
and with the SO(4) reduction

(3.3)

= — 3 @k, =0,n),
S0) n=2.3,4-

(34
and there are representations in the class IVa and
IVb (which were not in the original listing of Newton
and have been later added by Dixmier) with the

reductions
0

IV!(ia=0) —_ ® (ko = —1, n), (3-5)
S014) n=1,2,8--
IVl()a=0) — > @) (kO = +1, n). (3.6)

S04 #1233
Finally, there is a further representation of SO(4, 1)
with Q = 0, W =0, i.e., a = 0. This is the class III
representation,? with § = 1, with the reduction

0

= —
S0{4) n=1,2,8"

® ((ko= ~1, 1) ® (ko = +1, n)

o«

x 3 @(k0=0,n)). (3.7)

n=2,3--

() 0<a<l. Then W>0,0< Q <2. There is
a class III representation of this kind whenever a is
such that

a(l —a) = S(S + 1)2a + (S — DS(S + (S + 2),

S=141,3,- (3.8a)
and
2a > 2 — (S + )%, for S = integer,
2a > % — (S + §)?, for S = half-integer. (3.8b)

Equation (3.8a) can be satisfied with a real a only for
two values of S:

S=1
S=1

a=3ora= -5,

, a=—3o0ra=0. 3.9)

All these values are excluded—the first one (S = },
a = %) by (3.8b). Consequently, there is no class I1I
representation in the range 0 < a < 1.

Thereare, however, other representations of SO(4, 1)
with the eigenvalues of Q =32 and W =, ie,
with @ = § in this range. These are representations
in the class 1Va and IVb (which were also not in the
original listing of Newton, but were later added by
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Dixmier). Their reduction is

Ve — 3 o=k,
S0{4) n=112,3--
et —— 3 @ky=+4n). (3.10)

S50(4) n=1,2--

(4) a> 1. Then Q > 2 and W < 0, and there are
no unitary irreducible representations of SO(4, 1)
with these values of Q and W.

(5) a < 0. Then Q < 0 and W < 0. These repre-
sentations can only be of class IV, and there is a class
IV representation of this kind whenever a is such that

2a = —t(t — 1) — (§ — 1)(S + 2),

a(l —a) = —t(t — DS(S + 1), 3.11)
where
§$=22,%3,-
and
0<tL s

From (3.11) we obtain S = t; hence the only
values of @ for which there are unitary representations
of SO(4, 1) of class IV are

a=1-—5, S=32,2,5--,
or
(3.12)

_ 5 3
a__f9 _3’ T4 .

The reduction of these representations reads

IV;azl—sz) — ®(ky = —S,n) (3.13)
d 8S04) n=1,2.3--
an
Vs — 3
S0\4) n=1,2,3-

3 5 ..
S=§,2,§,

@ (ko = S, n),

(3.14)

Herewith we have obtained a complete classifica-
tion of irreducible representations of S0(4,2)
characterized by the additional representation rela-
tion (4). Collecting all the cases, we see that the
spectrum of a is

a=1-—8, §=0,4,1,%4,2,---. (3.19)

For § = 0 (a = 1) there is only one representation
of SO(4,1); hence the SO(4,2) representation
remains irreducible when restricted to the SO(4, 1)
subgroup. This fact is very well known. For § = $, 2,
$,-r, a=—%, -3, —2 ..., there are two
SO(4, 1) representations for the same value of §
[Egs. (3.13) and (3.14)], and the question arises
whether they belong to the same irreducible repre-
sentation of SO(4,2) or whether they belong to
inequivalent irreducible representations of SO(4, 2);
in the latter case SO(4, 2) would again remain irre-
ducible under SO(4, 1). These two representations of
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SO(4, 1)g1254 differ in the sign of k,. Now there is no
operator in SO(4,2) which changes the value (in-
cluding the sign) of k,. First of all, S,, does not
change k,, because Sy, is a generator of SO(4, 1)s12345
then S;, is an SO(4) vector operator equivalent to®
Se. and consequently does not change k,; finally,
Sso commutes with all of SO(4). Thus,

ko and sgn (ko) (3.16)
is an SO(4,2) invariant. Hence for each value of
§=24%,2,5, 3, there are two inequivalent repre-
sentations of SO(4, 2),

(S, sgn kg = —1) with the reduction (3.13),
(S, sgn ky = +1) with the reduction (3.14),

and both of these representations remain irreducible
under SO(4, 1).

For S = §, there are two SO(4, 1) representations:
(S=14 k=~ and (S=13, k= +} [Egs.
(3.10)]. These two representations of SO(4, 1) must
extend—if they extend at all—to inequivalent repre-
sentations of SO(4, 2). Now in these representations
the relation @ = 1 — k¢? is fulfilled, so that by (3.2)
we are led to a correct spectrum of I'y. And because
T'y is the only generator that lies outside SO(4, 1),
we have no further restrictions, from which we con-
clude that these two representations extend to SO(4, 2)
and remain irreducible under SO(4, 1).

For § = 1, there are four SO(4, 1),034 representa-
tions:

(S=1lLky=0), (S=1,k=—1),
1
(S=1,k=+1), |S=1,k= 0]
—1

By the same argument as used for the S = 4 case, we
conclude that these representations of SO(4, 1) must
extend, if they extend at all, to inequivalent repre-
sentations of SO(4, 2). However, now the representa-
tions

(S=1,k,=0) and [S=1,k= 0

do not extend to a representation of SO(4, 2). This
follows from (3.2) and the fact that the difference of
two eigenvalues x4 of I'g must be an integer. For the
case g = 0, k, = 0, we would obtain from (3.2)

p=tm—DE n=234,--,
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(@

Fic. 1. Multiplicity patterns of SO(4, 2) representations. Every
SO(4) irreducible representation (IR) that occurs in one repre-
sentation of SO(4,2) is represented by a column of boxes, each
box representing the SO(3)s, representation which is contained
in this $A(4) IR. Solid lines between the boxes indicate the nonzero
matrix elements of S;; and S,; that transform between the SO(3)
representations; a broken line indicates the nonzero matrix ele-
ments of Sz and S,,, and a dotted line indicates the nonzero
matrix elements of §,;. The first number in each box gives the
eigenvalue u of I'y [Eq. (3.19)]: (a) the representation (S =0,
ko =0)1t; (b) (S=1,k¢=—D" and (S=1,ky = +1*; ()
(S, ko= +8t and (S, kg =—95)", S=4,2,%,---. For the IR’s
(S, sgn ko)~ the reduction is the same as for IR’s (S, sgn k)™, only u
has to be replaced by —u in each box.

so that u cannot change in integer steps. For the same
reason also the representation

1
S=1,ky= 0
—1

is excluded. The two remaining ones,
(S=1,ky=—1) and (S=1,k, = +1),

extend to inequivalent representations of SO(4,2)
and remain irreducible under SO(4, 1). There is a
fourth irreducible representation of SO(4,1) for
which @ = 0; this is the 1-dimensional trivial represen-
tation SO(4, 1) — 1 which has the “SO(4) reduction”

(S =1,ky = 08l —> (kg = 0,1 = 1)

S0)
S0(3) (= O)'som) (o =0).

To summarize, in all the representations (S, ko =
+5),9=0,3%,1,%,%,---, we have

kol =S = jmin (3.17)
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and
1—a=S8 =k (3.18)
Each of these SO(4, 1) representations not only
extend to SO(4, 2), but they also exactly extend to fwo
inequivalent irreducible representations of SO(4, 2).
This additional doubling is due to the sign of Iy: If
we insert (3.18) into (3.2), we find
spectrum 'y =p = £(S+n), n=1,2,3,--.

(3.19)

There is no operator in SO(4, 2) which changes the
sign of (S + n) and consequently the sign of u. Thus

sgn u (3.20)

is another invariant of our SO(4, 2) representations.
We denote by (S, sgn ko)™ and (S, sgn k), the irre-
ducible representations of SO(4, 2) which contain the
(S, sgn k,) representation of SO(4, 1) and for which
sgn u = +1 and sgn u = —1, respectively.

For the following considerations a graphical repre-
sentation of our results will be very useful (Fig. 1).

4. REDUCTION WITH RESPECT TO SO(3, 2)5012

In this section we consider the reduction according
to the chain (2.5). According to Eqs. (2.15) and (2.16),
only those IR’s of SO(3, 2) which have the same value
of the fourth- and second-order Casimir operator
will occur in the reduction. However, contrary to the
SO(4, 1) reduction discussed in the previous section,
the SO(3, 2) IR’s are characterized by three numbers,
and we cannot expect that the IR’s of SO(4;2)
remain always irreducible also under SO(3, 2).

The reduction into IR’s of SO(3, 2) can be easily
read off from the graphical representation of Fig. 1.
In SO(3,2) we do not have the operators Sy;, Sy,
and S,,. Thus, the connection between the boxes given
by broken and dotted lines does not exist for the
SO(3, 2) operators. Furthermore, in contrast to the
SO(4, 1) reductions, the representations (S, sgn k)"
and (S, sgnk,)~ of SO(4,2) contain inequivalent
SO(3, 2) representations, differing by the sign of u; we
shall call them (S, sgn ko)go(s. 4y and (S, sg0 ke)gos.2) »
respectively.

The resultant reduction is shown in Fig. 2 for the
(S, sgn ko)™ class. The reduction of the IR’s
(S, sgn ky)~ is completely analogous; one has only to
replace everywhere u by —pu.

To summarize: We have seen that the IR’s (S, k, =
+5)*, 8=0,4%,1,3, -, of SO(4, 2) characterized
by (2.4) (where a can only be @ = 1 — S?) reduce with
respect to SO(3,2) into a subclass of singleton
representations of Ehrman.” Except for § = 0, they
remain irreducible under SO(3,2). For § =0 the
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Fig. 2. Multiplicity pattern® of SO(3,2) representations into
which the IR’s of SO(4, 2) reduce. (a) The representation (S =0,
ky = 0)* given in Fig. 1(a) reduces into fwo inequivalent IR’s of
S0(3,2):(S=0,ky=0"—>(S=0,ki =0, umin=1) ®(S =0,
ko =0, gmin = 2). (b) The IR’s (S,k, = £S5)t of S04,2)
(S=4 1, & 2,---) remain irreducible under S$0O(3,2) and
contain the IR of SO(3, 2) shown.

representation reduces into the direct sum of two
inequivalent IR’s of SO(3, 2) with the same value of
the two Casimir operators. These singleton representa-
tions are those which reduce continually with respect
to SO(3, 1).8
5. EXTENSION BY PARITY

We now want to extend SQ(4, 2) by the parity P.
Because SO(3)g, is the rotation group and SO(3,1),,
is the Lorentz group, we must have

[P,S;]=0, 5.1
{P, Soi} =0, (.2)
and consequently [because of equivalence of the

50(3, 1)]
{P,T'}=0. (5.2

If we further assume that also the S,; are vectors
(rather than pseudovectors)

{P, Sy} =0, (5.3)
then we remain with the SO(2, l)g, g,,5,, group of
scalar operators

[P, SO@2, Vg, sp.5,,] = 0- )
So 'y, 82, and S; can be simuitaneously diagonalized
with P. However, because of (5.3) and

Z S4S: = ky(lko| + n), (5.5)
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it follows that P changes the sign of k. Consequently,
only the IR’s (S = 0, k, = 0)* can extend to repre-
sentations of SO(4, 2) and P.

For the IR’s (§ = 0, k, = 0), the SO(4) states are
already P eigenstates because k, = 0. So to each box
in Fig. 1(a) corresponds a definite parity, and, if we
choose the P eigenvalue of the lowest state to be +1,
we obtain the parity assignment as given in the upper
right corner of each box in Fig. 1(a).

In all the other IR’s (S, ky = £5)*, adjoining of
P leads to parity doubling: An IR of (S, |k|)* of
{S0(4, 2) and P} reduces with respect to the proper
SO(4, 2) into the direct sum of two (S, k¢)*:
(S, koDisoum py == (S, ko = S)*

50@2)
® (S, kg = — Syt

To obtain parity eigenstates we have to take the
linear combinations

(wjja£;8) = lujjss Sko=+S)
+{ujjss S, ky + —=S).

6. RELATION TO BOSON FORMALISM

In this section we give an explicit form of the repre-
sentations of SO(4, 2) satisfying (2.4) in terms of two
pairs of boson creation and annihilation operators
(a1, a,) and (by, by). Many of the results obtained
can also be explicitly verified in terms of this realiza-
tion, and we establish the equivalence of the repre-
sentation relation with this explicit form:

S,; = Yatoa + broyb),
Su = —i(atoa — brob),
S0 = —3(ato,Cb+ — aCo,b),
S5 = Yi(ato,Cb+ + aCob),
Sy = $(atCh* + aCbh),
Sy = 3i(a"Cb* — aCb),
Ses = $(ata + bb + 2),

(5.6)

.7

(ijk-cyclic),

(6.1)

where ¢, are the Pauli matrices and C the antisym-

metric matrix
01
c= (_1 0).

These operators act on the states in the SO(3) ®
SO(3)* basis of SO(4, 1):

Jq+m 4,—m. Fg4m, jo—m,
. . - +°1 14N 1y 472 27478 2
[ Jimyjamy) = Naj ag b} b3 [0),

N7 = (s + m)! (1 — m)! (Go + mp)! (j, — my)!.
(6.2)

The operator, which has the eigenvalues k, and
which is an SO(4, 2) invariant [see Egs. (3.1) and
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(3.16)], is represented by

Ko = 3(a*a — b*b), (6.3)

has eigenvalues k, = j, = j,, and commutes with all

SAB .
Parity operator (see Sec. 5) is represented by

P.at—bt, bt — —at

6.4

and changes the sign of k.
The representation with the opposite sign of the
eigenvalues of I'y can be obtained by replacing

S~ —=l—=ji, ja—> -1 — Ja (6.5)

and applying P.
From (6.1), we obtain after some calculation, e.g.,

S 584, = t[(ata)? + (b*b)* — 2aTab™h — 4]
= —S .54, (6.6)

which on states (6.2) gives immediately the value
(k2 — 1). By symmetry, the same is true for the sum
of squares of all other rows (or columns) of the
matrix (S,5).

Similarly, we find, after some calculations,

{02, T} = o, (6.7)

where I',V = §;, and I',® = S,,, and by symmetry
the remaining equations of (2.4) are satisfied. These
“oscillator-like” representations have been discussed
in different forms in Refs. 8-11.

7. GUIDE TO APPLICATIONS

The representation (S =0, k, = 0) is realized in
the conformal interpretation of O(4, 2) to describe
massless spin-zero particles'? and, in the dynamical
group interpretation of O(4, 2), to describe the rest
frame states of H-atom® and mesons.’® The existence
of T, is crucial in the calculation of transition proba-
bilities. The representation (S = 4, ko = +3) has been
used in the O(4, 2) hadron model and accounts for the
dipole form factor of the proton.!® The representations
(S, ky = £S) occur in the dyonium model, an atom
formed out of two-spinless particles having both
electric and magnetic charges.’* Matrix elements for
some finite transformations for these representations
have been given in Refs, 9-11.
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APPENDIX

In this appendix we give explicit expressions for the
infinitesimal generators. Clearly, it is sufficient to give
the generators S,,,,, i=1,-+-,5, because the
other generators can be determined from these by the
relation (2.2). We take the generators S,;, Ss,, and
Sy from?

S la; ko, n, j, J3) = jala; ko, 1, J, js),

Ssz |a; ks 1, j, ja) = 31+ ja + DG~ jo)l
X las ko, n, jjs + 1)

+ 3G+ (G —js + DI

(A1)

X la;kO’n9j9j3_ 1)3 (Az)
Susla; ky, n,j,ja = [(] +js + 1)(j—'j3 + 1)]%
X CJ'+1 'd, kO’n:j + l,j3>
+jsd; la; ko, 1, j, Ja)
— (G —ja(+ )it
X Ci |a’ kO’ n,j - 1’j3>' (A3)
Here
4, = Kolllal £ m)
JG+ 1
o1 ((ﬂ — k)U® — (lkol + n)zl)%
T 42 — 1

The expression Sj, we take from!*

Ssclas ko, n,j,ja)
= da(ke, W)(ko + J + D(ke — )1
Xlasko+1,n,7,ja)
+ ko, (G — m)(j+ n + DI
X |a; ko, n+ 1,7,
— Selke, G+ m(j—n + 1P}
X |las ko, n— 1,7, 2
— Yd(ky, m)[(ko + ko — j — DI
X la, ko — 1,n,],j3). (A4)
Here
atky, 1)
(ko= (ko 4+ 7 + Dlko(ko + 1) + o]\
B ((ko — m)(ky — 1 + D(ko + (ko + 1 + 1)) ’
b(ky, 1)

=( (r — n)(r + n + Dn(n + 1) + o] )*
(ko = 1 = D(ko = mko + Mk + 1 + 1)/
c(ky, n) = —b(ky,n — 1), d(ky, n) = a(k, — 1, n).
The matrix elements can also be derived easily using

Egs. (6.1) and (6.2); the basis | j,m,j.,m,) can be trans-
formed to the | jj;) basis by 3j-symbols. r and o are
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connected with the Casimir operators through

+rr+1)4+2+4+0=2a,
+r(r 4+ 1)o = a(a — 1).

For all the representations considered in this paper
we have r=S =k =+ —a)}t. Sy=T, is
given by (3.2):

Sso 'av; konv;jj3>
= £[(a — 1+ k@) + (ol + m4¥ lag; konos jia)-
(A5)
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5 We can repeat the same considerations as above for the
SO(4, 1);,234 subgroup, teplacing everywhere Sy, by Ss¢, and are
led to the same conclusions for S5, that we have for Sy, .
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The time evolution of a class of generalized quantum Ising models (with various long-range interac-
tions, including Dyson’s 1/r2) has been studied from the C*-algebraic point of view. We establish that:
(1) All {(A4), are weakly almost periodic in time; (2) there exists a unique averaging procedure over time;
(3) the time evolution in the thermodynamical limit can be locally implemented by effective Hamiltonians
in the algebra of quasilocal observables; (4) there exists a specific connection between the spectral
properties of the time evolution of the initial state and the approach to equilibrium; (5) there are
examples in which the time evolution is not G-Abelian.

1. INTRODUCTION

A general class of Ising-type 2-body interactions
on an infinite lattice of spins is considered, with the
time behavior of the model being the object of study.
It is shown that there is a canonical time average on
the states of the system which gives a manageable
prescription for determining the equilibria for time-
developing states. Three subclasses of models are then

singled out for a detailed study of the approach to
equilibrium which they produce—finite-range inter-
actions and infinite-range interactions decreasing
polynomially and exponentially with respect to
distance. With the results of a free-induction relaxa-
tion experiment in mind, a class of physically sig-
nificant states is studied, yielding the corresponding
equilibria and the detailed rate of approach to
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connected with the Casimir operators through

+rr+1)4+2+4+0=2a,
+r(r 4+ 1)o = a(a — 1).

For all the representations considered in this paper
we have r=S =k =+ —a)}t. Sy=T, is
given by (3.2):

Sso 'av; konv;jj3>
= £[(a — 1+ k@) + (ol + m4¥ lag; konos jia)-
(A5)
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tion (2.4) is also a generalization of the relation {J,;,J%} = ag;,
for SU(2), which by virtue of the spectrum of J; gives only the
2-dimensional representation for g = §.
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The time evolution of a class of generalized quantum Ising models (with various long-range interac-
tions, including Dyson’s 1/r2) has been studied from the C*-algebraic point of view. We establish that:
(1) All {(A4), are weakly almost periodic in time; (2) there exists a unique averaging procedure over time;
(3) the time evolution in the thermodynamical limit can be locally implemented by effective Hamiltonians
in the algebra of quasilocal observables; (4) there exists a specific connection between the spectral
properties of the time evolution of the initial state and the approach to equilibrium; (5) there are
examples in which the time evolution is not G-Abelian.

1. INTRODUCTION

A general class of Ising-type 2-body interactions
on an infinite lattice of spins is considered, with the
time behavior of the model being the object of study.
It is shown that there is a canonical time average on
the states of the system which gives a manageable
prescription for determining the equilibria for time-
developing states. Three subclasses of models are then

singled out for a detailed study of the approach to
equilibrium which they produce—finite-range inter-
actions and infinite-range interactions decreasing
polynomially and exponentially with respect to
distance. With the results of a free-induction relaxa-
tion experiment in mind, a class of physically sig-
nificant states is studied, yielding the corresponding
equilibria and the detailed rate of approach to
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equilibrium for each type of interaction. Finally, the
time behavior of each model is linked to specific
spectral properties of the corresponding effective
Hamiltonians.

The framework for the models is that of the C*-
algebra approach. The theories of invariant means on
groups and asymptotic probability distributions are
also employed.

2. THE GENERALIZED ISING MODEL

At each site / in a »-dimensional lattice Z*, associate
a 2-dimensional complex Euclidean space C? (spin
space). Let F be the set of all finite subsets of Z*. Then,
for each finite volume Ve F, consider the direct
product space @, , C? of Murray and von Neumann,!
and let A(V) be defined as B(® - C?), the set of all
bounded operators on ®, . CZ. A(V) is the set of
observables pertinent to the volume V. It is a concrete
C*-algebra with respect to the usual operator norm,
denoted || ||, and adjoint, denoted *. For any two
volumes ¥, V'eF, satisfying V < V', there is a
natural mathematical way to imbed (V) in A(V")—
symbolically, for AeUAWV) let A=A R,y I, €
A(V'), where I, is the identity operator in (i) and
V'I|[V={jel|jeV ' j¢V} Itiseasy to check that
this imbedding is norm preserving and, in fact, a
s-isomorphism of the C*-algebra (V) onto a sub-
algebra of A(V”’). To obtain all local observables, we
follow the prescription of Takeda,? which essentially
involves the construction of a x-algebra 2° defined as
the union Jpep A(V) with “equivalent” elements
identified. This normed algebra is not complete, but
upon completion it is a C*-algebra, denoted %,
consisting of the so-called quasilocal observables.® We
denote by © the set of all states on U,

To simplify notation throughout this paper, we
identify A(V) with its image in A° or A and also with
the matrix algebra GL(2¥", C), where N(V) is the
number of sites in ¥. For example, ¢¢ € A({) < A <
A for the Pauli matrix o,.

We now turn our attention to the dynamics of the
system.* With each Ve F, we associate an energy
observable Hy, € A(V) defined by

HV = % z e:iko';ojzc’
(7.k)YEV XV
where ¥ x Vis the Cartesian product of ¥ with itself.
To make Hy self-adjoint, we require that e;, be real;
for homogeneity and isotropy we require that ¢, be a
function only of the Euclidean distance |j— k|
between j and k, ie., e = (| j — k). To avoid self-
interaction, we assume that ¢; = 0 and, for stability,
we require that the total energy at any site due to
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interaction with the entire lattice be finite, i.e.,
ez el ) < o0. We call this the generalized Ising
model (GIM).

For 4 € A°, we can give the dynamics as follows.
Consider a¥(A4) = exp (iHpt)A exp (~iHyt). It is
easy to see that the «! are *-automorphisms of A° and
form a group with the multiplication

( “tg)(A) = “ll(o{’Z(A)) - o(tr!-tz(A)

v.v _ .V
Xy %y = atl-Hz‘

ie.,

Clearly, we need to take the infinite volume limit to
get the full dynamics. Therefore, for a local observable
A4 € U(Vy), consider al2(4) with ¥, > V. By Magnus’
formula,® we have

i) = S

[HVz’ A] o .]]

7=0 N1 (51 k1)eVaxP (Gin kn)eVaXVe
X [(Dhlk,,i [ T [(Dhlq’ A] T ]]’
where @, = }e;070% and [ , ] denotes the commutator.
Itis clear that, if j, and ky € V[V, then [®, , , 4] = 0.
Therefore, we may restrict the relevant summation
index to (j;, k1) € Vy X Vo[[(Vo/Vy) X (V,/V)]. For
any two subsets W, and W, of Z*, let W, — W, denote
Wy X Wol (W, W1) x (W,/W))], asubsetof Z¥ X Z.
Now consider [®;,;, , 4] in more detail. This operator
can have at most ¢,’s at the sites outside V. Therefore,
if (ja, ko) € (V2/V1) X (VoV3), then [®; oy 2 [“D“LI,
A]] = 0. By induction, we see that we can restrict all n
summation indices to (j;, k;)€V,+ V;. Now we
bring these summation symbols back inside the
brackets to get

23(A) = %w{ s

n=0 1! L, kmepas i

l:,l: z (thvA:‘”}]
(j1.k1)EVe+ V1

At this point, we take the infinite volume limit since,
by the stability condition, the net 3 ).y, .y, @5 has
a norm limit in A as ¥V, — 0o, namely HV1 =
2wez’p, Q- By Magnus® formula, we get

Inkn?

norm- lim «/*(4) = «(4) = exp (iHy,1nA
Va— o

X exp (—iHy,1).
To see that {« (A4) | V € F} is Cauchy for all 4 € %, we
use the inequality

oy (A) = af ()] < Nl (Ag) — 27 (Ao)]

+ 2} (4 = Al + lla¥ (4 — A)].
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Taking A, € A and using ||«}'[| = 1 gives the result.
At this point, it is easy to show that the «, form a
group of s-automorphisms of U. The fact that
e (4) — o, (A v 0 for all 4 € W is easily checked

(on A first). We collect our results up to this point as

Proposition 1: 1f
Hpy =13 Z
(5. k) VXV
isreal, €(10)) = 0,and 3 ;v |e(| /)| < oo, then, for all
A€W, the net of (4) = eiHvide~Hvt has a norm
limit in A as V — oo,denoted o,(A4). The set {«, | € R}
forms a strongly continuous group of x-automorphisms
of U satisfying «, «;, = o, ,,,. Furthermore, for any

AeWV), afd)=Trige vt

«(lj — kDojo%, e(|j — kI)

where
Ay=% 3 «j—kholsk.
i€z’ =y

As an application of this proposition, we obtain

a(cl) = ¢icos (2P;t) — o, sin (2P;t), 1)

a,(cl) = o cos (2P;t) + ol sin (2P;1), )
where

Py =3 (k — jio*.

k eZv
3. EQUILIBRIUM

We now have a time development and wish to
investigate the approach to equilibrium. A first step in
this direction is to answer the following question:
Given a nonequilibrium state p on %, what should be
the corresponding equilibrium state 5? A useful tool
for investigdting this problem is contained in a paper
of Emch, Knops, and Verboven.® We first give some
necessary background.

Let G be a topological group and define the normed
linear space CB(G) as the set of all bounded, contin-
uous, complex-valued functions on G, with pointwise
addition and scalar multiplication and sup norm. A
mean on CB(G) is by definition a linear form M on
CB(G) which satisfies

(1) M(f) = M(f), where the overbar denotes
complex conjugation for all fin CB(G),

(i) inf | f(x)| < M(f) < sup |f(x)| for all real-
ze@ weG
valued f in CB(G).

This is clearly a mathematical translation of the
heuristic concept that M averages over the group.” M
is called a left invariant mean if M(L,f) = M(f)
for all y € G and all fe CB(G), where the translation
L,fe CB(G) is defined by L,f(x)=f(yx). If A is
a C*-algebra with unit and if {o,|geG} is a
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strongly continuous® group of #-automorphisms of
A, then,® for any left invariant mean M on CB(G)
and state p on %, the form Mp defined on A by
Mp(A) = M[p(a,A)] is a state on U, invariant in the
sense that Mp(x,4) = Mp(4), for all 4 €Y, x €G.
Using G = R interpreted as time development, we
see that Mp is a time average of the states o} p defined
by o} p(4) = p(x,4). Therefore, each invariant mean*®
M could be used to project a given state onto possibly
different equilibria. Since there are!’ many invariant
means on CB(R), the question of the uniqueness of
this prescription arises. We now wish to investigate
this question in the case of the GIM. To do so, we
need some definitions.

The class AP(R) of almost-periodic functions on the
real line can be defined as the subset of CB(R) of all f
such that the set of translates {L,f|¢€R} is pre-
compact in the norm topology. The set of weakly
almost-periodic functions W/(R) consists of the subset
of CB(R) of all f such that {L,f | ¢ € R} is precompact
in the weak topology. Since the weak topology is
weaker than the norm topology, AP(R) < W(R).
W(R) plays an important role in the theory of invari-
ant means since'? all invariant means on CB(R)
coincide on the subspace W(RY); furthermore, they can
be taken in the form

T—o

T
Mf = lim T-lf £(t) dt.

In this connection we now prove:

Proposition 2: In the GIM, p[«,(4)] is a weakly
almost-periodic function of ¢ € R, for all 4 €U and
pE S.

Proof: First, let A" = oi! - - - oj», where [, = x, y,
or z, and all the j, are distinct sites of the lattice. Then
a,(4") = a (o) - - - ¢, (o). Using

In
cos (B) = }[exp (iB) + exp (—iB)]
and
sin (B) = [exp (iB) — exp (—iB)]/2i
in (1) and (2), where B € U, we put «,(4’) in the form
of a finite linear sum of terms such as

exp (iQ,)o7} - - - exp (iQ, D),

where, for [, =z, Q, =0 and, otherwise, Q, =
;1;2Plk. We move the exponentials to the right by
noticing that

exp (iQmt)olk = o’ exp (iR,1),

where R,, = 0*Q,0}t. Note that, independently of
I, R, only has ¢,’s in it, i.e., R,, = ¥, a,67 (a finite
sum with g; € R). Therefore, we also see that all the
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R,, are self-adjoint and commute. By moving all
the exponentials to the right in this way, we obtain
a,(A4') as a finite linear sum of terms of the form
ojt -+ ol exp (iSt) with § self-adjoint. If p € €, by
considering the GNS representation II, associated with
p, with cyclic vector @, in J,, we see that p[a,(4')]
is a finite linear sum of functions of ¢ of the form

(@,,IL[0%]- - - I [o}] exp (i [S1H)D,)
which, upon taking adjoints, becomes

(¥, exp (i11,[S])D,).
But
(F,, exp (i1, [S])D,) € W(R),

since®® {exp (iI1,[S)¢) |t € R} is precompact in the
weak operator topology. Therefore, p[a,(4')] € W(R),
since W(R) is a linear space. For an 4" equal to a
finite linear sum of A’s of the above form, the same
result follows by linearity again. For arbitrary 4 € ¥,
take 4, — A, as n — oo (norm topology), with 4, of
the latter form. Then we have

lei(4,) — a(A)] = a4, — Dl = |4, — 4.

Hence, p[a,(4, — A)]— 0, as n — oo, uniformly in
t € R. Therefore, pl[a;(A4)] is the limit of a sequence
pla(4,)] of functions in W(R), converging in the
sup norm. Hence, p[x(4)] € W(R), since W(R)isa
closed subspace of CB(R). QED

Note that a shorter proof of Proposition 2, which
does not rely on the local implementation of Propo-
sition 1, can be obtained by observing that

exp (iHyt)A' exp (—iHyt) = A’ exp (IA'H, A't)
X exp (—iHyt)
= A, CXp (IAIHVA,t

However, parts of the given proof are needed below.

We have proven that a canonical time average'® Mp
exists for every initial state p. We use *‘canonical” to
emphasize the uniqueness of M. Given this association
between states and equilibrium states, we consider the
following question: Can one ensure that Mp’ will be

“close” to Mp by taking p’ sufficiently “close” to p?
We answer this for the three simplest topologies.

Lemma 1: In the GIM, with G in its norm topology,
the mapping M:S — & is continuous.

Proof: Let ¢, ¢, € S, with ¢, — ¢, as n — oo, in
norm. For x € 9, , the closed unit balil of ¥,

G o, (x)] — Pl (x)],
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as n— oo, uniformly in £eR and uniformly in
x € U;. Therefore, given e > 0, there exists N > 0
such that, for alln > N,

[fale(x)] — dla,(x)]| <€, forall teR, xe;.

Therefore,

17 1T
IT [oimoonar = L [“gta dr‘

1 r
S—fedt=e,
T Jo

independently of 7 > 0. Hence, M¢,—~ M¢, as
n— 00, in norm, i.e.,

lim sup
n—=>w xelly

.1 (7
Thf; T J; ($a[x(x)] — Blos(x)]) dt‘ = 0.
QED

Corollary: In the GIM, with & in its weak topology,
the mapping M:S — & is continuous.

The proof is immediate from Dunford and
Schwartz.1é

Proposition 3: In the GIM with dimension » = 1,
let e(| j|) = 1/&V1 for j # 0, & > 2. Then, with & in
its w*-topology, the mapping M:E& — & is not
continuous,

Proof: A proof by contradiction is immediate from
the following two facts: On the one hand, we exhibit a
state ¢ such that M¢(a3) # 0; on the other hand, we
exhibit a subset U of & which is w*-dense and for
which Mp(6?) = 0 for all p in U. To this end, let p
be the product state R, f;, where f; is the state gn
A(j) defined by any normalized vector f; which
satisfies

olf; =f; if j>0,
olf; = —f;, if j<O,
Ugfo =fo.

Now let ¢ = Mp. Then, ¢ is time invariant and

B(07) = M[p(,[og])]
= M[p(c2 cos [2Pyt] — af sin [2P,t])].

If TI, is the GNS representation of A corresponding
to p, with cyclic vector @,, it is easy to see that
I1,(Py)®, = 0 from cancellations. Hence, p(Py) = 0
for all ne N, n # 0. Therefore, p[a(0%)] = p(c?) =
1 for all + €R. Hence, M¢(s?) = ¢(c?) = 1. This
concludes the first part of the proof. Now, from
Dixmier,}” we know that the set U of vector states of
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any nonnull representation of the simple, antiliminal'®
C*-algebra U is w*-dense in S. Consider the GNS
representation generated by p = ®j fi, where
ol f; = f;forall jeZ. Choose the orthonormal basis
for 3¢, consisting of {¥';| I € F}, where
Y, =3I ()@, for IeF, 1# 2,
i€l
and
Ve = (Dp .
Now a,(0%) = 02 cos (2P4t) — 9 sin (2P,t). Note that
H‘,(Po)“pl = p ¥, where p; = Zjez e(ljg; and
gi=+1, if jeZ,
=-—1, if jel
Therefore,
II p(P DY = ()™Y',
and
(lP.I’ Hp(PSﬂ)\{!‘a) = 6I.Jp;n'
If Qis a unit vector in J€,, let Q = > ;. 0¥ . Hence,
QIPHA = ¥ d0,F;, (PF)Y,)
1.JeF

=Y ®;0p7.
IeRF
Similarly,

(Q, T1,[6,P3']) = 3 @7,07p7
IeF

where I, = I/{0} if O0el, I,=10U{0} if O¢l/
Therefore,

(Q, I (a9) cos [211 (Py)t1Q)
_ < (i)™ 0 p2n
- (Q,go oy TH02P8 )Q)

= @705 cos (2p;1).
IeF

By taking finite sums in /€ F, we can approximate
h(t) = (Q, I (%) cos [2I1,(Py)1]2) uniformly in f€
R. On the finite sums s1y(¢), since no p; can vanish for
the given interactions, we have Mhy = 0. Therefore,
Mh = 0, since M is continuous on CB(R). Similarly,
MI[(Q, I1 ,(69) sin (2I1,,[Po)t)€2)] = O, so that

[MQ](6®) =0

for all vector states  corresponding to the rep-
resentation II,,. QED

Note that the above proof can also be used to show
that the GIM is not always G-Abelian in time, i.e.,
need not satisfy the condition
M[¢([x,(A), BD] =0 forall 4,Beq

and all ¢ € &,
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where G; is the set of time invariant states. To see this,
just use the ¢ of the above proofand 4 = ¢9, B = o).
This example reinforces the doubts one might have of
the validity of the assumption that general systems are
G-Abelian in time and, hence, justifies the attempt to
avoid the assumption. Compare in this respect
Knops!® and Emch, Knops, and Verboven.?® See also
Araki.?!

Proposition 3 is rather disconcerting in that one has
good reason for taking the w*-topology on & as the
most physical one. The proposition might, however,
be an indication of the fact that & itself is bigger than
actually needed for physical purposes.?? It is, further-
more, conceivable that M is w*-continuous on a
w*-dense subset S, of S, where &, itself contains all
physically accessible states.

4. TEMPERATURE STATES

It is desirable, for the consistency of the approach
used in this paper, to establish the existence of
infinite volume limits of the usual canonical equilib-
rium ensembles since, in the present theory, these
limits should play the role of states describable by a
temperature. Specifically, the question is whether one
can take a limit of the states? p§ defined on A(V) by

P/I;(A) = Try (A exp [—BHy))/Trp (exp [—Hy)),

where Try is the usual normalized trace state on A(V).
Araki has shown that, for a 1-dimensional lattice and
any finite-range interaction, such a limit does exist.
By restricting ourselves to ferromagnetic Ising-type
interactions, we obtain the same conclusion for
infinite-range interactions in » dimensions.?

Proposition 4: In the GIM, assume that e(|j|)
<0 for all jeZ'. Then, extending the canonical
ensemble pj to the state pf = p§ @y Tr; on
A, we see that there exists a state p7’ on U defined as
wr-limy,_, ., p} .

Proof: The proof consists of reducing the problem
to the finite-volume subalgebras where generalized
Griffiths inequalities can be used. Consider, then, any
three nonempty elements V;, V,, and V; of F such
that V; < V, © V,;. Introduce the following two
interactions on A(V,):

Hy=1% 2 «(j— klolo}
(7, k)eVaxVs
and
Hy=% 2 «(j— koot
(1, k)eVexXV 2

Note that H; can be obtained from H, by adding
ferromagnetic bonds. If, for each p € &, we define the
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state p | A(V) on A(V) by restriction, then we have

5 () | AV
= Try, ( exp [—BH,))/Try, (exp [—AH,]) | U(V)
and

AQIR. (A
= Try, (- exp [— BH,))/Try, (exp [—H,]) | W(VL).
We now show that, in fact,

AQIR.(A)
= Try, ( exp [—fH,])|Try, (exp [—BH,]) | AV
3

To see this, introduce the following orthonormal
basis in ®,, C2:

=100 " ®fiwy,
& =f10f3® " ®fvwa,
&= 10f3®" " ®fnws
ea=f10fi® " ®fnwy,

e v, =f10f30 @ fwy,

where f7is a fixed normalized vector in C? satisfying
oift=/f1 and olf?=—f2. If AeA(V;), then

exp (—pH,)A € U(V,). Calculating in the above basis

gives, for any B € A(V,), we obtain
Ter (B) — 2N(V9)—N(Va) Ter (B)

Therefore, (3) follows. Now we need some further
notation before we can continue with the proof. For
each triple 4 = (4,, 4,, A;3) where the A, € F are
pairwise disjoint, define 0 as (T T4, 05)(IT,e4, 09 X
(ITics, 0%)> where Ils, By is defined to be the
identity 7. Note that U°is the linear manifold generated
by the set of all g4. Now, if 4, U 4, # @, then

PACSE (4)

for all ¥ € Fsuchthat ¥V > A4; U A, U Ay since in the
above basis the diagonal elements of exp (—SHp)o4
are all zero. Kelly and Sherman?® have shown that,
by increasing the number of bonds, we have

ACS PN ACY!
if
A=('®9—®’A3) and A3CVZCI/3' (5)
Combining (4) and (5) with another theorem of Kelly
and Sherman, which says that g} (¢4) > 0 if ¢4 €
(V)< WV’) and 4 = (2, @, A;), we have, for
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V' > Vand ¢4 € A(V),
0< A (e <1 and Yo%) > ph(aY),

so that ﬁ’;(a“‘) is an increasing function of ¥, bounded
above by 1. Therefore, lim g} (64), as ¥ — oo, exists if
V increases by inclusion. Define pj (o) as the limit.
Considering py as a functional on the s-subalgebra
A0 of A, pj is clearly linear and bounded, with norm 1.
When pp is extended to ¥, it still has norm 1 and
satisfies pg’ (/) = 1. Therefore, it is a state on .

QED

5. APPROACH TO EQUILIBRIUM

Now that we have shown the existence of a canon-
ical association between arbitrary initial states and
equilibrium states, and also that at least some of these
equilibrium states are reasonable, we would like to
investigate the association in more detail. One reason
for this is to examine the question of recurrences. We
are motivated in this approach by a paper of Emch,?
where the following experiment is considered.

A CaF, crystal is placed in a magnetic field (thus
determining the z direction), and allowed to reach
thermal equilibrium. Then, an rf pulse is applied which
turns the net nuclear magnetization to the x direction.
The magnetization in the x direction is then measured
as a function of time, and the result is an oscillatory
function which damps to the equilibrium value of
zero.?s

Emch assumes an interaction of the form

Hy=(t 3 «lj—khoiet) - B3l
(5. k) VXV iV
on a finite 1-dimensional volume V. As the state
representing the system after the application of the rf
pulse, he takes the product state p = ®, ¢;, where

$i() = Tr; (- exp [—ya)/Tr; (exp [—yo;)).
This choice is justified by an entropy argument.
With the interaction H} and initial state p, he then cal-
culates the time development of the magnetization in
the x direction, S, = [I/N(V)] 3,y ¢’,, and obtains
without approximation

(a1, = p(S2)(TT cosi2e () cos 21, (6
iy

By taking an infinite volume limit at this point, Emch
shows that interactions with a cutoff give recurrences
(with calculable frequency) and that the infinite
range interaction of the form e(]j|) = 1/2'7! gives,
with Vieta’s identity,?

TT cos (L) _ (sin t)’
n=l1 2" t
the nonrecurrent damping exhibited by experiment.
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In this section, we generalize this work in the follow-
ing respects. We consider arbitrary observables and
show what range of behavior is possible with different
choices of the function e. Furthermore, the class of
initial states considered is extended, and the approach
to equilibrium is exhibited in the stronger form of an
initial state decaying into an equilibrium state, rather
than just considering individual expectation values.
To simplify calculations, we assume throughout that
there is no external field. Inspection of (6) shows that
the damping we are looking for comes solely from the
spin-spin interaction of the lattice, not the external
field.

The general result for finite range models, hereafter
denoted Fy,, is then:

Lemma 2: In the GIM, if €(|j|) = O for all je Z*
such that |j|> L, 0 <L < oo, then pla(4)] is
almost periodic for all 4 €U, pe C.

Proof: From the proof of Proposition 2 with the
above hypothesis added, we see that the observable S
is only a finite linear sum of ¢,’s. This implies that the
spectrum of §, and hence of II (S), consists of a finite
number of isolated points. Using the spectral theorem
in %,, we get [x,(4")] in the form

N
Ya;e®t, b;eR,
j=1
which is almost periodic. Since AP(R) is also a closed
linear subspace of CB(R), we get the result for all
A €U as in Proposition 3. QED

It will become apparent later that the full range of
behavior of the GIM due to different choices of the
function e is already predictable from (6). Because of
its importance, therefore, we derive a convenient
generalization of (6).

Let ¢ be any state which satisfies ¢(a4) = 0 for all
A such that 4; % . Consider ¢[o,(0%)] in the GIM.
As shown in Proposition 1,

a,(69) = norm-lim o/ (0?), where V €F,

V-
«¥ (0%) = % cos (ZtER,-) — oYsin (2t2R,~),
iev iV

and R; = ¢(| j|)o? . Using the conditions on ¢, we have
Plef (6] = ¢[a°w cos (Zt > R,-):'.

jev
We show by induction on the number of sites in ¥ that

o} (0)] = $(2) TT cos [2¢( ji)1]. ®

i€V

Q)
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For V = {j}, cos (2tR;) = cos[2te(] j|)], since (o7)*" =
[ for all neN and (8) follows from (7). Now
assume (8) for ¥ having N sites with site /¢ V. Then

¢>{a‘; cos |:2t(z_{/R,- + R,):\}

= (l)l:gg cos (2t Sy Rj) cos (tR,)

jey
— oY sin (2t ZRj) sin (2tR,):|.
iev
The second term on the rhs vanishes since, in the
series expansion of the sines, every term has at least
one “unmatched” o, in it which is annihilated by ¢.
Again, cos (2¢R;) = cos [2te(]!])], so that

#1701 = 40 - TI cos 121l

By induction, we have (8) for all V€ F, V  @. To
take the volume limit, we first define JJ,.va;,
where a,€ C, as the limit, if it exists, of the net
I1,ev a;- We make no exceptions for zero factors or
convergence to zero. Since > . le(|j)] < oo, we
must have (] j])y__}—w+0, so that it is clear that the

limit exists® for the net [T, cos [2¢¢(] j|)]. Hence,

Ploe(03)] = ¢(0§)1_ch05 [2¢(17De]. (6"
jezy

A natural means of investigating the influence of a
particular choice of e is thus determining the resulting
behavior of J]Z_, cos [e(n)f]. As mentioned above,
Vieta’s formula shows that the choice e(}j[) = 1/2/!
produces nonrecurrent behavior. More generally, one
might inquire into the time behavior resulting from
e(1j) = 1/&9, &>1. The model with &(|j|) =
(811 for j 0, where &> 1, for stability, is

called the exponential model E,. We have® that

TI cos (in) —>0, for £>1,
n=1

i—+ 0

if and only if £ ¢ S/{2}, (9)

where S is the countable set of all algebraic integers
over the rationals with conjugates having moduli
strictly less than one. From this, we see that the
qualitative behavior of the model is discontinuous in &.
For this reason, and because of certain results concern-
ing phase transitions by Dyson,? we also consider the
following form for e:e(| j|) = 1/j1* for j 7 0, where
is assumed greater than the dimension » for stability.
We call this the Dyson model D,. The nonrecurrent
time behavior of the Dyson models is shown by the
following lemma.
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Lemma 3:

Hcos («)_)0 forall o> 1.

t=>w

Proof: Define

o= T (3 = F - (4]

Assume that f(¢) does not have limit zero as ¢ — oo.
Then there exists 2 § > 0 and a sequence #, > 0 such
that 7, — oo and f(#,) > 6 for all n € N. Now ¢* >
1 4 x for all x € R. Therefore, if 1 + x; > 0,

Therefore,

Hexp [—sm ( ):| > 6 foralln.
J

Taking logarithms, we obtain

— D sin® (Z) > Ind.
j=1 j*

Hence,

z sin®

i=1

( )_-ma, forall neN. (10)
J

Let N, be the number of solutions m in N of the
expression sin? (¢,/m*) > }. Clearly, N, is greater than
or equal to the number of solutions m in N of

sm L t,fm* < g
or

m@EmYe < (1) < m(Em'". (11)

Therefore, N, — <o as t, — co. This contradicts (10).
Hence, f(t) > 0 as t — . QED

We now combine the above facts to prove the
following proposition.

Proposition 5: With dimension v =1, let the
interaction be that of any exponential model E,,
where & is transcendental, or any Dyson model. Let
¢ be any state which satisfies ¢(c4) = 0 for all 4
such that 4; # @. Then M¢ = ®,, Tr;.

Proof: We show that M¢ and ®),, Tr; coincide on
the set of all o4, which by linearity and continuity will
give the full result. Note that ®,., Tr; (¢) = 0 for
all 4 # (2, &, @). For 4 = (2, @, 4y), a,(c4) =
a4 so that ¢[x,(6)] = ¢(c4), and the coincidence is
obvious. Hence, for the rest of the proof, we assume
that 4, U 4, 3 @. As in the proof of Proposition 2,
«,(c4) can be put in the form of a finite linear sum of
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terms, such as

Ik TR+l .
G le+1

oit. .- oikt exp (iSH),

where S = 3, a,0%, and for j€ Z such that |j| >
W = max,...., {| jrnl} We have

%aj = Ii:f(|j ~jit1l) £ 0 £ €] — Jrsal)-

To show that M¢(c4) = 0, we first notice that M(o4)
is a finite linear sum of terms of the form

lim — f (I y[a7kin - - - M@y, exp [l 4(S)1]D,) dt.

T-w T
By von Neumann’s ergodic theorem,’® the above
expression equals (¥, P®,), where

¥, =1L[ofktn- - 02]0,
and P is the projection defined by the strong operator
limit,

llm [E(0) — E()],

where {E(4)| A€ R} is the resolution of the identity
corresponding to I1,(S). We will show that PO, = 0,
and this will complete the proof:

PO, = (Dg, PDy)

T
= lim T_IJ; (D, exp [il14(S)11Dy) dt.

T

By arguing as in the proof of (6"), we get
(D, exp [ilI4(S)t]D,) = ]_Z[ cos (a;t).
All we need to do now is show that

IT cos (a;t)— 0.

jeZ to o0 (12)
For the exponential models, we have for all large

enough | j| that

1 1
i"'ifu—m'

1) — g —
24, = % gli=i1l
Therefore, if & is transcendental, it is clear that a; does
not vanish Then,since a; can be factored,

+ &7,

ta; [:1:5“ for j>»0,

= F [£&7 £ £ &7, for jKO,

a simple change of variable in (9) gives (12). For the
Dyson models, we use a different argument. First, we
need to show that a; does not vanish for all sufficiently
large | j|. There are two cases to be treated separately:
(1) a; does not have an equal number of +2 and —2

coefficients for the 1/|j — j1|*; (2) it does have an
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equal number. In case 1, it is clear that the sign which
appears more often gives a; that same sign for all
large enough | j|. Case 2 follows from the fact that the
functions of a complex variable defined by

1 1

:t e :I:
(z = h)* (z = )"

ay(z) = %

and
1
7 x e :i: . X
(Jl - Z) (.]'n - Z)
are both analytic at infinity, so that there is a compact
set K which contains the zeros of both functions.

An argument similar to Lemma 3 then yields (12).
QED

ax(z) = +

In addition to the result stated in the proposition,
we point out that the above proof not only determined
the equilibrium value of all local observables, but also
showed that this equilibrium value is actually ap-
proached for large . In fact, we have proven the
following:

Corollary: With dimension » = 1, let the interaction
be that of any exponential model E, with & tran-
scendental or of any Dyson model. Let ¢ be any state
which satisfies ¢(c4) = 0 for all 4 such that 4, = .
Then

plo(®)] —> Mp[f]
for every local observable 6.

We conclude this section with an example which
shows that one cannot expect the models to be so well
behaved on all initial states. In particular, we exhibit
a state which shows recurrences for all ferromagnetic
Ising-type models.

Define ¢ €S as ®jezv f;, where ol f; = f; for
Jj#0, and 6% f, = fy. Then, in the GIM, we have
from (1) that

Bla02)] = Lo’ cos (2Pt) — of sin (2P1)]

But ﬂ,(ag) = 0, and so the second term on the rhs
vanishes. Hence,

0 < (it)zn 2n 2n
Plafa)] =X —— $(Py") - 2
n=0 (2n)'
= cos (2pt),
where
Y Ad
6. RATE OF DECAY TO EQUILIBRIUM

Most of the proofs in previous sections depended
on properties of functions of the form

£t = TT cos (a,).

p =2 (i)
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We now want to comment on the essential connec-
tion of this function with our problem. We show, in
particular, that f'is the Fourier transform of a certain
measure u of physical origin and that investigation of
the structure of this measure can give detailed informa-
tion about the behavior of the system. Before we can
discuss this further, we need some definitions and
facts.

Let u be a Borel probability measure, hereafter
abbreviated Bpm. We denote Borel sets with Lebesgue
measure zero by Z, and countable sets by C. Then u
is called

(1) absolutely continuous if u(Z) = 0 for all Z,

(2) singular continuous if u(Z) =1 for some Z
and u(C) = 0 for all C,

-(3) discontinuous if u4(C) = 1 for some C.

An equivalent classification is obtained by using the
function u(Z,) of x € R, called the distribution function
of u, where I, = {y eR |y < x}. Then p is

(1) absolutely continuous if and only if u(Z,) is an
absolutely continuous point function,

(2) singular continuous if and only if u(l,) is
continuous and du(l,)/dx = O for almost all x,

(3) discontinuous if and only if the range of u(I,)
is a countable set.

If u; and u, are Bpm’s, the set function defined by

% pa(A) =J'RM1(A — X) dps(x)

is a Bpm called the convolution of u, and u,. If u
is a Bpm, the point function defined by

) = [ e aute)

is called the Fourier transform of u. We then have the
following connection: If u; and u, are Bpm’s, then
pT* Ja(t) = fy(t)fip(t). Furthermore, the Fourier
transform is a means of determining continuity
properties of Bpm’s since® if 9 is greater than the
positive integer p, then

A(t) = O_(|t|™") implies that u(I,) e C*. (13)

Here, we use the notation that a function g(r) satisfies
g(®) = O, [h()]if there exist positive constants ¢ and
d such that |g(#)| < ch(z) for all ¢+ > d. Also, ge C?
means that g has continuous derivatives through
order p.

We now come back to p[«,(?)]. From Proposition
1, we have

o (07) = exp [iHy]og exp [—i1),
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where Hy =09, v e(k])o*. It is then easy to
obtain

plo(0%)] = p(o% exp [i28,1)).
Defining x as the spectral measure of I (2H,)
corresponding to the form p(of ) = (Il ,(¢))®,,- @,),
we have from Stone’s theorem that

plaaz]) = (). (14)
By a simple generalization of (13) to complex meas-
ures, we have

Proposition 6: In the GIM, if p[a,(¢2)] = O (|¢t|7")
for any y greater than the positive integer p, then
u(I;) € C% where p is the spectral measure of IT,(H,)
corresponding to the form p(c? -).

To show that the available range for the rates of
decay into equilibrium is wide enough to be of
interest, we investigate the situation discussed in
Sec. 5. Therefore, restricting ourselves to dimension
v = | and states p which satisfy p(¢4) = 0 for all 4
such that 4, % 0, we have, as in (6'),

pla(oD)] = p(a2)plePot)

= p(a?) lojlcos2 [2e(n)t].

We therefore need to classify the measures pz, u;,
and u, which have Fourier transform

ﬁ cos [2e(n)t],
n=1

with € coming from the finite-range, exponential, and
Dyson models, respectively:

(A) For the finite-range models, it is easy to see
that u is discontinuous, producing recurrent behavior.

(B) For the exponential model E, with & > 2, it is
known?® that u, is singular continuous so that 4, ¢ C*
and, therefore, from (13) that

Hcos

n=1

( )¢Oi(ltl‘7) forany y >2 if &> 2.

In fact, it is further known3® that u, * u, is singular
continuous for § > 3 so that

H cos®
n=1

(C) For the Dyson model D,, the following lemma
shows that, for some ¢ > 0,

Hcos ( ) < exp [—c 1'%

n=1

( );éOi(ltI"), forany y>1 if £>3.

so that y, € C*.
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Lemma 4: If o > 1, there exists a ¢ > 0 such that

( )) < exp [—c 1]

Proof: For 0 < x <1, we have 0 < cosx < 1 —
cx? for some ¢ > 0, and 1 — x < e~ Therefore, for
t > 0 we have

eos (5)] <,

By integral approximation,

f>t1/“J

The transition to negative ¢ then gives the full result.
QED

The above classification shows by example how wide
a range of rates of decay is attainable. To complete the
picture, we note® that for no form of interaction in
the GIM is there a ¢ > 0 such that

ﬁ cos® [2e(n)t] = O (e~*'").

7. CONCLUSIONS

The analysis presented in this paper leads to an
explicit statement on the relation, in the thermo-
dynamical limit, between the spectrum of the “Hamil-
tonian” and the time behavior of the expectation
values for local observables. In particular, Proposition
6 shows that, for generalized Ising interactions, the
degree of continuity of the spectrum of local Hamilton-
ians, considered in the Hilbert space generated by any
initial state, limits the rate at which that initial state
can approach equilibrium.
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Classical thermodynamics is developed in a rigorous and quite general form. The approach is similar
to Carathéodory’s in that entropy and temperature are defined in terms of quantities which are more
directly measurable, but Pfaffian forms and quasistatic processes do not appear. The mathematics used
is elementary, apart from a small amount of symbolic logic and a very little topology.

1. INTRODUCTION

The second law of thermodynamics is still often
stated in the manner of Kelvin: It is impossible to
construct a system that, operating in a cycle, will
produce no effect other than the extraction of heat from
a reservoir and the performance of work on a mechanical
system. Such formulations have a comfortingly
operational sound, but they are unsatisfactory as a
basis for a physical theory. Their most serious defect
is that they are incomplete. For example, they give no
indication of what processes are possible for a physical
system. One is forced to rely on intuitive judgements,

which makes it impossible to construct a logically
sound theory. To make matters worse, the processes
required in traditional applications of the second law
are often ‘“‘quasistatic’’ or ‘“‘reversible,” and can be
defined only by subtle limiting procedures.
Carathéodory® was the first to attempt an axiomatic
formulation of thermodynamics. Although his theory
is not completely general, it does apply to a large
class of systems. Heat, entropy, and temperature are
defined in terms of measurable quantities, and the
assumptions of the older theory are made more
explicit and simplified. Despite these considerable
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directly measurable, but Pfaffian forms and quasistatic processes do not appear. The mathematics used
is elementary, apart from a small amount of symbolic logic and a very little topology.

1. INTRODUCTION

The second law of thermodynamics is still often
stated in the manner of Kelvin: It is impossible to
construct a system that, operating in a cycle, will
produce no effect other than the extraction of heat from
a reservoir and the performance of work on a mechanical
system. Such formulations have a comfortingly
operational sound, but they are unsatisfactory as a
basis for a physical theory. Their most serious defect
is that they are incomplete. For example, they give no
indication of what processes are possible for a physical
system. One is forced to rely on intuitive judgements,

which makes it impossible to construct a logically
sound theory. To make matters worse, the processes
required in traditional applications of the second law
are often ‘“‘quasistatic’’ or ‘“‘reversible,” and can be
defined only by subtle limiting procedures.
Carathéodory® was the first to attempt an axiomatic
formulation of thermodynamics. Although his theory
is not completely general, it does apply to a large
class of systems. Heat, entropy, and temperature are
defined in terms of measurable quantities, and the
assumptions of the older theory are made more
explicit and simplified. Despite these considerable
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advances, his theory has been ignored by most
physicists, probably because they have been unwilling
to master the necessary mathematics of Pfaffian forms,?

In recent years a number of authors have tried to
simplify or generalize Carathéodory’s work. The
common feature of the new theories is that they make
assumptions about the possibility of processes with
arbitrary initial and final states, whereas Carathéodory
is mainly concerned with neighboring states. The
simplest of the theories is that of Buchdahl.® Its
generality and rigor are similar to Carathéodory’s, but
it uses only elementary mathematics. The most general
and rigorous theory is due to Giles?; that of Falk and
Jung® resembles it, but is less fully worked out. Both
theories require nonelementary mathematics—differ-
ent from Carathéodory’s, but no simpler. The same
is true to some extent of the theory of Buchdahl and
Greve.b

We shall attempt to construct a theory of the same
type as those just described, but simple, general, and
rigorous. We would, however, point out that this is
by no means the only sensible approach to thermo-
dynamics. If one wishes to apply or generalize the
theory, it is often convenient to postulate the existence
of entropy and temperature functions with the
desired properties. This procedure, which derives from
Gibbs, is well exemplified in the books of Guggen-
heim,” Callen,® and Tisza.® As Tisza emphasizes, the
two points of view are complementary. The advantage
of ours is that it gives a more immediate insight into
the meaning of entropy and temperature.

We shall be mainly concerned with the formal
structure of thermodynamics—the statement of
axioms and the proof of theorems—which is of
course only the skeleton of the subject. To give the
bare bones life, one must interpret the undefined
elements of the formal theory in terms of measurable
quantities. Such interpretations, and the informal
arguments by which one makes the axioms plausible,
are not part of the formal theory. We shall always try
to keep this distinction clear, since failure to do so
can cause great confusion. We shall, for example,
speak of the definition of elements in the formal theory,
but of interpretation or characterization in the informal
discussion. (E.g., an adiabatic process is an undefined
element of the formal theory, but it is characterized
informally as a process in which a system is thermally
insulated—where thermal insulation is something that
can be demoustrated in the laboratory.)

2. INTERNAL ENERGY

We begin by giving an account of the first law of
thermodynamics and the definition of internal energy.
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The axioms and theorems of this section are needed
later, but there is nothing really new; so we will be
brief.

Informally, thermodynamics is concerned with
systems that can sometimes be described in terms of
macroscopic variables. A macroscopic variable is a
measurable quantity whose values are not subject to
significant random fluctuations and are independent
of any sufficiently careful measurements made on the
system. (Thus, the mass of gas in a very small volume
and the momentum of an electron are not macroscopic
variables). The number of macroscopic variables of a
given system may differ from time to time. When the
number is maximal, one says that the system is in
a state.’® Any state is determined by the values of a
maximal set of macroscopic variables. A system in a
state may evolve in time, either spontaneously or by
interaction with its surroundings, into another state
or into no state at all. If it evolves from a state to a
state, we say that it undergoes a process.

As axiomatists, we are not concerned with the many
difficulties associated with the ideas of the last para-
graph. We do not have to talk even about systems.
All we need say is that there exists a set X whose
elements are called states. Time does not appear in
the formal theory. There is a set IT, whose elements are
called processes, and there are mappings 3:11 — X
and §:1I — 2. If J(#) = a, F(7) = b, then a is the
initial state of =, b is the final state of m, and 7 is a
process from a to b. If 3(z) = F (), then = is said to
be cyclic. We assume that, if there is a process from a
to b and a process from b to ¢, then there is a process
from a to c:

Va,celldrell:F(m) = (o)
= J(7) = I(7) & F(r) = F(o).

We use conventional logical notation: read V as for all,
€ as belonging to, 3 as there exists, = as implies or
only if, and & as and. We shall also use 3! for rthere
exists a unique,<=>for iff or if and only if, and V for or.

If a system undergoes a process, work may be done
on it. We assume that this work is measurable.
Formally speaking, there is a mapping W:II — R,
where R! is the set of real numbers, and W(w) is called
the work done in w. When interpreting the theory, one
chooses a system of units and takes W(m) to be the
work done on the system as measured in those units.

We shall be concerned for the rest of this section
with a special class of processes called adiabatic
processes. These are characterized as processes that a
system undergoes when it is thermally insulated. In
the formal theory we assume that there exists a set
A < II, whose elements are called adiabatic processes,
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and we assume that, if there is an adiabatic process
from a to b and one from b to ¢, then there is one
from a to c:

Va,6eAdreA:F(n) = I(o)
= I(7) = I(=) & F(7) = F (o).

There' is not always an adiabatic process from a
state a to a state b. When there is, we say that b is
adiabatically accessible from a and write @ — b. The
formal definition is a —b<>3A7eA:I(m)=a &
F () = b. We assume the following axioms for ail
a,b,ceX:

1. a—a;
II.a—b&b—c=a—c;
IIl. a —bVbh —a.

An example of an adiabatic process that satisfies I
is one that begins and ends at the same instant. II is
simply a reformulation of our previous assumption
about adiabatic processes. Axiom ITI, which says that
one can always go from a to b or from b to a by an
adiabatic process, entails a restriction on the type of
system the theory can deal with. It is easy to see, for
example, that it is not valid for many systems in
which friction occurs. It might be possible to replace
III by something weaker: One could try Va,be
Y3dceZi(a—cVe—a)& (b — cVc—b).This
would considerably complicate the theory, however,
and we shall therefore be content with I11.

The first law of thermodynamics states that the
work done in an adiabatic process from a to b is
independent of the adiabatic process chosen:

IV. VA meA:3(2) = () & F(A) = F(m)
= W(A) = W(m).

It follows that one can speak without ambiguity of
the work done in an adiabatic process from a to b.
The next axiom says that this work plus the work done
in an adiabatic process from b to c is the work done
in an adiabatic process from a to c.

V. VA, peA:3) = 3w) & F(A) = I(m)
& F(r) = F(u) = W(A) + W(m) = W(p).

Note that the processes 4, m, and u need not be
distinct. This fact is used in the proof of our first
theorem.

Theorem [: (i) If u is a cyclic, adiabatic process,
then W(u) = 0. (ii) If 4 is an adiabatic process from
a to b and = is an adiabatic process from b to g, then
W) = —W(n).

2957

Proof: (i) Consider A = = = p in V. (ii) From I,
there is an adiabatic process  from a to a, and, from
V and (i), W(2) + W(m) = W(u) = 0.

For any state g € Z, a function U,: % — R, called
the internal energy with respect to a, is defined as
follows. For all b€ X, III implies that there is an
adiabatic process A from a to b or an adiabatic
process 7 from b to a. In the first case we define
U,(b) = W(4), and in the second case Uy b) =
— W(m). From 1V, it does not matter how A and = are
chosen, and, from Theorem 1, the definition is unam-
biguous when a — b and b — a.

The internal energies with respect to different
states are very simply related.

Theorem 2: U, = U, + K, for all a, c € Z, where
K, is a constant function.

Proof (outline): From1l1l, a — ¢ or ¢ — a. Without
loss of generality one may assume g — ¢. Given
b e X, it follows from ILI that there are four possibili-
ties. Theseare: (i)a —b & c —b;(ila —b &b —¢;
(iii) b —~a & c—b; and (iv) b —a & b — c. The
theorem is now proved using V, the definitions of U,
and U,, and, in case (iii), Theorem 1. In case (i), for
example, let 4, 7, and u be adiabatic processes from
atoc, ctob, and g to b, respectively. Then W(2) +
W(mr) = W(u) from V, and hence U,(c) + U,(d) =
U,(b) and K,(b) = —U,(c). The other cases are
similar.

Any function of the form U, + K, where ac X
and K is a constant, is called an internal energy. It
follows from Theorem 2 that any pair of internal
energies differ by a constant. Since it rarely matters
which internal energy is used, we shall normally speak
of the internal energy and denote it by U. (One may
say that U is arbitrary to the extent of an additive
constant.)

Theorem 3: The work done in an adiabatic process
is equal to the increase in the internal energy.

Proof: Let me A, J(w) = a, F(m) = b. From the
definition of U, , U,(b) = W(x). From I and Theorem
1, U,(a) =0, and hence W(mr) = U,b) — U,((a).
Since any pair of internal energies differ by a constant
function, one has W(x) = U(b) — U(e) for any
internal energy U.

For nonadiabatic processes it is, in general, untrue
that the work done is equal to the increase in internal
energy. We define a mapping Q:I1 — R! by Q(7) =
U(b) — U(a) — W(w), where a = J(m) and b = F (=)
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and we call Q(=r) the heat absorbed in =. 1t follows that
the increase in internal energy in any process is the
sum of the work done and the heat absorbed in the
process and that the heat absorbed in an adiabatic
process is zero.

3. ADIABATIC ACCESSIBILITY

The axioms introduced so far are compatible with
any state being adiabatically accessible from any
other. In this section, we impose restrictions on
adiabatic accessibility, and, in particular, we require
that in any neighborhood of a state there be adiabati-
cally inaccessible states. Before we can make this
precise, we must define what is meant by a neighbor-
hood, which means that we must impose on the set of
states the structure of a topological space.

In this section we shall not be concerned with the
whole set of states X, but with a subset 8 of X. (It will
turn out that 8 is the set of equilibrium states of the
system, see Secs. 4, 6.) We assume that there exists a
set A whose elements are subsets of §, and such that
(i) Se A, (i) @ € A, where g is the null set, (iii)
VB, By, ,B,eAN:B,NB,N---AB,EA, (iv)
VK< A:Ugex BEA. Here N denotes the inter-
section of sets, {J their union, and 4 < B means that
A is a subset of B. In words, (iii) says that any inter-
section of a finite number of elements of A is an
element of A, and (iv) says that any union, finite or
not, of elements of A is an element of A. The pair
(8, A) is called a topological space, and the elements
of A are called open sets. By abuse of language, we
speak of the topological space § and the open sets of S.
In most applications of the theory, one can label the
states of a system by sets of 7 coordinates, that is, by
points of R*. The open sets are then defined in the
obvious way in terms of the usual open sets of R".
Although coordinates are probably necessary to
specify the topology in applications of the theory,
they need not be introduced into the formal structure.

We need very little topology. We recall that, for any
sets A and B, one defines B — A4 to be the set of
elements of B which are not elements of A; that is,
B— A=1{aeBla¢ A} If (§,A) is a topological
space and 4 < 8, then Fr A, the frontier of A, is
defined to be the set of points b € 8 such that any
open set that contains & also contains points of 4 and
8§ — A;ie.,

beFrA<=>becS&VBecAbeB
=3ag,ceBiacA&ced — A4).

If Fr A = A, then A is said to be closed. One proves
easily that 4 is closed iff § — A4 is open.
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For any state a € 8, we consider the set A(a) of all

states adiabatically accessible from «; that is,
A(a) = {be8|a=b}.

We assume that A(a) is closed for all a € 8. Note
that this assumption is made purely for mathematical
convenience, and usually has no physical content
(there is no way to test it experimentally). We call
Fr A(a) the frontier set of a.

We assume the following axioms for all q, b€ §:

VI. a € Fr A(a);
VIL. b e Fr A(a) = a e Fr A(b).

Axiom VI is called the principle of Carathéodory. 1t
implies that in any neighborhood of a state 4, i.e., in
any open set that contains a, there are states not
adiabatically accessible from 4. Axiom VII is a
slight extension of IIl. If b & Fr A(a), then in any
neighborhood B of b there is a state ¢ which is not
adiabatically accessible from a. From III, a is adiabati-
cally accessible from ¢, or a € A(cy). It does not
follow from III that a is adiabatically accessible from
b, the limit point of the states ¢, but this is implied by
VII, since a € Fr A(b) = a € A(b).

We now prove that two states are mutually adia-
batically accessible iff all states adiabatically accessible
from one are adiabatically accessible from the other
and iff one belongs to the frontier set of the other.

Theorem 4:
Va, beS:ia—b&b—a< Ala) = AD)
<> b e Fr A(a).

Proof: (i) If a — b and ce A(b), then a — b &
b — ¢, and a — ¢ from I1. Thus c € A(a) and A(b) <
A(a). Similarly, b — a= A(a) © A(b), and hence
a~—b&b—a= A(a) = A(b). (ii) If A(a) = A(b),
then Fr A(a) = Fr A(d), and b€ Fr A(a) from VI
(iii) If b € Fr A(a), then b € A(a) since A(a) is closed,
and it follows that a — b. From VII, b € Fr A(a) =
a € Fr A(b), and hence b — a. Thus b € Fr A(a) =
a — b & b — a. The proof is completed by using the
transitive property of =-.

If Qs a set of sets and A4 is a set, then one says that
Q partitions A if every element of A is an element of
exactly one of the elements of Q. (As an example, take
A = R? and Q to be the set of all lines in R? parallel
to a given line.)

Theorem 5: The set § = {Fr A(a) | a € 8} partitions
S.

Proof: From VI, a € Fr A(a), and so every element
of 8 is an element of one of the elements of . If a €
Fr A(b), then A(a) = A(b) from Theorem 4, and
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hence Fr A(b) = Fr A(a). We call § the set of frontier
sets.
4, ANERGIC PROCESSES

It is not obvious how many frontier sets there are,
nor whether one can label them with one or more
real parameters. We prove in the next section that, in
fact, one real parameter is sufficient. But, first, we
must introduce a new set of processes called anergic
processes (they are a slight generalization of what
Buchdahl® calls isometric processes).

One can partially characterize an anergic process
as a process in which no external force does work on
the system in any time interval. (Very roughly, one
can say that anergic processes are “no work™ proc-
esses, just as adiabatic processes are “no heat”
processes.) This characterization is sufficient for some
systems, but not for all. To be more precise, we assume
that the states of X can be labeled by a set of co-
ordinates. That is, there are functions x,:X — R,
i=1,2,--+, such that the mapping a— (x;(a),
xs(a), - - *) is an injection (or one-to-one). We assume
that the cooordinates can be chosen so that: (i)
x; = U, the internal energy; (ii) there is a subset
I< {2,3,--} such that the x; with i € I correspond
to physical quantities that can be measured at all
times (not only when the system is in one of the states
of X); (iii) in any process in which the x; are constant
at all times for all i€, the work done by each
external force is zero in every time interval.

We can now characterize an anergic process from
a to b as a process in which x; has the same value
whenever it can be measured, for all > 1. In partic-
ular, the x; are constant at all times for i €/, and
x,(a) = x,(b) for all i > 1. 1t follows from (iii) that
this is compatible with the previous, partial characteri-
zation.

The coordinates x, are useful in characterizing
anergic processes, but they play no part in the formal
theory, where anergic processes are undefined
elements. Formally, we assume that there exists a set
N < II whose elements are called anergic processes
and that the following axioms are satisfied:

VIII. VaeXA7eN:J(m) = F(m) = a;

IX. Vm,deNI7eN:F(n) = I(o0)
= 3(r) = I(m) & F(1) = F(0);
X. ¥YreN:W(m) =0.

Axioms VIII and IX are similar to I and II for
adiabatic processes. Note that X is not a definition
of anergic processes; i.e., it is possible to have
W(m) =0, w ¢ N. If = is an anergic process from

a to b, then the heat absorbed in 7 is @(7) = U(b) —
U(a) — W(m) = U(b) — U(a) by X. Thus, the heat
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absorbed is the same in all anergic processes from
atob.
In what follows, we restrict ourselves once more to

the subset § of X.

Let dom ¢q be the set of all (a, b) € § x § such that
there is an anergic process from a to b [that is,
(a,b)edomqg<-a,becS8 &InreN:I(n)=a

& F(m) = b).
Define a mapping ¢; domg— R' by g(a,b) =
U(b) — U(a). From the remarks above, ¢(a, b) is the
heat absorbed in any anergic process from a to b.
Axiom VIII implies that (a, a) € domg for all a € 8.
Axiom IX implies that if (a, b), (b, ¢) e domg, then
(a, ¢) e domg, and, from the definition of ¢, one has
g(a, c) = g(a, b) + q(b, ¢).

If there is an anergic process from a to b in which
the heat absorbed in nonnegative, then the next axiom
asserts that there is also an adiabatic process from
a to b. If the heat absorbed is negative, then there is
no such adiabatic process.

XI. V (a, b) edomg:q(a, b) > 0<>a — b.

If 7 is an energic process from a to b in which the
heat absorbed is k, then, in terms of our previous
informal characterization, we have x,(b) = U(b) =
U(a) + k = x,(a) + k. Since x,(b) = x;(a) fori > 1,
it follows that the final state b of the anergic process
is uniquely’! determined by the initial state a and by
the heat absorbed k. It also seems plausible that, by
suitably choosing k, one should be able to go from a
to some state in any frontier set. Fortified by these
heuristic arguments, we assume the following axiom:

XIl. VaeS8VY geF3!bep:(a,b)cdomyg.

It is easy to prove that there is no anergic process
from a state b to a distinct state ¢ belonging to the
same frontier set and to show that, if there is an
anergic process from a to b, then there is one from
btoa.

Theorem 6:
ypefyabepf:(a,b)cdomg<>a=5b.
Proof: (i) If a = b, then (a, b) edomg by VIIL
(i) Assume bep, (a,b)edomg. From XII, b is
unique. But (a,a)edomgq from (i), and a€ep.
Hence, a = b.

Theorem 7:
Ya,beS8:(a,b)edomg=- (b, a) edomg.
Proof: Let acaed. From XII, lceu:(db, )€
domg. Since (a, b) € dom g, IX implies that (a, ¢) €
domg, and ¢ = a by Theorem 6. Since ¢(a, b) =
U(b) — U(a), one has g(a, b) = —q(b, a).
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The set of anergic and adiabatic processes is very
restricted. In fact, if the initial state of such a process
belongs to §, the final state is the same as the initial
state (the process is cyclic).

Theorem 8:
VaeSVieANnNIN)=a=>FA) =a

Proof: Suppose that a € § and 1 is an anergic and
adiabatic process such that J(1) = a and F(1) = c.
Since A is anergic and adiabatic, (a,c)€domg
andg¢(a, ¢c) = 0. From Theorem 7, (¢, a) € dom ¢, and
g(c,a) = 0. Hence, a — ¢ & ¢ — a from XI, and
¢ € Fr A(a) from Theorem 4. It follows from Theorem
6 that ¢ = a.

Physically speaking, we say that a system is isolated
if it is thermally insulated and no force does work on
it in any time interval. We characterize an equilibrium
state as a state in which an isolated system can
remain indefinitely. The processes which an isolated
system undergoes must be adiabatic, but they need
not be anergic. In our characterization of anergic
processes at the beginning of this section, we re-
quired both that the coordinates x; for i € I should
be constant (which is all that is needed to ensure that
no force does work) and that each of the x; with
i > 1 should have the same value at the beginning
and at the end of the process.’? The latter condition
need not always be satisfied by an isolated system.
However, it is very often satisfied for the states of §
(in the simplest cases there are no x, such that i > 1,
i ¢ I). Theorem 8 implies that in such cases all the
states of 8 are equilibrium states.

If there are anergic processes from a to b and from
c to d, where a and ¢ belong to the frontier set « and
b and d to the frontier set §, then the heat absorbed
¢(a, b) need not be the same as g(c, d), but it does
have the same sign.

Theorem 9:

Ya, BeETY (a,b),(c,d)edomg:a,cea &b, def
=(q(a, b) =2 0<=>q(c,d) 2 0).

Proof: Suppose not: Suppose g(a,b) >0 and
q(c,d) < 0. From Theorem 7, (d,c)edomg, and
g(d,c) = —q(c,d) > 0. It follows from XI that
a—b and d — c. Since ¢ € a = Fr A(a), one has
¢ — a by Theorem 4, and similarly ¥ — d. FromII,
a —d&d— a, and d e Fr A(a) = « from Theorem
4. Since ¢, dea, and (¢, d)edomg, Theorem 6
implies that ¢ = d and ¢(c,d) = U(d) — U(c) = 0.
This contradicts the assumption g(c, d) < 0. For the
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caseq(c, d) > 0,4(a, b) < 0, one has only to exchange
the roles of (a, b) and (c, d).

5. EMPIRICAL ENTROPY

We now label the frontier sets with a real param-
eter; that is, we define a real function on . One can,
in fact, do this in many ways. For example, given any
state a € S, one may take the value of the function
at the frontier set § to be the heat absorbed in an
anergic process from g to a state of 8. If b is any
state of 8, then we call the value of the function at 8
an empirical entropy of b. Different choices of func-
tion give different empirical entropies, but we prove
that in all cases the principle of increase of entropy
is satisfied (Theorem 12)-

Given any a€$8, it follows from XII that
VBed3A!bep :(a, b) e domgq. Hence one can define
a mapping f,:§ — R' by f,(8) = q(a, b). We prove
that f, is an injection.

Theorem 10:

VaedSV B, yeT:fi(A =f(n=p=v

Proof: From XII, there exist unique states b € g,
¢, ¢’ €y such that (a, b), (a, ¢), (b, ¢') € dom q. From
IX, (a, c’) edomg, and hence ¢ = ¢’ by XII. Since
q(a, c) = ‘](a, b) + 4(b, ¢), ‘I(a, ¢) =ﬁz(7)’ g(a, b) =
f:(B), and f,(B) = f,(y), one has q(b,c) =0, and
b — ¢ from XI. From Theorem 7 and XI, (¢, b) €
domg, g(c,b) =0, and ¢ — b. Theorem 4 implies
beFr A(c), and § = y.

Corollary: From the proof of the theorem and the
equation g(b, ¢) = f,(), it follows that

Yae8¥ p,yeT3beffi(y) = £, + fi(y)

If acacd, then, from Theorem 6, f(x) =
g(a, a) = 0. Conversely, from Theorem 10, if f,(x) =

0,then a e a.
From Theorem 9 one can deduce conditions that

must be satisfied by any pair of functions f,, f,.

Theorem 11:

Va,beSYB,yel f(y) —fu(f) 20
< (7)) — (B 2 0.

Proof: From the Corollary to Theorem 10, there
exist ¢, d € B such that £,(») = f,(B) + f.(»), /(y) =
fo(B) + fi(y). From XII there exist ¢’, d’ € y such that
f:(») = q(c, &), fi(y) =q(d, d’). Theorem 9 implies
that £,(v) > 0 <> fi(y) > 0, and the theorem follows.

Since f, is an injection, the inverse f;* exists for all
a € 8. The transformation functions F,, can therefore
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be defined by F,, = f, o f;*for all a, b € §. We assume
that the F,, are differentiable. That is, the derivative
F, (x) exists for all x € f,(T). One proves from Theo-
rem 11 that F, is everywhere nonnegative. Since
F,, exists everywhere, it follows that F,, has no zeros,
and is therefore strictly positive for all a, b € 8.

It is convenient to consider a set of functions which
includes the f, as a subset. We define {19 — R'to be a
parametrization of § if for some a € §, one has f =
F1. f,, where the functions F, and F! are differenti-
able and F; is strictly positive. It follows at once that
fis an injection. From the results of the last paragraph
we see that parameterizations can be defined in terms
of any of the functions f, and that f, is itself a param-
etrization of § for all a € 8.

If fis a parametrization of § and a € 8, thereisa
unique a €9 such that a€a. One can therefore
define a function Z:8 — R by Z(a) = f(e). We call
Z an empirical entropy, and Z(a) =f(«) is an
empirical entropy of a. Note that different parametri-
zations of § give rise to different empirical entropies.
If we speak of the empirical entropy, it is to be under-
stood that we are considering a definite parametri-
zation. The physical significance of empirical entropy
is shown by the following theorem.

Theorem 12 (Principle of Increase of Entropy): For
all a, b€ 8, b is adiabatically accessible from a iff
the empirical entropy of b is not less than that of a.

Proof: (i) If a, b€ a € §, thén a — b by Theorem 4.
Since the empirical entropy of a is the same as that of
b, the theorem is trivially satisfied. (ii) (a) Suppose
aca, bef, where «, BT, a # . From XII and
Theorem 7, 3! c € a: (b, ¢), (¢, b) e dom ¢. Since « #
B, fo(@) = q(b, ¢) # 0 and f,(f) = q(c, b) # 0. Hence
by XI, f,(2) > 0<=>b — ¢, and f,(f) > 0 <= ¢ — b.
Now let f be any parameterization of §. One has
Jo = Fy o f, where F, is strictly positive, and it follows
from the mean value theorem that fi(a) — f,(f) =
K(f(«) — f(B)), where K > 0. Since f,(8) =0, it
follows that f(a) — f(8) > 0 <> b — c. Similarly, or
from III, one shows f(a) — f(B) < 0<>c¢ — b. (ii)
(b) Assume that a — b and f(«) — f(f) > 0. From
(a), b — ¢ and, from Theorem 4, ¢ — a. Hence
a—b&b—a, and a = g, from II and Theorem 4.
This contradicts the assumption « % g, and it follows
that @ — b= f(a) — f(f) < 0. Conversely, assume
that f(«) — f(8) < 0. From (a), ¢ — b, and, since
a — ¢ by Theorem 4, one has a — b from II.

To understand the physical significance of the F,,
let f be a parameterization of § and write f(a) =
zand f(f) = z + h, so that f(«) = F,(z) and f,(B) =
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Fy(z + h). From the Corollary to Theorem 10, there
exists b € a such that f,(8) = f,(¢) + f,(8), and, from
XII, there exists ¢ € f such that f,(8) =q(b,c) =
U(c) — U(b). It follows that

Ju(B) — fu(0) = Fy(z + h) — F(z) = U(c) — U(d)
and
hF,(z) = U(c) — U(b) + o(h) = q(b, ) + o(h)

as h — 0. Thus F,(z) is the rate of change of internal
encrgy with respect to z in an anergic process or the
heat absorbed per unit change of z in an anergic
process.

6. STATES HAVING THE SAME TEMPERATURE

One can often give empirical meaning to the
statement *‘state g has the same temperature as state b.”
The operations by which one verifies such a statement
usually involve some kind of thermometer, but they
do not require any particular temperature scale. (We
can graduate the thermometer arbitrarily.) One can
imagine a system for which two states have the same
temperature iff they have the same empirical entropy.
This we exclude. We assume, in fact, that there are
states which have the same temperature and any
values of the empirical entropy.

The above ideas are formalized in terms of an
equivalence relation on the set of states S. We recall
that an equivalence relation on a set B is a subset R
of B x B such that, for all a, b, ce B, (a,a) € R,
(a,b)eR=-(b,a)e R,and (a,b)e R & (b,c)e R =
(a, ¢) € R. The axiom is the following.

XIII. There exists an equivalence relation G on 8
and a state @y € S such that V f e T3 b € B:a,Gb.

If (a, b) € G, then we write aGb and say that a has
the same temperature as b. It follows that for all
a,b,ce8§,aGa,abb—=bTGa,and aGb & bGc = aTec.
One can, of course, replace g, in XIII by any state
b, € 8 such that byGa,. The existence of the equiva-
lence relation G is roughly equivalent to what is called
the zeroth law of thermodynamics in other treatments of
the subject.

For the sake of simplicity, we shall use Axiom
XIII, but one can develop the theory on the basis of
a more complicated but much weaker assumption
(see XIII' below). Roughly speaking, the idea is that
one should demand that XIIT hold, not for all sets of
7, but only for neighboring sets. To make this precise,
let f be a parameterization of § and J be a finite or
infinite set of consecutive integers; e.g., one might
have J = {---, -2, —1,0,1,2,---}. For all neJ
let 7, < R' be an open interval such that {J ., I, =
@, ,nl,,,#¢,and I, NI, ,= & for all n,
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n+1, n+2eJ. Define §, ={aef|f(x) =1,
We then have |J,; 7, (‘ 7, ﬂ F,.4, 7% @, and

7, NT,...=g for all n, n+1 n+2el A set
Q= {F,|neJ}, where J and §, satisfy the above
conditions, is called a countable, open covering of .
We can. now state the modified form of Axiom XIII.

XIT'. There exists an equivalence relation G on 8
and a countable open covering Q of & such that
V3,€Q3q,c0ef, Ve, dbef:a,Th.

7. TEMPERATURE AND ENTROPY

The parameterizations £, of § and the corresponding
empirical entropies depend on an arbitrary choice of
state @, and they cannot be expected to have any deep
physical significance. In order to find a nonarbitrary
entropy function and also a nonarbitrary tempera-
ture function, we use another of Carathéodory’s
ideas. We consider a compound system that consists
of two identical subsystems which have the same
temperature (a more precise statement is given below).
We assume that all the previous theory applies
both to the compound system and to the subsystems.
We assume too that certain specified processes of
the subsystems correspond to adiabatic processes of
the compound system. One can then show that the
empirical entropy of the compound system is a
function only of the empirical entropies of the sub-
systems and that the parametrizations f, must
satisfy a fairly restrictive condition (Axiom XIV
below). Using this result, one easily proves the
existence of nonarbitrary temperature and entropy
functions.

In carrying out the program just outlined, one has
a choice of tactics: Either one can construct a com-
pletely rigorous theory of compound systems, or
one can give a heuristic argument to make it plausible
that the parametrizations f, should satisfy a certain
condition, and can then adopt this condition as an
axiom of the formal theory. We choose the second
alternative because it is simpler. (A brief, formal
account of compound systems is given in the
Appendix.)

More formally, one considers a set o =X X X
and asetS; < 8 X § < X, such that (a,b) e §; <
aBb, where X and § are sets of states of a subsystem
and G is the relation on 8 that satisfies Axiom XIII.
We assume that all the theory that has been developed
up to now is valid for X, §, and the sets of processes
I1, A, and N and that it is also valid for £, 8¢, and
the corresponding sets of processes I, A, and N.
(If Ace A, we say that A is an adiabatic process
of the compound system, etc.) The relation G on §
and the corresponding relation G¢ on 8 are assumed
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to satisfy (a, b)G(c, d) <= aBc for all (a, b), (¢, d) e
Sc.

Let us denote adiabatic accessibility in the com-
pound system by — . We assume that adiabatic pro-
cesses in the subsystems induce an adiabatic process in
the compound system: a — b & ¢ — d=>(a,¢) —
(b,d) for all (a,c), (b,d)e8;. If in addition
a, bea and ¢, de f, where «, § €, then Theorem
4 implies that a — b & b —a and ¢ ~d & d —
c. It follows that (a,¢) —(b,d) and (b,d) —
(a,c), and Theorem 4 for the compound system
implies that (a,c) and (b, d) belong to the same
frontier set: (a, ¢), (b,d)€y €T . We have there-
fore proved that to each («, §) € ¥ x J there corre-
sponds a unique Y. €T such thataca & bef =
(a,b) ey for all (a,b)e 8, and we can define a
mapping «:P X P— P, x(a, f) = y¢. In terms of
parametrizations f of § and f of ¥, one writes

2o = fo(yo), 2 = (%), 2, = f(f), and
g=foro(ff™),

and one has z = g(z,, z,). Since z,, z,, and z are the
empirical entropies of states a € a, b€ §, (a, b) € v,
respectively, we have shown that the empirical entropy
of any state (a, b) € 8, is determined by the empirical
entropies of a and b.

We do not assume that the only adiabatic processes
of the compound system are those induced by adia-
batic processes of the subsystems. Since the compound
system absorbs no heat in an adiabatic process, it
may seem reasonable that the amount of heat
absorbed by one subsystem should be minus the
amount absorbed by the other. However, an implicit
assumption here is that the heat absorbed by the
compound system is the sum of the heats absorbed
by the subsystems, which is not always true. We shall
assume it to be true in the special case when the
subsystems undergo anergic processes and are
always at the same, or almost the same, temperature.

To be specific, we consider an adiabatic process of
the compound system from (a, b) € 8 to (¢, d) € S,
where both states have the same empirical entropy z.
The empirical entropies of the states a, b, ¢, and d of
the subsystems are z;, 25, z; + 0z;, and z, + dz,,
respectively. One subsystem undergoes an anergic
process from the state a to a state @’ with empirical
entropy z, + 6z, and then an adiabatic process from
a’ to c. The other subsystem undergoes an anergic
process from b to a state b’, with empirical entropy
2z, + 0z,, and then an adiabatic process from &’ to d.
We assume that, for small 6z,, and 4z, , the heat ab-
sorbed by the compound system is the sum of the
heats absorbed by the subsystems. Since the com-
pound system undergoes an adiabatic process, this
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implies that F(z,)0z, + F,(z,)0z ~ 0 (cf. the end of
Sec. 5). Since z¢ = g(z;, z,) and the states (a, b) and
(c, d) have the same empirical entropy, we have

0 0
0z =0~m~ a—fl (21, 22)02, + _é% (21, 25)02,.

Provided that dg/dz, and 0g/dz, do not vanish, we
can solve these equations, and find

Fi(z) _ og

Fj(zy) 0z,

The right-hand side of this equation depends only
on z; and z,. On the left-hand side, a and b are any
states of 8 with empirical entropies z;, and z,, respec-
tively, subject only to the condition that a has the
same temperature as b [since (g, b) € §]. It follows
that, if i, j€ 8 have empirical entropies z; and z,,
respectively, and i has the same temperature as j, then
F(z))[Fy(z9) = F,{(Zl)/F,{(Zz)-

We emphasize that the argument of the last para-
graphs is not rigorous and is not part of our axiomatic
structure. Its purpose is only to make the next axiom
plausible.

XIV.Vz,wef(@),Va,cefz),V b, def1(w:
aGb & cGd = F,(2)[Fy(w) = F,(2)[Fy(w).

We have stated XIV in terms of a parameterization
fof ¢ and the functions F, = f, o f~*, but one shows
easily that it is, in fact, independent of the choice of f
and represents a condition imposed on the f;. To
see the physical meaning of XIV, use the interpreta-
tion of F, at the end of Sec. 5.

As a special case of XIV, we put z = wand a = b.
One then has ¢Bd = F (z) = Fy(z) for all z €f(F)
and for all ¢, d e f72(2).

A temperature function is defined to be a mapping
T:§ — R' that satisfies the conditions (i) V a,
be8:aBb=T(a) =T(b),(i)VacfVabeaz=
f(@) = T(b) = T(a)F,(2)|F.(z), and (iii) Ja€es:
T(a) > 0. We note that (ii) is independent of the
choice of parametrization f.

To prove the existence of a temperature function,
we first choose T(q,) > 0, where g, is the state that
appears in XIII. If d€ §, then there exists a unique
g €7 such that de 8. From XIII, there exists b€ f
such that a,Bb. Define T(d) = T(ap)F,(w)/F,(w),
where w = f(f). (Recall that F, is strictly positive.)
This definition is independent of the choice of the
state b, since, if ¢ € #, and 4, B¢, then bGe and F,(w) =
F,(w) from XIV. Again using XIV, one verifies that
(i), (i), and (iii) are satisfied. Since F, is strictly
positive for all a€ 8, it follows that T is strictly
positive.

)
21, 22)/55- (Zl ’ 22)'
2
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If T'is any temperature function, then one can define
a function r = T|T (this makes sense because T is
strictly positive). The conditions (i) and (i) imply that
aGh = r(a) = r(b) for all a, b € 8 and that r(a) = r(b)
for all x €7 and for all 4, bea. It follows from
XIII that r(a) = A, a constant, for all a€$§, and
hence T = AT. From (iii), one has 4 > 0. We have
therefore proved that a temperature function is
uniquely determined by conditions (i), (i), (iii), and
by its value (necessarily positive) at a single state.

If one uses Axiom XIII instead of XIII, the proof
of the existence and uniqueness of a temperature
function is only slightly more complicated. The proof
already given establishes the existence and unique-
ness properties of temperature functions restricted
to .the sets &,,, and one has only to show that these
functions can be chosen so that they coincide on the
intersections of their domains (proof by induction
on n).

From condition (ii), one sees that for any tempera-
ture function T and for any a = f~!(z) € J the ratio
F,(2)[T(b) is constant for all b € «. One can therefore
define a function s":f(F) — R* by §'(2) = F,(2)/T(b),
where b € f~1(z). We assume that s’ is continuous on
f(#), and it follows that there exists a function s on
f(F) whose derivative is s’. Since the functions F, and
T are strictly positive, so is s, and this implies that
sofis a parametrization of §. For a given tempera-
ture function T, 5o f is arbitrary to the extent of an
additive constant, but it is independent of the param-
etrization f (i.e., if fis another parametrization of
§ and F,=f,of, §'(z) = F;(2)|T(b), then §of =
s 5f). If T is replaced by AT, where 4 > 0, then s is
replaced by s/A.

The function S:8 — R* defined by S(a) = 5o f(a),
where a € a, is called the entropy. Like sof, it is
arbitrary to the extent of an additive constant for
a given temperature function T, and it is replaced by
S/ if T is replaced by AT. Since S is an empirical
entropy, it satisfies Theorem 12, the principle of
increase of entropy.

It was shown in Sec. 5 that the heat absorbed in
an anergic process w froma e f1(z)to bef(z + h)
is Q(m) = U(b) — U(a) = hF)(2) + o(h) as h—0.
Since hF(z) = T(a)hs'(z) + o(h), one has Q(m) =
U®) — Ua) = T@IS®) — S@)] + o[S(b) — S(a)]
as S(b) — S(a) — 0.

The existence of temperature and entropy functions
is the essential content of the traditional second law of
thermodynamics. For completeness, we note that the
third law states that the internal energy and the
entropy are bounded below, and that, as the internal
energy approaches its lower bound, so does the
entropy, and the temperature approaches zero.
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XV. The internal energy U has a greatest lower
bound gib U, the entropy S has a greatest lower bound
glb S, and for all sequences

{a,€8|n=1,2,3--}:
lim Ua,) = glb U= lim S(a,) = glb S

n—0 n—oo

& lim T(a,) = 0,

n—oo
where T is any temperature function.

One can, of course, choose the arbitrary constant
in § so that glb S = 0.

We note finally that the theory can be easily
generalized to include states of negative temperature.,
Instead of a single set 8, one assumes the existence
of two disjoint sets §, §, such that §, § = . The
axioms satisfied by S exactly parallel those satisfied by
8. In particular, XIII (or XIII’) holds for 8. However,
no state of § has the same temperature as any state of
8. A temperature function 7T is defined on 8 as before.
A function T:8 — R* is defined which satisfied the
conditions (i) and (ii) for a temperature function.
Instead of condition (iii), we require that there exists
ae§ such that T(a) < 0. One can then define a
generalized temperature T* on 8 U § such that T*
restricted to 8 is T and T* restricted to § is T.

8. CONCLUSION

We have shown that one can develop thermody-
namics in a manner which is rigorous, and also quite
simple and general. The distinguishing features of our
treatment are the use of anergic processes, rather than
quasistatic or reversible processes, and the very
sparing use of arguments that involve compound
systems.

The main purpose of axiomatizations of the present
kind is to make clearer the physical significance of
such abstract concepts as entropy and temperature.
It is also possible that axiomatization may lead to
generalizations of the theory (cf. the remarks follow-
ing Axiom III). From a broader point of view, one
can argue that no physical theory is complete until it
has been axiomatized. Certainly, one cannot under-
stand the nature of physical theories until one has
performed a few such dissections.

APPENDIX

We here give an account of compound systems
which is a little more complete and general than that
in Sec. 7. One should note that, following Carathéod-
ory, we use compound system in a very special sense.
The subsystems of a compound system are not
thermally insulated from one another, and the sum
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of their internal energies is equal to the internal
energy of the compound system. Other kinds of
compound system are sometimes discussed in thermo-
dynamics.

We consider a compound system composed of two
subsystems (the generalization to any number is
trivial). Quantities referring to the subsystems are
labeled by suffixes 1 and 2, and those referring to
the compound system, by a suffix C. We introduce
sets of states X, §,, sets of processes II,,, A,, N,,,
etc., where n = 1, 2, C, and we assume that all our
previous assumptions about X, 8, etc., also hold for
Z,,8,, etc.

_ We assume that there exists an equivalence relation
T on §; U §, such that the restriction of B to Sp is
Tp, for P =1, 2. The set of states X is defined by
Xo=2ZX; X Xy, and 8 is defined by

8¢ <=8, x8,;, (a,a)€8.< a,Ca,.
The equivalence relation G on 8 is defined by

(a1, a))T (b, bp) <= 0, B, .

In accordance with the general assumption of the last
paragraph, the T, satisfy Axioms XIII and XIV, for
n=12,C.

Ifa,,b, € X, and b, is adiabatically accessible from
a,,we write a, —, b, . We assume that for all (a;, a),
(b1, by) €8¢

a, =7 by & ay — by = (ay, a3) —¢ (by, by).

By an easy modification of the proof of Sec. 7, one
shows that there exists a mapping <:%; X F,— T
such that
@ €y &a, € oy =>(ay, a,) € k(o , o)
for all (a,, a,) € 8.

Further, if f, is a parametrization of the set &, of
frontier sets, then there exists a mapping
g1 X fo(F2) > fo(T )
which determines the empirical entropy of any state
(a1, a;) € 8¢ in terms of the empirical entropies of
a; and a,.
~ We assume that anergic processes in the subsystems
induce an anergic process in the compound system.
That is, for all (a,, @), (by, bs) € S,
(ay, b)) edomgq, & (a, b;) edomg,
= (a1, a2), (b1, by)) edom g,
where the functions ¢, are defined in the manner of
Sec. 4. We also assume that, with a suitable choice of
the arbitrary constants, the internal energy of the
compound system is the sum of the internal energies
of the subsystems; i.e.,
Uolar, a5) = Us(ay) + Uy(as)
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for all (a;, a,) € 8. It follows from the definitions of where

the parametrizations f,, of 9, that

fCaC(ﬂ C) = flal (/31) + f2a,(ﬁ2)

for all a; = (a,, a,) € 8¢, where
f.€¥, and fo= k(fi, )

In terms of any parametrizations f, of §,, we write
Ju(Bo) = 24, Fpy = fra of 7%, and we have

FCaC(ZC) = Flal(zl) + F2a2(22)
for all z, € f1(¥,) and for all z, € fo(T,), where zo =

£(zy, z,). It is assumed that ¢ and the F,, are differ-
entiable, and it follows that

0
Flude0) 5, (120 = Fpulep)

for P =1, 2. Using this result, one shows that
Axiom XIV for the compound system is compatible
with Axiom XIV for the subsystems and that

Vz,€fi(T), Y z,€f5(T), YV ay, by € f7%zy),
V ay, by € f37(22):0,Bay & byBby = F1,,(21)/F14,(22)
= Flp(20)/F20,(25)-
As in Sec. 7, temperature functions T are defined

on 8p for P =1, 2. Given (a, a,) €8, one can
determine the Tp uniquely by choosing

Ty(ay) = Ty(ax) = T,,

where Ty > 0. If ap € ap € Fp, bp € ap, and b,Bb,,
then, from the equation at the end of the last para-
graph and property (ii) of temperature functions, we
have Ty(by) = To(by). If dpefpeFp and d,Gd,,
then, from XIII, there existcp € B, ep € ap such that
cpBpep and hence cpBGep. We assume that the ep
may be chosen so that e;Ge,. It then follows from
our previous result that T,(e;) = Ty(e,), while from
the transitive property of G we have ¢;Bc;. From
property (i) of temperature functions, T'p(cp) =
Tp(ep), and hence Ti(c;) = To(c,). Again using the
equation at the end of the last paragraph-and property
(ii), one finds that 7,(d,) = Ty(d;). We have therefore
proved that

V dP € SP:dX%dZ = Tl(dl) = Tg(dz).

A temperature function T:8, — R* is defined by
Tc(al s az) = Tl(al) == Tz(az) fOI' all (01 ) ag) € SC .
Conditions (i) and (iii) of Sec. 7 are trivially satisfied.
To show that (ii) is satisfied, we must prove that
Voo €T N (a1, as), (dy, dy) €xcize = flae)

= Tldys do) = Tclay, a9)F 0iay.0(Z ) F ctay 002 0)-
We take

apcap =f7(zp),dp€fp = fF(Wp),

g(zla 22) = g_(wla W2) = Zc-
1t follows from Axiom XIII that there exist ep € ap,
cp € Bp such that epBep. We again assume that the
ep may be chosen so that e, Ge,, and it follows that
¢, B, and (cq, ¢) € 8. Since (¢, ) Bcley, €;) and
(¢4, €2), (€y, €5) € a, Axiom XIV implies that

Feter,en(ze) = Feeyea(zc)-
Substituting Fyg, ,4,, in terms of Fy, , etc., one finds

Tay1, a9)F ciay.a0(ZF tar ap(Z0)
= Tl(a1)Fl’dl(WI)Flle1(21)/F1’01(w1)Fl,u1(zl)
= Ty(a,) Ty(d)) Ti(ey)/ Ti(c) To(ay)
= Ty(d,) = Tc(d,, dy).
The functions s),:f,(F,) — R are defined by

$u(2) = Fra(2)[ T(a),
where a € f,%(z). Because

Tay, as) = Tp(ap)
and

Ftay.a(20)08[02p)(21, 22) = Fipo,{zp)
for P=1, 2, z; = §(zy, 2,), and for all (a,,4a,) €
fo¥(z¢), we have

0
56z0) - (21, 23) = S(zp).
P

Integrating these equations gives

sce(ze) = si(z0) + 55(z0) + K,
where K is an arbitrary constant. It follows that the
entropy functions S, satisfy

Sday, a5) = Si(a,) + Sy(a,) + K
for all (a,, a,) € 8.
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It is shown that the f-dimensional nonrelativistic Coulomb Green’s function and the associated
reduced Green’s functions can be obtained by differentiation of the corresponding functions in the
1-dimensional (f odd) or 2-dimensional (f even) case. A new expansion of the 3-dimensional coordinate-
space Coulomb Green’s function and a new sum formula for a product of two Laguerre polynomials with

different arguments are derived.

Recently there has been some interest in the non-
relativistic Coulomb Green’s function in f~dimensional
space.! We will here show that the f-dimensional
Coulomb Green’s function can be obtained by
successive differentiation of the Coulomb Green’s
function in the 1-dimensional case (f odd) or 2-
dimensional case (f even). The proof of this is based
on an integral representation of the f-dimensional
Green’s function analogous to a previous repre-
sentation? of the 3-dimensional Green’s function. The
mathematical techniques that were used to obtain the
integral representation in the 3-dimensional case can
be applied also to the f~dimensional problem.

The f-dimensional Coulomb Green’s function G,
will be defined as the solution of the differential
equation

[Vg + (2kv[r)) + k2]Gf(r2’ r) = 0 (r, — 1y,
Im(k) >0, (1

subject to suitable regularity conditions at the origin
and at infinity. Here

f a 2
V=Y (—
jgl(axj)

denotes the Laplacian operator of the f~dimensional
space. The f-dimensional Dirac ¢ function occurs on
the right-hand side of Eq. (1). The parameters k and »
are taken to be independent complex parameters,
arbitrary except for the condition Im (k) > 0. Our
calculation begins with the partial wave expansion of
the solution to Eq. (1). This is®

)

G rs 1) = E 4 YTGNEI+ f - 2)

x (f — 27'CH P (cos 0)8y(rs, 1),
Sy(ry, 1) = Qik)(rary) UL — iv + 3(f — 1)
X Wiygierps-a—2ikrs) 3
X J(’ivzi(zz-:-f—z)(—zik’k)a
cos O = (ry-r)rory, f=3,456,--.

The function ,(r,, r;) is the radial Green's function.*
The 2-dimensional Green’s function is treated
separately. Its partial wave expansion is®

Galta 1) = 3 Gylra, r)2m ™,
T 6=0,—0,,
S(re, 11) = QiKY () TG + [m] — iv)
X Wiitm (= 2ikr 5 )Moy oy (—2ikr ).
One now uses an integral representation for a product
of two Whittaker functions with different arguments

and the Neumann’s series for® J (kz) to obtain the
integral representation

4

—~1 f-2 .
Gf(x, y) — ( l’;) em[tv—%(f—l)]
(477_) (r=1)

T 1

o 1
sin #fiv — 3(f — D] 2i

1+ .
xf dC(C + 1)w+§(f—3)
+o0 arce(f+1)=0
X (C _ 1)—iv+§(f—3)eika:g
Dl =ikG = y9HE — D)
[—Bik(xt — y(C — D
y=|r2—r1|, f= 1’293’4,""
()
for the f-dimensional nonrelativistic Coulomb Green’s
function. We learn here that the Green’s function
depends upon r, and r, only through the two variables
x and y. It is quite remarkable that Eq. (5) holds for
all £, despite the necessity of treating the 2-dimensional
case separately in the derivation. One can even
substitute f=1 in (5), and one will obtain the
correct answer for the I1-dimensional Coulomb
Green’s function of Meixner?:?
Gy(x, y) = ik)7'T(1 — iv)
X Wig(—ik(x + y)Moyg(—ik(x — y)),
(6

x=r2+r1’
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provided that one interprets y as y = |r, — ry|. (Note
that this is consistent with the general definition
y =|rp, —r|. The magnitude of the difference
between two 1-dimensional vectors having com-
ponents r, and ry is |r, — r,].) The identity®

Clz) = (—=1DT(n + 2»)[n!' T2»]
X oFy(—n,n + 2v,v + }; 11 + 2)),

v#0, (7)

was used to identify the Neumann’s series occurring
in the derivation of the integral representation in the
case f > 3. The derivation in the case f = 2 involves a
rather tricky limiting case of the Neumann's series.!?

We are now in a position to establish the general
relation

Grpalx, y) = — - Gy(x, ) (®)

27ydy
which exists between the nonrelativistic Coulomb
Green’s functions in spaces of different dimensionality.
By successive applications of this recurrence relation,
we find the identities

-9 3(/-1)
G0 = (5] G,
f=1,35-, ()
—a \lr-2
G,(x, y) = (m) Gulx, ),
f=2,46---, (10)

expressing the fact that the Coulomb Green’s function
in a space of arbitrary dimensionality can be obtain-
ed from either the 1-dimensional Green’s function
(f odd) or the 2-dimensional Green’s function
(f even) by successive differentiation. The closed
expression (6) for G,(x, y) has already been discussed,
but no closed expression for G,(x, y) seems to be
known. The recurrence relation (8) can be ob-
tained quite simply by applying the operator (27)1 -
(—0/y9dy) to both sides of Eq. (5). On the right-hand
side of this equation we take the operator under the
integral sign, where it acts on the Bessel function, to
give

) (G5)
)

z = —ik(x* — e — nt,
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which follows from the identity!

(z_ilzé)m (@) N I;# : (12)

The integrand for G,(x, y) is thereby converted into
the integrand for G;,,(x, y), and Eq. (8) is seen to be
true.

Reduced Green’s functions, defined by

2 (1) Pury)*
9<r2,r1,En)=—;n—kgg"’——“;‘p";‘ . (13)
n k— Lp

play an essential role in Rayleigh-Schrodinger
bound-state perturbation theory.’? In the Coulomb
case we now assume that k and » satisfy a relation of
the form

v=4Ak, A>0. 14

A general relation between a reduced Green’s
function and the corresponding full Green’s function
G(ry, 1y, E) is?®

8(ry. 11, E,) = d—i [E = E)G(ts, 1y, E)l|gs,. (15)

In view of this relation, the identities (8)-(10),
connecting Coulomb Green’s functions in spaces of
different dimensionality, are seen to apply also to the
reduced Coulomb Green’s functions. By using (8)
one finds that

d
5E (E — En)Gf+2(x’ Vs E)]

a( —0 )
=S E—En—G ) sE
2\l )27ryay A% y, E)

—d 0
- 27ry8y aE [(E En)Gf(x’ ys E)]’
where E, is the nth energy eigenvalue of the (f + 2)-
dimensional problem. One observes that each energy
eigenvalue of G, is also an energy eigenvalue of G,.14
Evaluating the above at E = E, and using Eq. (15)
gives
—0
gJ‘+2(x’ Y, En) = A Qf(x’ Y, En) (16)
2mwydy
This is the analog of Eq. (8). That the analogs of Egs.
(9) and (10) are true follows immediately. One can
therefore compute all reduced Coulomb Green’s
functions for f odd (even) once the corresponding 1-
dimensional (2-dimensional) function is known.

Now the 3-dimensional reduced ground-state
Coulomb Green’s function has been obtained in
closed form earlier.!® The connection with the 1-
dimensional problem was not known at that time. For
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the sake of completeness, we here give the corre-
sponding 1-dimensional result:

gl(xs y’ El)
— %(x + y)e——-}.u _ xe—}.m - %l(x2 - y2)e—}.a:

X {F—y—x—In[ix + p] + gx - )},
o(2) = L e - L fo et in( — 1. (17)

Equation (17) can be obtained quite readily using the
work of Ref. 13. The expression (17) has been checked
by verifying explicitly that the Green’s function
equation and the boundary conditions are satisfied.
[It was also verified that the previous 3-dimensional
result is obtained upon application of the differential
operator (2m)~1(—d/ydy), but this checks (17) only to
within an arbitrary additive function of x.]

It is known that the nonrelativistic Coulomb
Green’s function possesses an eigenfunction expansion
which involves a sum over a discrete set of states
only.'® This can be obtained by writing the Green’s
function in the form

G/rs, 1., E) = ——<2|( )* ORI

(Z */4m)

(r) (r) — Er, E<O, (18)
and inserting a complete set of eigenfunctions of the
Hermitian operator A. For this purpose we limit our
consideration to E real and negative. The Green’s
function for general complex E is obtained from this
special case by analytic continuation. The operator A
has no continuous spectrum. Its eigenvalues A, are
just the values of the coupling constant Ze?/4n that
would be required to produce an nth bound-state
eigenfunction of the Coulomb Hamiltonian at the
preassigned negative real energy E. When this method
is applied to the 1- and 3-dimensional Green’s

functions, we obtain the two expansions

Gy(x, y) =2 @n) (n — iv) lik(x® — y?)e®
n=1
X LA y[~ik(x + P)ILL;[~ik(x — y)]
(19)
and
Gy(x, y) = 2ike™ ™) 3 (n — iy)™?
n=1
x”“1(2l + DP,(n — 1 — D!
=0 4w (n+ D!
X (—=2ikr)(—2ikr,)}
x L2 (=2ikry) L2 (—2ikry), (20)
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respectively. On the other hand, a more compact form
for G,(x, y) could be obtained by using (8) in con-
junction with the 1-dimensional result (19). We thus
obtain the new expansion

Galx, y) = — i Iy — iyt ey
4 yoy
X LL_y(—~ik(x + p)LE(—ik(x — 1))
@1

of the 3-dimensional coordinate-space Coulomb
Green’s function. The individual terms of this ex-
pansion have the same general structure as the closed
form expression previously obtained for the nonrelati-
vistic Coulomb Green’s function, but are free of
hypergeometric functions. The nuclear charge appears
in Eq. (21) only through the denominator (n — iv)~™.
Substituting iv = 0 in Eq. (21) leads to the expansion
-> ik
a=1 4mrn? yd
X Lo-y(—ik(x + y)Ly_y(—ik(x — y))

of the free-particle Green’s function. Another form
of Eq. (21) can be obtained by separating out the
free-particle part. This is achieved by means of the
identity

(n—d)y1=n+4 ivni(n — iv)™.

_(47Ty)-—1eikv =

Thus,
Gs(x, y) = Go(x, y) + Ss(x, ),

where Go(x, y) is the free-particle Green’s function and-

i,y)-l eika:

8i(x,) = = Siv 2 ot NGy
X Lioa(=ik(x + Y)Lhal—ik(x ~ )
e

Using the fact that iv and & in the expansions (20)
and (21) can be independent variables, one concludes.
that the equality of (20) and (21) must hold term-by-
term. [The pole terms, proportional to (n — i)™,
must agree in both expansions.] We thus obtain a new
sum formula

n—1 _
2A+1, (n=1=D!

2try) (2tr.
1=0 47r i ( + l)' ( 2)( 1)
x L3, Q) L3HL (2try)
1 @
= = Gmmyay & T VIl 4 MLalx = ),

x=1r +ry, y=|r,—rl, tarbitrary, (23)
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for a product of two Laguerre polynomials with
different arguments. This sum formula was originally
derived by another method, reported in the Appendix.
As mentioned in Ref. 16, the momentum space
counterpart of Eq. (20) has been given by Schwinger,
who exploits the 4-dimensional rotational invariance
of the Coulomb problem. His expansion of the
momentum-space Green’s function involves a sum of
products of 4-dimensional spherical harmonics. The
identity (23), which enables one to express the sum
over the nth energy eigenspace in Eq. (20) in closed
form, corresponds in momentum space to the addition
theorem for the 4-dimensional spherical harmonics.

APPENDIXY
The sum formula (23) was originally obtained from
the identity?®
Ga(rz s T E)
S f@ o1 D TP 1)
0 (h*k*2m) — E
_ h_2 I ()vnlm(r2)(pnlm(r1)*
2mM n=1 1=0 m=—1 En —E
' —iv) o .
= = = —— W,u(—ik(x +
4nik  yoy # ( M)

X Moy (—ik(x — y)) (A1)
by computing the residue of each side of the equation
at E = the nth Bohr energy level E,. On the left-hand
side of the equation, only terms from the discrete sum
contribute to this residue, the integral over the
continuous spectrum being an analytic function of £

in the neighborhood of E = E, < 0. This contribution
is

2mi=o m=—1

hZ n—1 1
P z Z l(pnlm(r2)(pnlm(r1)*

2m 5 n= (A2

and has the interpretation of (the coordinate space
representative of) the perpendicular projector onto
the nth energy eigensubspace of the Coulomb Hamil-
tonian, times /2/2m. The evaluation of the residue of
the right-hand side is simplified by the fact that the
(simple) pole of the right-hand side is the pole of the
gamma-function factor I'(l1 — i»). The residue is

found to be
(- VN 0 x+y X—y
n;é( ‘M’n:i( s
na, ne,
_ 4h?

" mZe*’
The identity (23) emerges when one equates (A2) and
(A3) and simplifies. The simplifications include

(n — 1)! 4mmnta, ydy

(A3)

@
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expressing the Whittaker functions in (A3) in terms of
Laguerre polynomials.’® Also, in the resulting
identity, (n«,)~* can be replaced by a new parameter ¢
since «, is arbitrary.

It has been known for some time that the infinite
sum of terms in Eq. (Al) is a function of only the two
variables x and y and not three (as is allowed by
3-dimensional rotational invariance). This fact can be
understood in terms of the dynamical symmetry of the
Coulomb problem. Specifically, it has been shown?®
that, as a consequence of this symmetry, the coordinate
space representative of any function of the Coulomb
Hamiltonian will be a function of only the two variables
x and y. That we obtain a function of x and y only in
(A2) after just a finite sum of terms is a consequence of
this theorem, for the perpendicular projector onto the
nth energy eigensubspace of the Coulomb Hamiltonian
is a function of the Coulomb Hamiltonian, viz.,

p=g 4B,

27i JE.*E— H

and is therefore subject to the above theorem. It
follows that the coordinate space representative of
(A4), which (aside from the factor /#%/2m) is just the
finite sum of terms (A2), is a function of x and y only.

(A4)
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In the Bethe-Salpeter formalism, the scattering Green’s function is known to have multiple poles
synthesized out of coinciding simple poles. The present paper proposes an axiomatic approach to the
problem of finding the residues of the multiple poles in terms of those of M coinciding simple poles.
The latter residues are regarded as finite-dimensional, mutually orthogonal projection operators on a
reflexive Banach space and its dual. Then various properties of the residues of the multiple poles are
derived without recourse to the origina] Bethe-Salpeter equation, and especiaily it is shown mathemati-
cally that they can be decomposed into a direct sum of operators which commute with the Bethe-Saipeter
operator. The residues of multiple poles are explicitly determined in two particular cases, M = N 4 1and
M = 2, where N denotes the highest order of the singularities (in a parameter) of the residues of the

coinciding simple poles.

1. INTRODUCTION

As is well known, quantum-theoretical states are
represented by vectors in a Hilbert space. Every state
has positive norm, which is usually normalized to
unity. In the field theory, however, one sometimes
needs vectors whose squared norm is negative. Since
those negative-norm states are not probabilistically
interpretable if they do not disappear asymptotically,
they are usually called ghost states. When the differ-
ence between a normal state vector and a ghost one
tends to zero, one has a zero-norm state and a state
which cannot be an eigenstate of the Hamiltonian.
The latter is called a dipole ghost; it was first proposed
by Heisenberg! in the Lee model. Subsequently,
several authors® investigated physical implications of
the dipole ghost and made various extensions to other
models from theoretical points of view. As a more
practical application, the present author® made use of
dipole ghosts in order to quantize the electromagnetic

field in the Landau gauge in a manifestly covariant
way.

In the scattering amplitude or the-Green’s function,
l-particle intermediate states correspond to simple
poles in the invariant energy. If it has double poles,
then dipole ghosts must exist in the intermediate
states. In general, higher-order or multiple poles
correspond to multipole ghosts. The present author?
found in the Bethe-Salpeter formalism that the
scattering Green’s function generally has multiple
poles at some particular values of invariant energy
squared s. For example, at s =0, M bound-state
simple poles coincide to produce multiple poles
whose highest order is M.

A general theory of coinciding simple poles and
multiple poles was formulated by the present author.?
From the consistency, one obtains the cancellation
conditions, which are closely related to the unequal-
mass conspiracy conditions of Freedman and Wang.¢
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Indeed, the Khuri scattering amplitude, instead of the
Regge one, has multiple poles at s = 0 (see Ref. 7),
according to the prescription given in the above
general theory.5

Recently, Ida® has made some interesting mathe-
matical considerations on the theory of multiple poles.
His approach is based on the Riesz-Schauder theory
of compact, nonnormal operators. The present paper
is, in some sense, an extension of his work. Our
emphasis, however, is on a more axiomatic formula-
tion of the theory. We show that we can construct the
theory of coinciding simple poles and multiple poles
without using the properties of compact operators.

In the next section, we briefly review our problem in
an intuitive way. Section 3 is devoted to mathematical
preliminaries. In the subsequent two sections, we
present an axiomatic formulation of the theory of
coinciding simple poles and multiple poles. Two
interesting special cases are investigated in detail in
Sec. 6. In the final section, we make some additional
remarks.

2. INTUITIVE CONSIDERATION

The scattering Green’s function G(s, 1) satisfies the
inhomogeneous Bethe-Salpeter equation

[K(s) — AI(s)]G(s, A) = 1 @.1)

in the operator notation. Here s is the invariant energy
squared and 4 is a parameter which can be identified
with the coupling constant squared in the ladder
approximation; [K(s)]* denotes a product of the
propagators of the two particles and /(s) stands for
the integral kernel.®

Suppose that G(s, 1) has M simple poles in 4 (with
s fixed)!® whose locations tend to a common value
A=12y#0 as s—s,. Then it is convenient to
introduce new variables w= A1~ ;! and z=
s — 5. We set

A(2) = IGKEI™ — 45, (2.2)
F(z, w) = AK(5)G(s, ). (2.3)
Then (2.1) is rewritten as
[w — A(2))F(z, w) = 1. 2.4)
We also have
F(z, w)[w — A(2)] = 1. (2.5)

We assume that 4(z) is an operator-valued analytic
function holomorphic at z = 0.

By assumption, F(z, w) has M simple poles in w
whose locations tend to zero as z — 0:

F(z,w) = S(z, w) + F(z, w), (2.6)
S(z, w) = g —&"-(—22— z %0, 2.7

AW — Wp(2)
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where £(z, w) is holomorphic near z = 0 and w = 0,
and the functions w;(2), * - -, wy(2) are holomorphic
at z = 0 and vanish there.

The residues R,,(z) have the following important
properties:

A(2)R,(2) = R (2)A(z) = w,(2)R,(2), (2.8)
R,(2)R,,(2) = 6,,R,.(2), (2.9

where the latter follows from
—OF|ow = F2. (2.10)

We assume that the residues R,,(z) have multiple
poles at z = 0, whose highest order is denoted by N.
Then, as z — 0, S(z, w) tends to

N gln
SO,w)y = — - 2.11)
n=0 W
Since
M
[w — A(2)]S(z, w) = S(z, w)lw — A(2)} = Z=1Rm(2),
(2.12)
we find

{w — A(0)IS(0, w) = S(0, w)[w — A(0)]

M
=lim ¥ Ru(z).  (213)

z—0 m=

On substituting (2.11) in (2.13), we obtain

A(0)S™M! = SINI4(0) = o,
A0)St™ = SI"4(0) = S™, n=0,1,---,N =1,

(2.14)
whence

[AO)P -5 = STAO)P " = 0. (2.15)

Now we rewrite (2.7) as

MY w2
s@w =3 (320 R0

m=1\n=0 W

N+1R
w W — wi(2)]

The last term of (2.16) vanishes at z = 0. Since (2.16)
should be holomorphic in z for any nonzero value of
w near w = 0, the quantities

‘s N - 1,
.17

have to be holomorphic at z = 0,® that is, the singu-
larities in the right-hand side have to cancel out. Those
constraints are called the cancellation conditions.
Their explicit expressions can be written down easily.®
From (2.16), the residues St of the multiple poles

@) = 3 wn@PRA2), 1 =0,1,--
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are given by S"1(0). (This fact is important for the
considerations of Sec. 4.)

In the Bethe-Salpeter formalism, it is convenient to
introduce the Bethe-Salpeter amplitudes, which
satisfy the homogeneous Bethe-Salpeter equation.
When we have no degeneracy for z £ 0 near z = 0,
we can write

R(2) = 1 (Db (2, (2.18)

A@)pn(2) = wy(2)Pn(2),

Fn(2)A(2) = Wp(2D)fn(2), 2.19)
P2)Pm(2) = 1101, (2.20)

where ¢,,(2) is a Bethe-Salpeter amplitude somewhat
modified, and §,,(z) is a conjugate amplitude; the sign
factor 7, is related to the positive or negative norm of
the relevant bound state.® Let ¢! be the coefficient
of the leading term for z — 0. From (2.19) we evidently
have

A(0)$\® =0, (2.21)

but ¢, -+ -, #) are not linearly independent unless
N = 0. The number M, of independent solutions to

AO)p =0 (2.22)

is in general less than M. There exist M — M, linearly
independent supplementary amplitudes, which satisfy

[AO)Pe =0, 2<n<N+1. (223)

The latter amplitudes correspond to multipole ghosts.
A similar consideration also applies to the conjugate
amplitudes ¢. Our problem is to find M independent
amplitudes ¢, and M independent conjugate ones ¥
5o as to express SI% in the “standard”™ form

M
S =3 i P (2.24)
k=1
and S in terms of only those which satisfy
[AO) g, =0,
LA =0 (2.25)

because of (2.15).
3. MATHEMATICAL PRELIMINARIES

We consider a complex Banach space, ie., a
complete, normed, complex linear space X. Elements
of X are called vectors. For any ¢ € X, its norm | ¢|| is
defined in the mathematical sense (distinguish it from
the physical norm). Given a linear operator T on X,

the norm of T is defined by
IT|| = sup [Tel. (ERY)
lell=1

If || T is finite, then T is called bounded. A bounded
linear operator is continuous in strong topology.
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Let X be the dual space of X, i.e., the totality of
continuous linear functionals over X. For any ¢ € X'
and any $ € X, P[¢] is a complex number. If the
norm of ¢ € X is defined by

7 E”SIHIEIW[tP]I, (3.2)

X is also a Banach space. We assume that the natural
embedding of X in the dual of X is onto, that is, X is a
reflexive Banach space.

Let T be a bounded linear operator. If there exists
an operator T acting on ¥ such that

(Tp)[¢] = 9Tl (33)
for any g e X and ¢ €X, then T is unique, and
| T = | T|. Hereafter we identify T with T and make
it operate on ¢ from the right:

@T)g = (TP)[¢].

We always consider such operators.

34

Definition 3.1: Two kinds of the ranges of an
operator T are defined by

ViT| = {T¢ | p e X},
VT = (T | $€ X}. (3.5

Duality Principle: If a proposition I’ is true, then
so is its dual proposition I', which is obtained from I’
by replacing all vectors and spaces by their duals and
by reversing the order of the operation of all operators.

Therefore, we need not describe dual propositions
separately.

Definition 3.2: A projection operator P is a bounded
linear operator such that

Pi=P. (3.6)
The following theorem is a direct consequence of
(3.6).

Theorem 1: If P is a projection operator, ¢ € V[P]
if and only if Pp = g.

It should be remarked that, given a space Q < X,
projection operators P such that V[P] = £ are not
unique. When a subspace Q is of a finite dimension,
we denote it by dim Q.

Theorem 2: Let P be a projection operator such that
dim V[Pl =m. If ¢y, -, ¢, € V[P] are linearly
independent, that is, if they are basis vectors of V[P],
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then there exist uniquely m linearly independent
vectors @, * * , @,, € V[P] such that

P =k§n:1¢k¢k 3.7
with
Frpr = 0pp, kK, 1=1,---,m. (3.8)
In particular, dim V[P] = m.
Proof: We define m linear functionals ¢, "+, ¢,
over V[P] by
PP = Opr- (3.9)

Then, according to the Hahn-Banach theorem,' we
can extend @, , - - - , ¥,, to vectors of X (not uniquely).
By setting

Gpo=9p L, k=1,--+,m, (3.10)
we find

Frpr = §(Po) = Py = O - (3.11)

Hence ¢;, - -, ¢, are linearly independent. For any
% € X, we can write

Py =k§1ak<pk, (3.12)
o, being complex numbers. Then
kzl‘pk‘f’kl = g 9ePPr = 2 2 tFroud
= k1
(3.13)

= E“k‘l’k-
x

Thus we obtain (3.7). Finally, if we can also write P as

P =3 o, (3.14)
k
then
0= Z PP — Pr)- (3.15)
k
Hence, ¢, — @, = 0 with the aid of (3.8). QED

Theorem 3: Let P and P’ be finite-dimensional
projection operators. Then V[P'] < V[P] if and only
if PP’ = P’

Proof: Sufficiency is evident from P'g = P(P’g) for
any ¢ € X. Necessity is shown as follows. For any
x € X, P’y belongs to V[P'], and hence P’y € V[P],
because V[P'} < V[P)]. Therefore, by Theorem 1, we
have P(P’'y) = P’y. Since y is arbitrary, we have
PP’ = P'. QED

Theorem 4: Let P and P’ be projection operators,
and dim V[P] = m. Then

PP'=PP=P, (3.16)
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if and only if there exist ¢, and ¢, k=1, ,m,
satisfying (3.8) such that
P =3 ¢ (3.17)
k=1
P =Yg, m<m. (3.18)
k=1
In particular,
dim V[P] = dim V[P'] + dim V[P — P’]. (3.19)

Proof: We have only to prove necessity. Let
dim V[P'l=m" <m. From (3.16), P—P' is a
projection operator with dim V[P — P’} > m — m'.
We take m’ linearly independent vectors @, * -« , @,,
from V[P’] and m — m' linearly independent vectors
@mri1s " * " > @m from V[P — P'}. Then they altogether
are basis vectors of V[P]. We write (3.17) according to
Theorem 2. Then (3.18) follows from P’ = P'P.

QED

Now, we consider vectors and operators depending
on a parameter z belonging to a domain D bounded
by a smooth Jordan curve in the z plane.

Definition 3.3: A vector ¢(z) and an operator T(z)
are continuous in z at z = z, if for any ¢ > 0 there
exists 6 > 0 such that, for any z satisfying |z — z,| <
d, we have

lo(z) — ezl <e, (3.20)

1T(z) — Tl < e, -(3.21)

respectively.

If Ty (z) and T.(z) are bounded operators continuous
in z at z = z,, then so is T1(z)Ty(z). Let (z) be a
subspace of X depending on z.

Definition 3.4: The space (2) is continuous in z
at z = z, if for any ¢ > 0 there exists § > 0 such that,
for any z satisfying |z — z,| < 0 and for any ¢e
2(zy), we can always find y € Q(z2) satisfying

Iy — ol < ellol. (3.22)

Let F(z) be any of ¢(z), T(z), and (z). If F(2) is
continuous in z at every point of D, then F(z) is said
to be continuous in D. If § can be chosen independently
of z, in D, then F(z) is uniformly continuous in D.
If D is compact, uniform continuity follows from
continuity in D.

Theorem 5: If P(z) is a projection operator contin-
uous in D, then V[P(z)] is continuous in D.
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Proof: For any z, € D and any € > 0, there exists
6 > 0 such that for |z — z,| < 6 we have

|P(z) — P(zg)]l < e. (3.23)

For any g€ V[P(z)], We set y = P(z)p; then e
VIP(z)] and

Iy — @l = [P)¢ — P(zo)ol
< IP@) — Pzl - ol <elgll. (3.24)

QED

Theorem 6: If Q(z) is of a finite dimension and
continuous in D, then for any z, € D we have

dim Q(z,) < dim Q(z)
for all z in some neighborhood of z,.

Proof: Let dim €)(z,) = m. Then there exist m
linearly independent vectors ¢,, - -+ , @,, € Q(2,) such
that | ¢l = 1. For ¢y, * -, 9,, fixed, we consider the
totality of the quantities D™ «,¢ under the
condition Y, |a,| = 1. Since it is closed and bounded
below, it has a minimum x. From the linear inde-
pendence of ¢y, -, ¢,,, we have « > 0. We choose
e in such a way that 0 < € < }x. Then there exist
some 6>0 and %, ' ",¥,€Q(z) such that
lye — @il < € for |z —z| < 6. Hence, for any
, &, satisfying > || = 1, we have

(3.25)

g,
l g“kwk = g“k% + ;“k(’l’k - %) ‘
> %‘“k% - gl“ki €
>k —€> b (3.26)
Thus Y, e, # 0, that is, y,, -, v, are linearly
independent. QED

From Theorem 6 alone, we cannot exclude the
possibility that dim €(z) becomes lower in a closed
subset of D, because « can become arbitrarily small
depending on z,. In order to avoid this possibility, we
have to introduce a somewhat ad hoc assumption.

Assumption 1: Let Q be an arbitrary m-dimensional
subspace of X. Then there exist m vectors ¢, -,
0 €EQ (gl = 1) such that for any e, -, a,
Gk logl = 1) we have

Zp>0, 3.27)

Z %P
x

where the constant p may depend on m but it is
independent of Q.
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If X is a Hilbert space, then this assumption is
satisfied, because if {¢;, "', @,.} is an orthonormal
system of vectors in Q, then

Under Assumption 1, we can use p instead of «, and
therefore the proof of Theorem 6 remains valid when
z and z, are interchanged, provided that uniform con-
tinuity is assumed. Accordingly, we obtain

dim Q(z) < dim Q(z,),

2
= g AR

z AP
%

= gmﬁ >1/m.  (3.28)

and hence dim Q(z) = dim Q(z,) if D is compact.
Thus, dim Q(z) (z € D) is constant since D is con-
nected. This property remains valid even if D is not
compact, because D can be approximated by a
sequence of its compact subdomains. Combining
this result with Theorem 5, we have the following
theorem.

Theorem 7: Under Assumption 1, if P(z) is a
finite-dimensional projection operator continuous in a
domain D, then dim V[P(z)] is constant in D.

4. GENERAL FRAMEWORK

In order to formulate the theory axiomatically, it
is not convenient to start with the resolvent F(z, w) of
the operator 4(z). We postulate the following four
assumptions, which are related to the residues R,,(2)
only.

Let D be an open neighborhood of z =0. We
introduce M finite-dimensional projection operators
R, (@),m=1,-++,M,definedforze D' = D — {0}.

Assumption 2:

R,(2)R,(2) = 6,,R,(2), z€ D' 4.1)
Assumption 3: There exists an operator
Nm
R, (z) =3 z7NminRID, (4.2)
n=0
where
Ri,“” # 0’ R;}’, see RinN"')’ Nm 2 0’

are bounded linear operators independent of z, such
that R,,(z) — R,,(2) is continuous in D and tends to
zero as z — 0, that is,

R,.(2) = R,.(2) + o(1). 4.3)

In particular, R, (z) is continuous in D’.
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Assumption 4: The operator
M
S(z) = z R,(2), ze D', 4.4
m=1
can be extended to an operator continuous in D.

Let wy(z), - - - , wy(2) be certain given functions of z
which vanish at z = 0 and can be expanded into

Nm
wa(z) = 3 2"wi® + o(zVm). 4.5
n=1

Assumption 5: The operator
M
H(z) =Y w,(2)R,(2), z€ D/, (4.6)
m=1
can be extended to an operator continuous in D.
Let
M
S™(z) = 3 [Wa(D)"Rp(2), n=0,1,--; (47)
m=1

then of course S1%(z) = S(z), S1M(z) = H(z). From
(4.1) we have
St(2)SI(z) = StHnI(z).

In particular,

(4.8)

[S@F = S(2), (4.9)
H(2)S(z) = S(2)H(z) = H(2), (4.10)

that is, S(z) is a projection operator commuting with
H(z). Furthermore, since

St"(z) = [H(2))"S(2), (4.11)
St"1(z) is also an operator continuous in D. The
cancellation conditions which follow from St")(z) for

n > 1 are somewhat complicated,’ but those which
follow from S(z) are simple; they read

M
z R;ivm—'N+n) = 0,

m=1
where RV = 0 for / < 0 and N = max N,,.
The multiple-pole residues SU"1 are defined by

S = fim St™(z). (4.13)

z-0

n=01---,N—~1, (412

From (4.7)-(4.11), they have the following properties:

M
SO = S = lim S(z) = 3 RY™,

(4.14)

z—0 m=1
S = H = lim H(z), (4.15)

z2—0

St" = H"S (= H"forn >1), (4.16)
S[l]s[n] = S[l+‘n], (4.17)
St=§, (4.18)
SH = HS = H. (4.19)
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Thus S is a projection operator which commutes
with H. Furthermore, Assumption 3, together with

Wwn(2) = 0(2), implies that
S"1=0 for n2>N+1, (4.20)

that is, A is nilpotent. Hence the eigenvalue of H is
zero alone.
In some cases, a partial sum of R, (z), say,

.
S'(z) =3 Ru(2), M'<M,
m=1

is continuous in z at z = 0. We call this case trivially
reducible. Indeed, then the operators

St (z) = Dzil[wm(z)]"Rm(z), n=1,---, (421

are continuous in z at z = 0 because
SI"Y(2) = S™(2)S'(z) = S'(z)S™(2). 4.22)

Thus, we may discuss S™*7(z) and SI")(z) — SI"T'(z)
completely separately.

The relation between the formalisms presented in
Sec. 2 and here is as follows. Given a bounded linear
operator A(z) satisfying (2.8), we have

A(2)S(2) = S(2)A(z) = H(z), (4.23)
from which an important relation
A(0)S = SA(0) = SA(0)S = H (4.24)

follows, and therefore (2.14) is derived from (4.16)
and (4.19) without recourse to (2.11). By subtracting
(4.10) from (4.23), we have

B(z)S(z) = S(2)B(z) = 0, (4.25)
where B(z) = A(z) — H(z). Thus
A(z) = H(z) + [1 — S@]B(2)[1 — S(2)] (4.26)

Conversely, given an arbitrary bounded linear
operator B(z), we can define 4(z) by (4.26). Then it is
easy to show, by means of (4.4), (4.6), and (4.1), that
A(z) satisfies (2.8). Defining F(z, w) by [w — A(2)],
therefore, we have

Rm(Z)F(Z, W) = F(Z, W)Rm(z) = [W - Wm(z)]_lRm(z)’
(4.27)

so that F(z, w) contains S(z, w) defined by (2.7).2
Thus SV, - - -, SU9 are really the residues of multiple
poles of F(z, w).

Now, on account of (4.1) and Theorem 4, we have

M
dim V[S@)] = S d,,

m=1
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for z € D', where d,, = dim V[R,,(z)] is independent
of z in D' because of Theorem 7. Applying Theorems
2 and 7 to S(z), we find

M
dim V[S] = dim P[S] = X d,,. (4.28)
m=1
Furthermore, (4.16) with (4.19) implies that
Vst < V[S], V[S™™]< V[S]. (4.29)

For simplicity of description, we hereafter assume
d,, = 1; then dim V[S] =

Let y be a vector such that RWy 3 0. If we set
¢..(2) = R,,(2)p, then Theorem 2 implies the existence
of §,.(z) such that

Ru(2) = $n(@)$n(2)

together with ¢,,(2)¢,,(z) = 1. From (4.3) with (4.2),
we can write

bu(2) = 3 2Nt L o(1),

(4.30)

o 0,

"gm 4 o(z¥),  dw # 0. (4.31)

$m(z) = g z

Furthermore, (4.1) is rewritten as

$(2)pu(2) = Oy (4.32)
Therefore,
S PG = OBy (4.33)
k=0
Theorem 8:
SR = RYW'S = R, (4.34)
HRY = RIYH =0, (4.35)
ROYR® =0 unless I=m, N,=0 (436)
Proof:
SR = lim 3 [w,(2)]"Ry(2) - hm z¥mR,.(2)
220 1
= lm; zhm z [WL(Z)]WRL(Z)Rm(Z)
= lim [w.(2)]" - 2¥"R,(2)
z—0
= 8,,RY, (4.37)
RORY = lim zV'R(z) - lim V"R ,(2)
20 z=0
= §,,, lim z2*¥"R (2)
z=0
= 8,0y, oRm- (4.38)
QED
Theorem 9:
Hn+1R(n) R(n)Hn-H = 0. (439)
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Proof: Forn = 0, (4.39) reduces to (4.35). Hence we
employ mathematical induction with respect to n:

n~1 . )
— Z Z—Nm+JR(7;:)
z—0 j=0

H™R™) = lim z‘V'"‘"H"“[Rm(z)

= H""'lim z¥» "R _(2)

z=0

= lim V""" [w,(2)]""'R,,(2)
z=0

=0. (4.40)
QED

Theorems 8 and 9 are rewritten as
S¢(0) — 0) (5(0)8 — 4t0) (441)
H¢,' =0, $OH =0, (4.42)
40 —0 unless I=m, N,=0 (443)
Hn+1¢£:) =0, $21)Hn+1 = 0. (4.44)

Thus ¢11 € V[S] and $L € P[S] are mutually orthog-
onal eigenvectors of H. As pointed out in Sec. 2,
(01, ... ¢ are notlinearly independent except for
the case N = 0. Their linear dependence comes out
from the cancellation conditions. Since S%(z), - -

SN-1(z) are continuous in z at z=0, lim_,,
Zz¥-"8t"(z) for n < N has to vanish, that is,5
SwHPRY =0, n=0,1,---,N =1, (4.45)

me I

where I = {m | N,, = N}. Let M; be the number of
the elements of I. If the first derivatives w? for all
m € I are different from each other, then (4.45) gives
us N independent constraints on R{. Since R 3 0,
we have M; > N + 1. Especially, if M;=N+1,
then all R{?, m € I, are proportional. More precisely,
we have

R = &,SW (4.46)
together with
SV = S [wiINRY # 0, (4.47)
mel
£, =1 / l H (WD — wity, (4.48)

If M; > N + 1, the number of independent R{® is
M; — N. If some of w? are equal, it is possible to
have M; < N + 1. We decompose I into classes
I, -, I, in each of which w{? is common. Then

SRY =0, j=1,"",k (4.49)
mel;
Therefore, the number of the elements of I; is greater
than one.

Theorem 10: If there is a condition like

L
S 4R =0, a,#0, (4.50)
m=1



THEORY OF COINCIDING SIMPLE POLES AND MULTIPLE POLES

then the sum of the number of independent ¢! and
that of independent ¢!, 1 < m < L, cannot exceed L.

.PrOO_f.' If d)io)’ .« (0)
dependent, then there ex1st Py,

K < L, are linearly in-
, P such that

¢l¢frg) = alma l’ m = 1, ety K. (451)
Hence (4.50) yields
alqg;O) + z am(,wlqs(()))d)(o) - 0 l = 1, e K.
m=K+1
(4.52)
Thus §1, - - -, § are expressed by ¢\, -+, o
QED
Theorem 11: If for some / and m we have
R = oaRY, a0, (4.53)

then ) N, > 1if N, > 1,and (i) N, > 2if N, > 2.
Proof: Since N,, # 0, we have (R?')? = 0, that is,
(R = 0.
(1) If N, = 0, then Assumption 2 implies
(RIPY = R" 5 0.
This is a contradiction. (ii) For N,, > 2, Assumption 2
and (4.53) yield

RYR, + RYRY =0,

RYR®M + RyaRD =0, (4.54)

aRWRY + RVRY = 0.

By eliminating R from (4.54), we find
R{“RM 4+ RVR{" = 0. (4.55)

If N, = 1, however, the left-hand side of (4.55) has to
equal R\ # 0. This is a contradiction. QED

It does not seem possible to prove N, = N,, under
(4.53) alone.

5. DECOMPOSITION OF §

We first state some definitions.

Definition 5.1: An operator T is admissible if T
commutes with H, i.e., HT = TH.

Definition 5.2: Let P be an admissible projection
operator. If there exists an admissible projection
operator P’ 3% 0, P such that PP’ = P'P = P’, then P
is reducible; otherwise P is irreducible.

If P is reducible, P is a direct sum of two admissible
projection operators P’ and P — P’. The problem
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explored in this section is to decompose S into
admissible irreducible projection operators.’® More
generally, we consider the decomposition of an
arbitrary finite-dimensional admissible projection opera-
for P instead of S.1*

Definition 5.3: If H'T # 0 but H**1T = 0, then » is
called the rank of T. If H'p % 0 but H'*¢p = 0,
then v is the rank of ¢.

Since H is nilpotent, any operator and any vector
have a finite rank » < N. Evidently, T has a rank » if
and only if the maximum rank of the vectors belonging
to V[T]is ».

Theorem 12: Let ¢, * -+, ¢, € V[P] and the rank of
@; be v; . If k vectors H”up,-,j =1, k,are linearly
independent, then X* (v, 4 1) vectors H"g; (n =
0,1,--+,9;j=1,-+-,k) belong to V[P] and are
linearly mdependent

Proof: The first statement is obvious because
H'g; = H'Pp; = P(H"p,). To show the linear inde-
pendence, we assume the contrary. Suppose that

Y= 2 ZCMLH (PJ_‘O

i=1 n=0

(5.1)

where complex numbers ¢, are not all zero. Let c,,,

be the first nonzero one of Cios Cius " "5 €5, (1F all of
them are zero, let m; = v, 4+ 1). We set
s = max (v; — m;) > 0. (5.2)
)
Since H"*@; = 0 forn > »; + 1, we have
k  vj—s
0= Hstp =21 2 C]-nHrH_s(}?j
=1L n=mj
k
zcamjamy v,——sH Pj. (53)

j=1
Since HYig;, j=1,"-"*
we must have

, k, are linearly independent,

Cim, =0 for m; =y, —s.

(5.4)

This contradicts the definition of ¢;,, QED

Hereafter, let v be the rank of P. We construct an
appropriate set of basis vectors of V[P] in the follow-
ing.

Let H'Pyy,, k=1, ---,m,, be basis vectors of
Vo= V[H'P]; of course H'*'Pyy, = 0. Next we
consider a space ¥, defined by

V, = {y € V[H"'P]| Hy = 0}. (5.5)
Since HPyy, = H"'P(Hyy), we see H'Pyg eV,



2978

If there exist any other independent vectors in V3,
then we denote them by

HV—IP,lplk’ k — 1, P
Likewise, we consider
V, = {y e V[H*P]| Hy = 0}.

If there exist any independent vectors other than
H'Py,, and H''Py,,, we denote them by

> My .

Hv_zP'p%a k=1,-,m,.

We continue this procedure until we reach Py ;. We
thus obtain >  m, vectors ¢, = Py, e V[P] (I =
0,1,--:,v; k=1,---,m). By definition, the rank
of ¢, is v — I Furthermore, since H' g, (I =
0,1,---,v;k =1, -,m)arelinearly independent,
Theorem 12 implies that the vectors

I=0,1,-++,v, k=1,-+,m,
j=0,

HJ(PU“ » Vs

(5.6)

-

belong to V[P] and are linearly independent.

Theorem 13: Any vector v € V[P] can be written as
a linear combination of the vectors listed in (5.6).

Proof: Let n be the rank of . If n = 0, p is expressed
interms of H' ¢, (I=0,1,--*,v;k =1, ,m)
because they are basis vectors of the space of the
eigenvectors of H by construction. We employ
mathematical induction with respect to n. We assume
that any y’ € V[P] of a rank n < p is written as a
linear combination of HV-* g, (j=0,1,"-",n;
I=0,1,--+,v—j; k, =1, -+, m). Then, for any
y € V[P] of a rank p + 1, since the rank of Hy is p,
we have

p v—j
=3 Sl g, .7

together with e

mi
12 Ekglblc(}]lk’ % [byl = 1; (5.8)
that is,
p+1 v—§

H(v =3, Zerdt™p) = Sein s (59

We prove that the right-hand side of (5.9) vanishes.

If not, letg (< p) be the smallest j such thatc, ,_; # 0.
Let
2
Cq'v_qx = z ci.v—j(pv—j . (5.10)
I=q

Then of course H? = H%,__. On the other hand,
(5.9) implies that we can write y = Hy' (x' € V[P)).
Hence H%p,__ is an eigenvector of H such thatit can
be written as H*'Py’. By construction, such a vector
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has to be expressed in terms of H*'g,, (I=0,---,
y—q—1;k, =1, --,m), but this contradicts the
linear independence of (5.6). Thus the vector in the
parentheses of (5.9) is an eigenvector of H. There-
fore it can be written as

(5.11)
QED

2 oH"™ l‘Pz

1=0

Thus the vectors listed in (5.6) are basis vectors of
V[P].5 Hence

dim V[P] = i my(y — 1 + 1), (5.12)
=0

while the number of independent eigenvectors of H
in V[P)is 37 o m,.

Since (5.6) gives basis vectors of V[P], Theorem 2
implies that there exist uniquely linearly independent

vectors Gy e V[Pl (I=0,,v; k=1, ,m;
j=0,-+,» —1)such that
v mp v—1
P= L_EMZ Z " PuPurs (5.13)
together with
FusH pr = O Odsy, 0LJ, ) <v—1 (5.14)

We set ¢, = ¢, ,_, - Then, with the aid of (5.14) and
H"Hg, =0, we find

Put T = ¢lkHjP

v mp v—l

E Z z(‘plkv—H ‘sz)%ka

v

Pk, v-1—j +

= (5.15)
Thus
my v—1
= E E ZH ‘sz‘szHv —i (5.16)
1=0 %=1 j=0
together with
FuH"prp = 63000y, n=0,1,--. (5.17)

Theorem 14: The projection operator P can be
decomposed (not uniquely) into

P=Y3P, (5.18)
1=0%=1
with
Py Py = PpypePy = 6,043 Pyy (5.19)

where P, is an admissible irreducible projection
operator of a rank v — / such that dim V[P,] =
v — !+ 1and
v—1
Py = on TQufuH (5.20)
j=

together with (5.17).
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Proof: We have only to prove the irreducibility of
P,. Let P’k be an admissible projection operator such
that sz e = PuPu = Pj,. Since P, has a rank

I, P, for P,k — P} has the rank » — /. Then there
exists a vector ¢ € V[P;,] of the rank » — I. Since
H'p 3 0, Theorem 12 implies that dim V[P;] >
vy — I 4 1. According to Theorem 4, however, we
have

» — | + 1 = dim V[P,] + dim V[P, — P,]. (5:21)

Therefore, we have dim V[P,, — P,] =0, that is,
P, =Py. QED

Theorem 15: When P is written as a direct sum of
admissible irreducible projection operators, we can
always express it as (5.18) together with (5.20); and if
there are two expressions

P = ﬁZPm—iZPm’

1=0xk=1 1=0k=1
then we have m; =m, , I =0,1,-+-,».

(5.22)

Proof: Any irreducible component of P of a rank
v — lis written as (5.20) because, otherwise supposing
it as the P of Theorem 14, we could decompose it into
Py, . Next, for (5.22), we have

v—n my v—n my’
H'P=Y YH"P,=Y SHP,. (523)
1=0 k=1 I=0 k=1
Hence
y—n V=7
dimVH Pl=3m— 14+ 1) =dm»—1+1),
=0 =0
n=vv—1,---,0, (524)
from which m, = m, follows. QED

By applying the above results to S, we obtain

N m
S = z(:)sz,k, (5.25)
N-1
= 2} H f‘sz‘?zkHN—l_’ (5.26)
P
PuH" P = 0,030, N1 (5.27)
N
1=0
N—nm;
st" =3 Y H"S,, (5.29)
1=0 k=1
N—n—1 ) .
H"Sy = 3 H"Wg,§,HN "7, (5.30)
=0
N-n
dim V[S™] = dim V[S™] = 3 m(N —n — I + 1).
=0

(5.31)
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Since

M

S = Z Rirlzv'") 2 2 ¢(n)$(Nm—n) (532)

m=1 m=1 n=0
@y, 15 expressed in terms of ¢L’:' m=1,-+-,M,;
n=0,1,---,N_})as

M No o (

w = 2—1 20($nlzvm—n)¢lk)¢7:)- (5.33)

Since
4 LA H " g,) =0

an

(FuHY"DAO) " =0 (5.34)

for 0 <j < N — n — I because of (4.24), the expres-
sions (5.25)-(5.30) show the existence of the solutions
to the problem posed at the end of Sec. 2. In general
it is very difficult, however, to find ¢, and ¢, explic-
itly. In the next section, we explicitly construct them
in terms of ¢/» and ™ in two special cases M =
N+land M =2,

6. SPECIAL CASES
A.Case M=N+1(N2>1)

Let us take the case of M = N + 1 (N > 1), where
all of wiv,-- -, w) are different from each other.
This case is the most important case in the application
to the Bethe-Salpeter formalism.5

From the consideration of Sec. 4, we have N,, = N
forallmand M = M; =N+ 1. Therank of Sis N
accordmg to (4.47), and dim V[S] = N + 1. Hence S
is irreducible. More precisely, according to Theorem
14, if we find a vector ¢ € V[S] of the rank N, we can
write

S = Z H'ogHN, (6.1)
where ¢ € V'[S] is a vector satisfying
¢Hn(p=6nN’ n=0,1,--- (62)
Hence
N—n
St™ = ¥ H™tpgH N, (6.3)
=0
From (4.46), we have
¢(0) (0) S[N]. (64)
On setting
¢ =HY, §=¢H", (6.5)
therefore, we should have
:r(:) = amqb’ ‘;ig) = bm$9 (6.6)
where a, and b, are certain complex numbers

satisfying a,.b,, = &,,.
From (5.32), we write

S=yé+ U, (6.7
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where

1 N-1
U= E z ¢(n)$(N—n) (68)
m=1 n=0
N+1
P =2 bupi - (6.9)
m=1

Because of (4.44), the rank of U is Jess than N. Since
the rank of S'is N, therefore, the rank of  has to be N.
Hence, with the aid of HYS = HY, we find that Sy
belongs to V'[S] and has the rank N. We can therefore
set

¢ =Sy = (¢y)y + Uyp. (6.10)
Thus we have obtained N + 1 independent vectors
H"Sy, n=0,1,--+,N, in V[S] in terms of ¢»
m=1,---,N+1; n=0,1,---,N).1% We note
that, since the rank of U is less than N, we have

Jp # 0. (6.11)

We can make a similar consideration in the dual
space. With

P = Z AP, (6.12)

m=1
$S € V[S] has the rank N. According to the dual
proposition of Theorem 12, therefore, we can write

N
#=>c,HSH", ¢o#0. (6.13)
n=0
The coefficients ¢, can be successively determined by
(6.2); they are expressed in terms of 4, = $HY"Sy,

n=20,1, -, N.Indeed, rewriting (6.2) as

zox" Z ch,_, =1, (6.14)
we obtain
C, = —( ) (Ehl ) (6.15)
n! =0
In particular,
' =ho=JHY = $p = §p.  (6.16)
B. Case M =2(N2>1)
From the continuity in z of
S(z) = Ry(z) + Ry(2), (6.17)

we obtain N = N; = N, and the cancellation con-

ditions

Rin) + R;") = 0’ h = 0, 1: T N — 1’ (618)

with R(® 5 0. Because of (6.17), we can write

St(z) = {[wy(2)]" — [wu(2)]"}Ry(2) + [we(2)]"S(2)
(6.19)
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for n > 1, and (6.19) has to be continuous in z at
z = 0. From the case n = 1, we find

N
lei(wgfi) (])) ZZ—N+kR(k) 0(1) (6 20)
j=
and therefore®
Wij) = Wéj)a .] = 15 29 Ty, N-—-1. (621)

Then the continuity in z of St for n > 2 is auto-
matically satisfied. We also have

S = R™ + R, (6.22)
ws"HR{®, (6.23)

From (6.23), we find that there is a double pole if and
only if wi¥) 5 WiV 8

Now, our main task is to solve (6.18). For the
moment, we do not consider (4.32) or (4.33). Then
¢® and ¢‘"’, n=20,1,---,N, are completely
arbitrary. Given them, ¢{" and ¢, n=0,1,
N — 1, satisfy (6.18) if and only if

H=S"=@w" -

W= a3 (—a + BT, (629)
B = —a S+ )R, (629)

where ¢ # 0, oy = 0, and a,, - -+, ay_, are complex

numbers. Let

f(x) = ioc,-xj (6.26)

with o, = 0 for n > N. Then a formal power series
of a generating function,

{1+ U@ =3,

defines §;; for example, f, =1, f; =0, f, = «?/2,
B3 = w05, -+ - . The proof of (6.24) and (6.25) is
presented in the Appendix, in which we also show that

S =14 + "7, (6.28)

(6.27)

where

N
1= 4" = a7+ 32— + BB, (629)

= (N) + a¢(N) _'_Z(Oc + ﬁ)$(N—i). (630)
Next, we take (4.33) into account. For /=m =1,
we have N + 1 independent constraints

,N. (6.31)

n
Z&ik)¢](.n_k) = 67LN’ n = 0’ 1’ et
k=0

Then the remainders of (4.33) are automatically
satisfied as long as n < N — 1, because ¢{™ and
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are linear combinations of gb‘l‘”, ..
$O, o, 17, respectively. For /=1, m =2, and
n = N, Eqgs. (6.24), (6.31), and (6.29) yield

0 =3 FP4N = a(l — §, (632

so that =
¢y = 1. (6.33)

Likewise, we find
i =1 (6.34)

fromthe case ! =2, m = 1, and n = N of (4.33). The
final case /=m =2 and n= N is automatically
satisfied under (6.33) and (6.34). From (6.33) and
(6.34) together with $'¢\® =0, we find that g
and ¢! (7 and $) are linearly independent. Thus,
dim V[{S§] =2 = M, as it should be. Furthermore,
from S% = § we have

71 = 0. (6.35)

Since (6.23) implies that
Hy = ™ — wi")gl, (6.36)
IH = (Wi — wi) $0, (6.37)

we can rewrite (6.28) as
S = g¢H + He§, (6.38)

for W % wi by setting ¢ =y and § = WV —
w{¥)1%, where
(6.39)

For wi™ = w{™, § is reducible into y$® and ¢{0'7.

¢Hn(p = Csnl .

7. DISCUSSION

In the present paper, we have developed a general
theory of the residues of multiple poles synthesized
out of coinciding simple poles. Though we have
introduced an infinite-dimensional space X, our
problem is essentially of finite-dimensional nature.
Indeed, V[S] is included in a finite-dimensional space
Y spanned by ¢* (m=1,--- ,M; n=0,1,---,
N,). In order to prove dim V[S] = M, we have
introduced an ad hoc assumption (Assumption 1),
but it might be possible to avoid it by using the finite
dimensionality of Y. The special cases discussed in
Sec. 6 and some other simple examples suggest that
dim V[S]= M would be a property which can be
proven without using any topological concepts.

In the Bethe-Salpeter formalism, given ¢ € X, its
conjugate & X can be constructed immediately
according to a general rule.® It should be noted,
however, that @ is not the adjoint vector of ¢ in the
sense of a Hilbert space. We have to introduce a norm
factor 7,, (= +1) associated with R, (z).® Then we
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-, ¢{™ and of may define the conjugate @ of every vector

¢ =23 tputn €Y (7.1)
by m.n
=3 arn.bn €7, (7.2)
provided that any identity of the form
2 Bt =0 (7.3)
can hold if and only if
> Bratimém = 0. (74)

In particular, we have ¢ = 75,.d". We can also
define the conjugate of a linear operator Tif V[T] = ¥
and V[T] < ¥. Then S becomes self-conjugate. Thus,
it is possible to introduce the conjugate operation in
an abstract way, but the self-conjugate property of S
does not seem to be very powerful.?
Finally, we consider multiple poles on the z plane.
Let z,,(w) be the inverse function of w,(z), and let
Qn(w)

T(Z, W) = %z__;_(;)

a.s)

be the singular part of F(z, w) on the z plane. Since

OF = F a4 F (7.6)
0z dz
instead of (2.10), we have
Ql(w)A’Qm(w) = 6lQO(w) (7'7)

with A’ = —dA/dz|,_,. In the same way as in (2.16),
we find that the residues of multiple poles are given by

T = lim T (w) (7.8)
with o
T"(w) = 3 [2,(")]"Q(W). (7.9)

Therefore, on setting R, (w) = Q,,(w)4’ and SI™(w) =
T™(w)A4', we find that R, (w) and SI")(w) satisfy the
same assumptions stated in Sec. 4. Thus all results
presented in the previous sections are applicable to
Tt"14’. This fact is a merit of the axiomatic approach.
But the formulas obtained in this way are not directly
related to the generalized Bethe-Salpeter equa-
tions® 3 for T, which follow from

A(z)g Tz7 = 0(1), (7.10)

in contrast with the theory on the w plane.

APPENDIX: PROOF OF (6.24)-(6.30)

We prove (6.24) and (6.25) by mathematical
induction. For n =0, we have ¢ =a¢{” and
«5;}” = _a—1$io)’ a # 0, from (l,io)q;(lo) + ¢;o)q§;0) = 0.
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Hence we assume that the cancellation conditions
(6.18) for n=0,1, ,k—1, 1<k <N, are
equivalent to (6.24) and (6.25) forn =0, 1, , k —
1. For n = k, we have

22:. R — i ¢ij)$§k—j) + f ¢éj)$;k—j)
m=1 j=0 §=0
k
= SHOH + B -y
j=0
+ ¢(20)($(2k) — w"’(k)) + K(k),
where

k .
p = azo(““m + B¢,
F=
k ~ .
¢(k) = _a—lzo(ak]_ + ﬂj)(}s(lk—a)’
J=
k—1
w(k)&éo) + ¢é0)1/7(k) +j§¢éy)$ék—a)

with o; = a; for j=0,1, ,k—1and o; =0
for j = k.1® The induction assumption implies that

K(k) =

K% — _zk: [i(—ak_,_i + )¢y
X z(“k R 5’0—1—’)9%0):]

-3 Suw

=0 j=0

ki
X [Z_Z_(—ak.l—i + ﬂl-—i)(ak.k-—l-—j + ﬂk_z_,'):l-
Lemma 1:

éo(_ap + ﬁp)(an—p + ﬂn-—p) = 0po-
Proof: From (6.26) and (6.27),

o n

2 2

n=0 p=0

—a, + ﬂz))(an—p + ﬂn—p)xn

o0

Z —a, +ﬂp)x"2(°€ + B)x

“ @+ 1L+ (f(x»ﬂ]*}
x {f(x) + [1 + (FE)E}
= 1.

The formula of Lemma 1 can be rewritten as

gﬂ(_“na) + ﬂn)(“n.n—p + ﬁp) = 005

because the coefficient of «,, is —2a, = 0. Therefore,

k
K™ = % g Fe—)
1§0¢1 $1
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For k < N — 1, since 3, R® = 0, we have

—a G = PR + g

Accordingly, there is a complex number «, such that

a—l(qs(zk) - (k)) = o ¢(O)
a(§P — §%) = — o, O,
from which we obtain (6.24) and (6.25) for n = k. If

k = N, since S = Y ,, R}V, we obtain (6.28) together
with (6.29) and (6.30) by setting

¥ = —1(¢(N)
~(N)).

i=a@” -9

,'p(k)) =0.

(N))
b]
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In any theory of gravity in which free particles move along the geodesics of a 4-dimensional metric
tensor, a particular class of metrics can be defined which correspond to the fields of Newton’s theory of
gravity. In these Newtonian fields the metric coefficients which describe intrinsic properties of space and
time are clearly separated from those that describe the gravitational field. This separation suggests an
invariance in the gravitational field which is quite similar to the usual Lorentz invariance of electro-
magnetism. The infinitesimal form of the generalized Lorentz transformation is determined by the fact
that the 3-dimensional geometry remains Euclidean under the transformation. The finite form is deter-
mined so that the transformations form a group, and the group is found to be the usual Lorentz group.
The transformation is then applied to fields that are not necessarily Newtonian,

I. INTRODUCTION

If gravity and electromagnetism are just different
aspects of a unified field whose laws are in agreement
with the principle of special relativity, then it seems
reasonable to expect that there is a large-scale invari-
ance in the gravitational field comparable to the
known invariance of the electromagnetic field in the
special theory of relativity. In the special theory,
the intrinsic properties of space and time are described
in a Lorentz frame by the flat-space metric 7,5, where

1 00 O
010 O

Nap = 0 0 1 0 (1)
0 0 0 —¢

The Lorentz transformation is defined such that it
leaves these metric coefficients invariant. The electro-
magnetic field components are not invariant under the
transformation, but instead they obey transformation
relations which are chosen to make the form of the
electromagnetic field equations invariant, and in this
way they are treated very differently than are the
intrinsic properties of space and time.

In contrast to this, most of the metric theories of
gravity, including Einstein’s theory, make no sharp
distinction between quantities that describe intrinsic
properties of space and time and those that describe
the gravitational field. Instead, all of these quantities
are combined in the metric tensor g, , which is defined
such that the local time dr measured by a moving
clock is determined by the expression

—02 d’TZ = guﬁ dxa dxﬁ

@

and which has the property that its geodesics are the
paths of free particles. In general, there is no system of
coordinates in which g,; = 71,, and the usual

Lorentz transformation does not leave the coefficients
g.p invariant. Most of the attempts that have been
made to find some type of generalized Lorentz
transformation which leaves the coefficients g,
invariant have led to isometries, which are trans-
formations that preserve the functional form of all the
functions g,;. However, isometries are far too re-
strictive to play a role in the gravitational field similar
to the one played by the Lorentz transformation
in the electromagnetic field. For example, an isometry
with as many parameters as the usual Lorentz trans-
formation exists only in a space of constant curvature,
and therefore does not exist even in a field as simple as
the Schwarzschild field. Clearly, it is too much to ask
that the functional form of all the metric coefficients
be preserved by the transformation.

However, it may still be possible to preserve the
form of some of the metric coefficients, provided that
the remaining coefficients are allowed to transform
in any way that is convenient. If the resulting invari-
ance is to be similar to the usual Lorentz invariance
of the electromagnetic field, then the invariant metric
coefficients must be those that describe intrinsic
properties of space and time, and the remaining
metric coefficients will be those that describe the
gravitational field. This suggests that the first step in
investigating the possible existence of such an in-
variance must be to find a representation of the metric
coefficients which separates the ones that describe
intrinsic properties of space and time from those that
describe the gravitational field. This will be done in
this paper by considering the simplest and most
important metric tensors, namely, those which describe
the fields considered in Newtonian gravitational
theory. It will be shown that for such metrics it is
possible to introduce an infinitesimal transformation
which keeps the intrinsic properties of space and time
invariant, following the pattern of special theory. It
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will then be shown that this infinitesimal transforma-
tion defines a finite transformation group, and finally
this group will be applied to a more general class of
fields.

II. NEWTONIAN FIELDS

In Newtonian gravitational theory it is assumed that
there is a single universal time variable and that 3-
space is Euclidean. In the context of a metric theory of
gravity, this means that g, is such that there exists a
time function, say x,, such that the 3-dimensional
geometry defined by g,, on the surface x, = const is
Euclidean. It will be convenient throughout this paper
to adopt the notation that Greek indices run from one
to four and repeated Greek indices are summed from
one to four, while Roman indices run from one to
three and repeated Roman indices are summed from
one to three. With this notation, the metrics which
describe Newtonian fields are those for which there
exist coordinates x, in which

8i; = 5i5 s (3)

where d,; is the identity. If g is the determinant of g,,,
then in these coordinates it is seen that

8 = 8as — Kisfia-
Let g*# be defined by the relations
g7 = 0y + (1/g)guugi>

g = —(/9)gu, O]
g44 —_ I/g’
and it is readily verified that

878 = 05,
so that g*# is the reciprocal of g4.

In addition to the requirement that the coefficients
gi; satisfy Eq. (3), a restriction must be put on the
remaining coefficients g,, if the laws of mechanics are
to be those of Newton’s theory. Since the path of a
test particle is a geodesic of g, , its equation of motion
is

d’x, dx, dx;

dr* dr dr

Expressing g*# in the form of Eqs. (4), we have that
this equation of motion for « = 4 is

—g"(v8, B)

7 dr dr
Using this relation, we can write the equations for
a=1,2,3as
d*x;
ar®

1
= [gi(yd, D) — (y6,4)]

d*x,

dx, dx;s
= —(y8, ) —2 =22 _ g, .
(vo, ) dr dr g4d7'2

&)
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In Newton’s theory it is usually assumed that a
moving clock will measure the time coordinate, so
that dr = dx,. To the extent that this nonrelativistic
approximation is correct, dx,/dr = 1, d®x,fds® = 0,
and d2x,/dr? is the acceleration of a moving particle
relative to the coordinates x,. To this approximation,
then, Eq. (5) shows that the acceleration of a moving
particle is

dx, dxs

dx, dx, '

Evaluating the Christoffel symbols (4, i) for a metric
which satisfies Eq. (3) gives this acceleration in the
3-dimensional form:

@&_%#&_%&
ox; Ox;/dx, 0x,

In Newton’s theory the acceleration does not
depend on the particle velocity dx;/dx, and can be
expressed as the negative gradient of the Newtonian
potential function V. If the above expression is not to
depend on dx;/dx,, it must be that

1084

2 ox, ©

08 _ 084 _

ox;,  0x;
which is equivalent to requiring that a function g
exists such that

b

9B
a=—" 7
8ia ox, (7
Then the acceleration given by expression (6) becomes
0 (08
—\—+ 3 ))
0x; (ax4 28u
which is of the form —aV/ox, if
0
Ve =2 g1 (®)
0x,4

Here the constant 4c? has been added to make V' — 0
at great distances from any masses, where the field is
static, so that 98/0x, — 0, and the metric approaches
the flat-space metric, so that gy — —c® Solving
this for g,, and combining the result with Eqgs. (3)
and (7) shows that a Newtonian field is one in which
there exist coordinates such that g,, takes the form

8 = ;15
ap
g= — —, 9
8ia axi ( )
0
B = —2V—2——§~— ¢,
0x,4
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where f and V are arbitrary functions. Throughout
this paper a metric field will be said to be Newtonian
if such coordinates exist. In Newtonian gravitational
theory it is further assumed that V satisfies Poisson’s
equation, but neither this equation nor Einstein’s
field equations will be assumed here. The results of
this paper will depend on the assumption, made above,
that the field is described by a metric whose geodesics
are the possible paths of a free particle, but they will
be independent of any particular system of field
equations.

One important case of a Newtonian field is the one
in which V' = —KM/r and § = —(8KMr)}, where r
is (x2 + x2 + x2)%. When these values are used in the
metric coefficients of Egs. (9), the associated quadratic
form of Eq. (2) can be written in polar coordinates
r, 0, and ¢ in the form

—ctdr? = dr? + r¥(dg? + sin® ¢ d8?) + 2QKM]r)}
x drdx, — [c@ — QKM/r)(dx,)?.

If the time coordinate x, is replaced by a variable /
defined by

l

3
Xg — ;15(8KMr)1’ + ﬂ%\-{ tanh™ (%fz—rM) ,

the quadratic form above becomes
|
[1 — (2KM/c*r)]

—c?dr?

+ rA(d¢® + sin® ¢ d6%)
of -2y
cr

which is the Schwarzschild line element.

As shown above, the Newtonian fields are sufficient
to describe all known fields to the accuracy of the
nonrelativistic approximation that dr = dx,. The
only field in which it has been possible to verify
the relativistic corrections to Newton’s theory experi-
mentally is the Schwarzschild field, where verifiable
corrections have been found by using the Schwarzs-
child line element in Eq. (2), which determines the
time measured by a moving clock, and in the geodesic
equations that determine the motion of a particle or a
light ray. Since it is now seen that the Schwarzschild
field itself is Newtonian, it is clear that both New-
tonian gravitational theory and all of the verifiable
relativistic corrections to Newton’s theory can be
explained in terms of Newtonian fields if the geodesic
equations and Eq. (2) are assumed to hold. Thus it is
at Jeast possible that the Newtonian fields are the only
fields that occur in nature.

This observation provides the motivation for the
description of gravity that will be used in this paper.
As is customary today, gravity will be described in
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terms of a curved metric 4-space. The metric coefficients
determine the time measured by a moving clock by
means of Eq. (2), and they determine the paths of
moving particles and light rays by means of the
geodesic equations. However, in most descriptions of
gravity it is further assumed that the metric coefficients
are found as solutions of a set of field equations such
as Einstein’s equations. The weakness of this pro-
cedure is that the field equations are derived as
much from philosophical considerations as from the
observed facts, and this lends some unnecessary
uncertainty to any results obtained from them. As far
as the observational evidence is concerned, about all
that can be said for any set of field equations is that
they yield one important class of solutions which are
closely approximated by Newtonian fields in which ¥
is at least very nearly a solution of Poisson’s equation
in the coordinates x, . If it is assumed that gravitational
waves exist, even this last qualification is questionable,
since Poisson’s equation does not lead to wavelike
solutions. Because of this uncertainty concerning the
field equations, the analysis of this paper will be based
only on the assumption that many physically impor-
tant gravitational fields can be closely approximated
by Newtonian fields. In the next two sections it will be
assumed that the field is exactly Newtonian. Then it
will be shown that the results of these two sections
can be applied to any set of metric coefficients,
although the application will be physically meaningful
only in fields which closely approximate Newtonian
fields.

A discussion of the physical meaning of a class of
fields which includes the Newtonian fields has been
given previously.

III. THE INFINITESIMAL LORENTZ TRANS-
FORMATION IN A NEWTONIAN FIELD

The desired separation of the intrinsic properties
of space and time from the properties of the gravita-
tional field is very clear in the case of Newtonian
fields. Here the intrinsic properties of space and time
are described by the time variable x, and the Euclidean
geometry in the 3-space defined by a constant value
of x,. If the three spatial coordinates x; are defined
to be Cartesian coordinates in this Euclidean 3-space,
as has been done in Egs. (9), then the four coordinates
x, will be called a Lorentz frame. In this Lorentz
frame, the gravitational field is described by the
quantities g,, given in Eqs. (9). If a second Lorentz
frame is to be defined in a manner that will keep the
intrinsic properties of space and time invariant,
following the pattern of the special theory, then the
coordinates x, in the new frame must be chosen such
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that the metric coefficients g;; in the new frame are
still equal to &,;. The coefficients g,, may have any
desired values and will not be specified in advance. The
transformation can be determined from the known
law of transformation of g,,, namely,

, 2x, 0
g:zf} gyd axa axﬁ .

(10)

In this section, Eq. (10) will be solved for an
infinitesimal transformation, that is, for a transforma-
tion in which x, = x, + 0x, and g,; = g,5 -+ 9g,p,
where 0x, and dg,; are so small that only terms of
first order in dx, and dg,, need to be considered. For
such a transformation, Eq. (10) becomes

d8x 06x
08wy = — 8oy — — L
B = T8 Gx, BV 0x,

Since g;; = J;;, the condition that g;. = 4,; is just that
dg.; = 0. Noting that g,; has the form given by Eqs.
(9), this condition is found to lead to the following
differential equation for the infinitesimal transforma-
tion:

90x;

0x;

06x; 0 00x, = 0P 00x,
Ox, ox 0x, | 0x, 0%
Differentiating this with respect to x, and solving for
020x,/0x,0x; gives

0%0x; 0’8 0dx,  0%°0x, Op

axdx, dxdx, Ox, | Oxdx, 0%,
The condition that this is integrable for dx;, is that

(11

?B  0%x, 0*8 09%x,  0%x, 08
0x;0x; 0x,,0x, a 0x;0x,0x,0x,  0x,0x; 0x,0x,
Fox, 5 _
B ox,0x, 0x,0x, -
Obviously, one solution of this equation is
Poxg _, (12)
0x,0x;

If it is assumed that the determinant of 0%8/dx,0x;
does not vanish, this solution can be shown to be
unique. In the Schwarzschild field, § = —(8KMr)},
and the determinant of 9%8/0x,0x; does not vanish
anywhere. Since many fields of physical interest are
small perturbations of this field, it follows that Eq.
(12) must be satisfied by many physical fields. In the
following analysis it will be assumed that Eq. (12) is
satisfied.
From Eq. (12) it follows immediately that

dx, = mx, + m, (13)
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where m; and m are arbitrary functions of x,. Then
Eq. (11) can be rewritten as

9 9
ox; 0x;

The general solution of this equation is

(0x; — pm;) + (6x; — pm,;) = 0.

(14)

where n;; and n; are arbitrary functions of x, and
where n,; = —n,;;. The functions m;, m, n,;;, and »;
can be evaluated if it is assumed that, in the region far
away from all masses, g, approaches 7,5 and the rela-
tion between dx, and dx approaches the usual Lorentz
transformation. In this region the field is static and
g4 — 0, so that 9p/@x, vanishes and the value of df
associated with any dx, vanishes. If the derivatives of
m;, m, n;, and n; with respect to x, are denoted by a
dot, the differentials of Eqs. (13) and (14) in the region
far from all masses become

Ox; = fm; + n;x; + n,

dox, = mx; dx, + m,dx; + mdx,,
déx; = pm,; dx, + n,x;dx, + n;dx; + i dx,. (15)

The infinitesimal form of the usual Lorentz trans-
formation of the special theory is

0x, = —c?wyx;,
where ¢; = —¢;; are infinitesimal constants and w,

are the components of the infinitesimal transformation
velocity. In order that Eqs. (15) be the same as
the differentials of Eqs. (16) for all dx,, it must be that

m; = —w,/c®, n; =¢;, m=0, and #; = —w;. The
last two of these relations can be integrated to give
= 0 and n, = —w;x,, where the possible additive

constants have been dropped for simplicity. Then
Eqgs. (13) and (14) become

0xy = —c*wyx;,
Ox; = ¢;x; — wi(xy + Blc?). a7

This is the most general infinitesimal transformation
which carries metric coefficients of the form of Egs. (9)
into new metric coefficients in such a way that g;; = 0,;
and which reduces to the usual Lorentz transformation
between the coordinate differentials in the region far
from all masses.

It is worth noting that, since Eq. (11) is a set of six
equations in the four unknowns dx, , it might generally
be expected that the dx, would be overdetermined.
However, Eq. (11) is soluble because of the special
form of the coefficients g,,, which indicates that the
fields that admit such a transformation are closely
related to the fields that actually exist in nature.
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IV. THE TRANSFORMATION GROUP

To complete the analogy to the Lorentz invariance
of the special theory, the infinitesimal transformation
of Egs. (17) must be extended to apply to finite
values of the transformation parameters. It is desirable
that the finite transformations form a group, since this
ensures that physical phenomena predicted in any one
Lorentz frame do not depend on the particular se-
quence of transformations that may have been used
to reach that frame, which is surely necessary if the
theory is to correspond to reality. It will be assumed
that the coordinate differentials are still related by the
usual Lorentz transformation in the region far from
any masses, which implies that the structure of such a
group, if one exists, must be that of the usual Lorentz
group. Therefore, if such a group exists, it must be
possible to express the infinitesimal generalized
Lorentz transformation, given by Eqs. (17), in the
form of the infinitesimal Lorentz group, given by
Eqgs. (16). This can be done by defining a new set of
coordinates X, by the relations

(18)

and by similarly defining a new set of coordinates X,
in the new Lorentz frame by the relations

X, =x;, Xy,=2x,+ fp/c

Xi=x;, Xi=xi+p]c

where 8’ is the transform of § and is an arbitrary
function. Then, if X, =X, — X, and 6 = ' — f3,
Eqgs. (17) can be written as

80X, — ¢%08 = —C_zwiXi,
6Xi = C“XJ il W,‘:X4.

Comparing these with Eqs. (16), we see that the
transformation from X, to X, has exactly the form of
Eqgs. €16) if 4 is defined to be zero, that is, if g’ is
chosen to equal §, so that 8 is an invariant. Then the
coordinates X, are given by

X!=x;, X;=x;+ fjc" (19)

Since any finite group is determined by its infinitesimal
transformation, it is clear that, if the finite trans-
formation relating X to X, is assumed to form a group,
the group must be the usual Lorentz group of the
special theory. The transformation group in which the
X, of Egs. (19) are related to the X, of Egqs. (18) by
the usual Lorentz transformation will be taken to be
the generalized Lorentz transformation in a Newtonian
gravitational field.

Ignoring a 3-dimensional rotation, we can write
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the usual Lorentz transformation as

—1
X=X, + (” . w,.X,.—yX4)w,.,
w

Xi =Xy — 7w, X)),
where the w; are the components of the velocity
associated with the transformation and are the
parameters of the transformation, w? = ww,, and
y = (1 — w¥fc?) % Writing this in terms of x, and
x, by the use of Egs. (18) and (19) gives the relations

-1
Y 2 WX; — YXq — Zz ﬁ)wi’
w C

xt,'=xz'+(

, 1 -1
x4=y(x4—c—2w,.x,-+y I /3) (20)

The most general form of the generalized Lorentz
transformation in a Newtonian field is given by Eqs. (20)
with the addition of an arbitrary 3-dimensional rotation.
The coordinates x_ given by Egs. (20) are those of the
new Lorentz frame.

From this it follows immediately that the defining
equation of the generalized Lorentz transformation,
which must hold for all 4X,, is

Nup AX dX g =n,5dX, dX,
or, from Eqgs. (18) and (19),

dx; dx;— cX(dx; + ¢ 2 dB)®
= dx; dx; — c*(dxq + ¢ df)%.

Expanding, cancelling the two terms containing (dg)?,
and requiring that this relation hold for all dx, give
the relation

, 0%, 0x4
Uaﬂa___= yé
x, 0X;
where
op 0
05 = 0y, UM-'—a_x—’ 44-—-—2—'255—,
i 4
) , 0 , 0
0'”—6”, Gz‘A—_ggs 44——-62—255.
i 4

21
It is seen that the defining equation of the generalized
Lorentz transformation is the condition that the
quantities o,4 transform as a covariant tensor with two
indices.

Comparing the first three of Eqs. (21) with Eqgs. (9)
shows that g,; = 0,;, gy = 0,4, and gy, = 044 — 2V,
so that the metric coefficients of Eqgs. (9) can be
written as

Zap = Oup — 2V 04 0x4 (22)

0x, 0x, .
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If this equation is multiplied by (9x,/0x,)(0xs/0x;)
and it is noted that this process transforms g,, into
gys and (0x,/0x,)(0x,/0xs) into (0x,/0x;)(0x,/0x;)
when x, is any system of coordinates and also trans-
forms o,, into o,; when the coordinates x, are those
of another Lorentz frame, it is seen that the metric
coefficients in an arbitrary Lorentz frame can be
written as

0x., 0x; '

Using the fourth of Eqs. (21), we further see that
the 3-dimensional geometry in the new Lorentz frame
is described by the metric tensor

g5 = o) — 2V (23)

’ ! :
ox; 0x;

The nature of this geometry becomes clear if the terms
0x,/0x; are evaluated by differentiating the reciprocal
of the transformation given by Egs. (20). This re-
ciprocal can be obtained from Eqs. (20) by inter-
changing x, and x, and replacing w, by —w,, with the
result that

ox, a[(, 1, =1 )}
e 2 + = wix; + —
ax;yx‘ T yc2ﬂ

ox;
14 7—135)
=Llw, + — ).
c2(w y 0x]

gi; =0y — 2V 24

For transformation velocities much less than ¢,
y & 1, and this becomes 0x,/0x; ~ w,/c?, so that Eq.
(24) is approximately

2V ww,

ot (25)

, .
g~ 0 —

It is clear that the new geometry will be exactly
Euclidean (that is, g;; = 0;,) only if w; = 0, in which
case the transformation reduces to the identity, or if
V = 0, in which case the gravitational field vanishes.
However, it is easily seen that the geometry in the
new coordinates is not likely to differ from Euclidean
geometry in any measurable way. First, the factor
—2V/c? has the value of about 4 x 10-6 at the surface
of the sun and is much less than this throughout most
of the solar system. It would approach unity at the
Schwarzschild singularity, which is not known to be
approached anywhere in nature. Second, if we consider
the transformation to the rest frame of an observer
who is in orbit about the sun, the maximum value of
|w;]/c is that associated with an observer who moves in
a circular orbit very close to the sun, and is about
1.4 x 1073, Thus, the maximum achievable value of
the last term in Eq. (25) is about 8 x 1072, which
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must be compared with terms of order unity in 6.
Finally, it must be remembered that nature does not
provide us with the coordinates x,, so that it is not
possible to measure the magnitude of the last term of
Eq. (25) directly in these coordinates. Instead, it is
necessary to measure the curvature of g;,, a process
which requires the determination of the difference in
the values of g;; at points which are separated by a
distance appreciable compared with the size of the
solar system. All of these facts considered, it seems
unlikely that the last term of Eq. (25) is large enough
to be detected by any measurements in the foreseeable
future.

V. THE GENERALIZED LORENTZ TRANS-
FORMATION IN NON-NEWTONIAN
FIELDS

It has been shown that, when a Newtonian field is
described in the coordinates in which g,, takes the
form of Eqs. (9), it is always possible to introduce an
infinitesimal transformation which preserves the
Euclidean nature of the 3-dimensional geometry. The
finite transformation group associated with this
infinitesimal transformation preserves the Euclidean
nature of 3-space only to terms of first order in the
parameters w;, but the non-Euclidicity arising from
higher-order terms appears to be too small to be
measurable. Applying the generalized Lorentz trans-
formation to Egs. (9) shows that the form of the
metric coefficients in an arbitrary Lorentz frame is
given in terms of the three functions 8, ¥, and x, by
Eq. (23) and the last three of Eqs. (21). The functions
B, V, and x, are treated as invariants under the
generalized Lorentz transformation, but there is one
Lorentz frame in which the function x, plays the role
of the time variable. In this frame the metric coeffi-
cients take the particularly simple form of Eqgs. (9).

The preferential treatment of this one Lorentz
frame can be removed, at least in principle, by
considering a slightly more general class of fields,
namely, those in which there exists a coordinate
system in which the metric coefficients can be expressed
in the form

ot ot
Bupg = Opg — 2V ox, ax,, s (26)
where o, is given by the first three of Eqgs. (21) and
where ¥, 3, and ¢ are three arbitrary functions of the
coordinates, all of which are invariant under the
generalized Lorentz transformation. The functional
form of the right-hand side of Eq. (26) is the same in all
Lorentz frames because « and § transform as covariant
indices, and this implies that the term —2V(0¢/0x,) X
(0¢/0x;) will take the same form in any system of
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coordinates and that ¢,; will take the same form in
any Lorentz frame. Therefore, in any Lorentz frame
the metric coefficients of Eq. (26) can be written in
the 3-dimensional form

Jt ot
=0, — 2V — —,
g‘l] (¥ axi axj
28 ot ot
g=——= =2V — — 27
Bua 0x; 0x, 0x; 27
op ot \
=— 2—2———21/(—).
g44 ¢ ax4 ax4

If the components of this metric in the coordinates X,
of Egs. (18) are denoted by G,;, it is found that the
coefficients G,; have the convenient 4-dimensional
form

1op O, o

oX,0X,  0X,

. (28
ax.ox, )

Gaﬂ = naﬂ +
If it should happen that there is one particular
Lorentz frame x, in which x, = ¢, then, in that frame,
8.p Will be given by Egs. (9), and the field will be
Newtonian. However, if there is no frame in which
x; = t, then no one Lorentz frame is preferred in
principle to any other. As a result, the preferred
position of one Lorentz frame has been removed by
considering a class of fields that is slightly more
general than the Newtonian fields.

It is not difficult to consider even more general
forms of g,, by adding to the right-hand side of Eq.
(26) additional terms of the form 4,,(0u,/0x,)(0u.,/0x,),
where A, and u,, are arbitrary invariant functions and
n runs from one to as many terms as may be desired.
In this way, any metric tensor can be put in a func-
tional form which is invariant under the generalized
Lorentz transformation. However, the transformation
group has been defined such that it maintains the
Euclidean nature of 3-space as closely as possible,
and this physical motivation for the transformation
will be meaningful only if the field closely approxi-
mates a Newtonian field. For this to be the case, the
terms involving 1, and u,, must be very small, and at
present there appears to be no observational evidence
which indicates that these terms do not vanish
entirely.

VI. CONCLUSIONS

If there is a close fundamental relation between
gravitation and electromagnetism, it seems likely that
there is an invariance in the gravitational field similar
to the known invariance in the electromagnetic field,
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as given in the special theory of relativity. In the
special theory the intrinsic properties of space and
time are treated very differently than are the electro-
magnetic field quantities, which suggests that it is
desirable to separate these two types of quantities and
to treat them very differently in the gravitational field
also. A natural way to do this is suggested by the
Newtonian gravitational fields, in which coordinates
x, exist such that g,, takes the form of Eqs. (9). The
intrinsic properties of space and time are the Newton-
ian time variable x, and the Euclidean 3-dimensional
geometry described by the metric coefficients g,;.
The remaining metric coefficients g,, are the quantities
that describe the gravitational field.

With this interpretation, the infinitesimal form of
the generalized Lorentz transformation is defined such
that it keeps the 3-dimensional geometry Euclidean.
The resulting infinitesimal transformation is given by
Eqgs. (17). The finite form of the transformation is
determined through the assumption that the trans-
formations form a group and is given by Egs. (20).
The structure of the group is found to be that of the
Lorentz group of the special theory. The finite group
does not keep the 3-dimensional geometry exactly
Euclidean, but it seems unlikely that the non-Euclid-
icity will be detectable in the foreseeable future.

Of all of the Lorentz frames defined by the gener-
alized Lorentz transformation, there is one in which the
metric coefficients take a particularly simple form,
namely, the one in which the time variable is x, and
the metric coefficients have the values given by Eqs.
(9). This preferential position of one Lorentz frame
can be removed by considering a class of fields slightly
more general than the Newtonian fields. These fields
are described in a Lorentz frame by Eqs. (27), where
B, V, and ¢ are three arbitrary invariant functions.
Other fields can be written in a form invariant under
the transformation, but they do not appear to be
needed to describe any known fields.

All of the results obtained here are independent of
Einstein’s field equations.
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We present a new description of time translations in the C*-algebraic formulation of statistical me-
chanics. This description is based on weaker assumptions than the hitherto accepted ones, due to Haag,
Hugenholtz, and Winnink (HHW) [Commun. Math. Phys. §, 215 (1967)]. It is shown that these weaker
assumptions still lead to the principal results of HHW for Gibbs states and, further, that our assump-
tions, unlike those of HHW, are valid for the ideal Bose gas and strong-coupling BCS models.

1. INTRODUCTION

In the algebraic formulation of statistical mechan-
ics, time translations of a system have hitherto been
described in terms of a l-parameter group of auto-
morphisms of the appropriate C*-algebra of quasi-
local bounded observables. Such a description has
been introduced by Haag, Hugenholtz, and Winnink!
(HHW) on the basis of assumptions concerning the
existence of certain thermodynamical limits, which
will be specified below. These assumptions have been
shown by Robinson? to be valid for a large class of
lattice systems. On the other hand, they have not been
substantiated for any class of continuous systems
and, indeed, as we show in the appendices to this
article, they are invalid in the cases of the ideal Bose
gas and BCS models. Thus, it is desirable to weaken
the assumptions of HHW.

In the present paper we formulate a theory of time
translations in statistical mechanics, on the basis of
assumptions weaker than those of HHW. It is shown
that these weaker assumptions have the dual merit of
yielding the principal results of HHW for Gibbs states
and of being valid for both the ideal Bose gas and
strong-coupling BCS models.

As a preliminary to formulating our theory, we first
recall that the algebraic formulation of statistical
mechanics has been formulated as follows (cf. HHW).
One defines a v»-dimensional Euclidean space I to be
the physical space of the system under consideration
and L to be the set {A} of all bounded, measurable
open subsets of I'. One then constructs a Fock-
Hilbert space X corresponding to CCR (for bosons)
or CAR (for fermions). For each A € L, one con-
structs a closed subspace ¥y, of ¥y and a von
Neumann algebra f,, in Xp,, such that A, and
Je 4 are isotonic with respect to A, i.e., that A < A’
implies A, < A, and Ky, < HKpa . The algebras
{U,} are termed local algebras and are constructed
so that A, corresponds to the algebra of bounded
observables for the region A. One then defines A to

be Uaez An, and A to be the norm closure of A, .
Thus U is a C*-algebra, possessing a unit element /
and is usually termed the algebra of quasilocal bounded
observables for the system.

The states of the system are represented by positive
normalized linear functionals on A. Of particular
importance in statistical mechanics are the Gibbs
states, which are constructed as follows. One assumes
that there exists an increasing sequence M = {A,} of
elements of L, with |J, A, = I', such that, for each
A, € M, there exist self-adjoint operators H, and
N, in Xg, corresponding to the Hamiltonian and
particle number for a system of the specified particles
occupying A, , subject to prescribed boundary con-
ditions. It is also assumed that, for real u less than
some fixed u, (> — ), and real, positive §, the
operator (H, — uN,) is self-adjoint and lower
bounded, and exp [—f(H, — uN,)] is of trace class
in Xgz, , for all A, € M. Thus one may define a
normal state ¢ on %A, by

Trn [A exp — .B(Hn _ ‘uN'n)]
Trn [exp - ﬂ(Hn - ,uNn)] ’
VAed,, (L1

where Tr, denotes trace over ¥p, . It follows from
this definition, together with the isotony of U,,
Iz with respect to A, that, if 4 € Ay, then ¢ (4)
is defined for sufficiently large n. It is now assumed
that

6] lim ¢'™(A) exists for each 4 € %,.
Since A, is norm dense in A, it follows from this
assumption that there exists a state ¢ on U that is
uniquely defined by

H(A) =lim ¢'"(4), VAeU,.

n>w

$"(4) =

1.2)

This state ¢ is usually referred to as the Gibbs state of
the system, for chemical potential x and inverse
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temperature S. Since %, is a von Neumann algebra,

# is locally normal.®
In order to formulate time translations, one starts

by defining 7{": U, — B(HKgza ) by

Tt(n)A — Ut(n)A(Ut("))—l = A(n)(t),
VAeU,,, teR, (13)
with
U™ = exp [i(H, — Nt (1.4
It is assumed that U, , H,, and N, are defined so
that {\} = Aut ¥, .
We now come to the crucial assumption made by
HHW in their treatment of time translations. This

assumption is that

(II) for each A€, and teR, 7{"A converge
normwise as n — .

A direct consequence of this assumption is that, since
A, is norm dense in U, there exists a l-parameter
group {r,} of automorphisms of U, uniquely defined
by
”‘T:")A — 1Al —0 as n— o0,
VYAeU,, teR.

The theory of time translations in the present
article is based on the replacement of (II) by the
following weaker? assumptions:

Iy lim ¢"(A™(t,) - - - AL™(2,)) exists for all

7>

Ay, A €Uy, 1, -, 4, €R, k< oo

1v)
lim lim $™(A() - - AP (RAL™() - - - A™E)
m-=>w n—+w
exists and is equal to

lim ¢ (A (1) - AV(EIA ™ (E) - - - 4()

n—*
for all

Als""Ak’A{,"'aA;GQIL,

‘;tk’tll9".5t;eR, k,l<00

Since (IIT) trivially implies (1), one should regard (I11)
and (IV) as the basic assumptions of our theory. The
principal results that we derive from these assump-
tions may be summarized as follows. Let the GNS
representation of A corresponding to the Gibbs state
¢ be a x-homomorphism = of A into the bounded
operators in a Hilbert space J, with cylindrical
vector €2, such that

$(4) = (Q, 7(4)Q),

tl;"

YAc

Then:
(i) Time translations are represented in J by a
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l-parameter group of automorphisms of ()",
implemented by a unitary group {U,} of transforma-
tions of transformations of 3¢, for which U, is strongly
continuous with respect to f and 0,Q = Q, V t€R;
on the other hand, time translations do not necessarily
correspond to automorphisms of % in our description.

(ii) There is a conjugation operator J, in J, such
that
JQ=Q, J,0].=0, VIeR,
and
Jr(W)'T = =(A)'.

(iii) The infinite-volume two-time correlation func-
tions, appropriately defined, satisfy the Kubo-
Martin-Schwinger (KMS) boundary conditions.

Thus we recover the main results of HHW con-
cerning Gibbs states, despite weakening the basic
assumptions from (I) and (II) to the weaker pair
(I11) and (IV).

Our theory will be set out as follows. In Sec. 2, we
shall present a mathematical formalism that enables
us to derive, from postulate (II1), a representation =
of U and a unitary representation of R in a Hilbert
space JC. It will be seen that this derivation is similar
to Wightman’s field-theoretical reconstruction theo-
rem.® In Sec. 3, we shall show that, in view of postulate
(IV), the representation = of A in JK corresponds
precisely to the GNS representation of % for the
Gibbs state ¢; we shall then derive the results (i)-(iii)
summarized above. In Sec. 4 we shall make some
concluding comments on these results and their
possible ramifications. In Appendix A, we shall
show that the ideal Bose gas model satisfies postulates
(IIT) and (IV), but violates (II). In Appendix B, we
shall show that the BCS model violates (IT), but that,
at least in the strong coupling case, it satisfies (III)
and (IV).

2. MATHEMATICAL CONSTRUCTIONS

We now present our formalism. It will be seen that
the contents of the section depend partly on postulate
(111), but are independent of (IV).

We refer to the set of real numbers as D or R,
according to whether it is equipped with the discrete
or usual topology. The set A, when considered as a
topological space, will always have the norm topology.
The set of all positive integers and the field of complex
numbers will be denoted by the usual symbols Z, and
C, respectively.

A. The Space S

For each k € Z, , we define S% to be the topological
product %* x D* and S to be the topological sum
ez, S®. For each A € L, we define S¥ to be the
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subset A% x D* of S®). We then define
S,=USs¥® and s, =US,.

¥EZ, AeL
Thus, S}, is dense in S.

Elements of S will usually be denoted by o, some-
times by s. Thus, each ¢ (¢ §) will correspond to an
orderedset (A;, "+, As ty, *+*, 1), with the 4, € U,
the ;€ D, and k < c0.

We define the following operations in S:

(i) a binary multiplication, such that if

O'=(A1"..!Ak;tls”'9tk)
and
o' = (A, ", 45, ", 1), 2.1
then
UO',=(A19'.';AkrA{""9A2;
tl;.."tk,tl’""’t;);
(ii) an involution (¢ — ¢*),such that if
o= (A, s Aty b,
then
o*=(A¥ -, AF ., 1), (2.2)
and thus
(c*¢)* = o'*¢, V0,0 €8S; 2.3)

(iii) a set {V,} € Aut S, with the index set {t} = D,
such that if

O‘=(Als.'.9Ak;t1,'."tk)a

then (2.4
Vo= (A, Aty + 8, + 1),
where the sums (¢, + t) are defined in the usual sense
of addition of real numbers,

It follows from Eq. (2.4) that, for each AeL,
V, € Aut S, and also that {V,} is a 1-parameter group,
with

ViV, =V, VteD, and Vy=1Ig, (2.5)
where Ig is the unit operator on S. Further, by Egs.
(2.1) and (2.4),

V(oo = (Vo)(V,0'), Vo,0'eS, teD. (2.6)
For A, € M (defined in Sec. I), we define ' : S, —

Ay, as follows: if

o=(A1, ", Aty by,

then
(o) = At - - A(L). (2.7

It follows from this definition and Egs. (1.1), (2.1),
and (2.2) that

(2.8)
(2.9)

,y(n)(o,o,r) = ,y(n)(o_),y(n)(o.r)’ v g, o € SA,, ,
y("’(a*) - (y(")(o'))*, VYoe SA,,’
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and

" " (Vio)) = $"(y"(a), VieD, oes,,.
(2.10)
We define the map #:% — S by

N(4) = (4;0) (eSO, VAeA. (2.11)
It follows from this definition, together with Eq.

(2.2), that

((A)* = n(4*), VAel (2.12)
We define 7,: % — S by
n(A) = Vn(d), YAeU teD (2.13)

Thus, it follows from Egs. (2.1), (2.4), and (2.13) that

)= 77t1(A1) T mk(Ak)~
(2.14)

(A19A2,”.9Ak; t13t2s"

B. The Map W:5 - C
It follows from postulate (III) and our definition

of the topology of S that we may define a continuous
map W:S; — C by

W(o) =lim ¢(y'"(0)), YoeS,. (2.15)

Since Sy, is dense in S, we may extend W to be a
continuous linear function from § to C, uniquely
defined by Eq. (2.15).

It follows from Eqgs. (1.1), (1.3), (1.4), (2.2), (2.4),
and (2.15) that W possesses the following properties:

W(V,6) = W(s), YteD, oe€S, (2.16)

W(o*) = W(o), YoES, (2.17)

W(a*n(AB)o') = W(a*n(A(B)s’), VY 0,0 €S,
A, Bed, (2.18)

W(anD)) = W(on(1)) = WnDon(l)) = W(o),
and
W(o*n(I)o’) = W(c*o"),

Yo, €8,

teD. (2.19)

Further, if @, - ,ay€C and oy, ---,08€S],
then it follows from Egs. (2.1), (2.2), and (2.15) and
from the positivity of the states {¢»'} that

N
2 aaW(oioy)

- =lim qS(n)[(’-Iz::ls,-y("’(aj))*(:éajy‘n)(aj))] 20

n—*w
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Since Sy, is dense in S, it follows by continuity that

N
Zafakw(o';‘o'k) Z 0, V 4y, , 4N € C,
j=1
g, " ,0nES, N <o (2.20)

The restriction of W to S will be denoted by W*).
Thus, if
o= (A19”'3Ak;t19'."tk)s
then

W(o) = W4y, -

The functions W* will play a role in our theory
which parallels that of the Wightman functions in
quantum field theory, with our equations (2.16)-
(2.20) serving the same purpose as the Wightman
axioms. Specifically, we shall use the above properties
of W to construct a Hilbert space representation of
(A, D) by a method similar to that by which Wightman
derived his reconstruction theorem.® In fact, the
essential reason why one cannot directly apply
Wightman’s theorem here is that it was designed for
cases where, for each k€ Z, , there are at most a
countable number of Wightman functions (on R%*),
whereas, in the present situation, % can be non-
separable (as in the case of CCR), and thus there
could be a nondenumerable set of functions W (4,,
«++, A,; ) on D*,

Aty ) (221)

C. The Space K

We define K to be the set of functions, from S to C,
whose supports are finite point sets in S. Thus, with
the usual definition of linearity, K is a linear vector
space over C.

Denoting the set of all linear transformations of
K by £(K), we define 6:5 — £(K) by

supp (8(0)f) = o supp f = {od¢’ | o’ esupp [},

Veoes, fek,
and
(0(0)f) (oo = f(d'), o,0€8,feK. (2.22)
Thus,
0(od’) = 0(c)0(c"), ¥ o,0" €S. (2.23)

For t € D, we define U, € £.(K) by
U Ne)=f(V_0), YfeK 0eS. (224
Thus, by Egs. (2.5) and (2.24), {U,} is a 1-parameter
group, with
U,U,,=Uy,, Yti,5,€D, and U= Ig,
2.25)

where I is the unit operator in K. Further, it follows
from Eqgs. (2.22) and (2.24) that

UB()U_, = 0(V,0), VoeS, teD. (2.26)
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We define functions p and p, from A to £(X) by
p=0°n, p,=0°n, VYteD (227

Hence, by Eqs. (2.11), (2.13), (2.14), (2.22), (2.26),
and (2.27),

pA) = Up(A)U_,,

and, if

YAeU,teD, (2.28)

G=(A1a""Ak;t1,”'3tk),
then

0(0) = pi, (A1) - - - py, (). (2.29)

We equip K with a sesquilinear form
(, 8) = 2f(Dg@W(e*s), Vf,geK, (230)

the summations with respect to o and ¢’ being taken
over supp f and supp g, respectively. Thus, defining w
to be the element of K given by

suppw = n(I) and w(n()=1, (2.31)

it follows from Eqgs. (2.19), (2.22), (2.27), and (2.30)
that
(w, 8(c)w) = W(o) and
(0(0), B(c")w) = (B(0)w, p(1)B(0")w) = W(a*d'),
Vo,0'eS. (232
Further, it follows from Egs. (2.3), (2.12), (2.16)-

(2.20), (2.22), (2.30), (2.31) and (2.32) that if f,
geK,teD,oeS,and 4, Be¥, then

f, Ug) = (U_f, @, (2.33)

(f, Uw) = ([, o), (2.34)
(&:1) = 2(& 0 () = (g, p)f), (235)

(f, 0(a)g) = (B(c™), ), (2.36)

(fs p(AB)g) = (f, p(A)p(B)g), (2.37)
Ly de= &0 (2.38)
20 (2.39)

In view of the linearity of K, Eqgs. (2.38) and (2.39)
imply the Schwartz inequality

B2 KLk

D. The Subspace K,

Let K, = {h|he€K; (h, h) =0}. Then it follows
from Eq. (2.40) that, if heK,, then (g, h) =0,
V g € K. Conversely, if this latter condition holds, then
(h, h) = 0, i.e., h € K,. It follows that K|, is the linear
subspace of K given by {h | h € K; (g, h) = 0,V geK}.

(2.40)
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Using this latter specification of K, and defining the
binary relation ~ in K by (f~f") = (f — ' € K,),
it follows that ~ is an equivalence relationship.
Further, it follows from Egs. (2.30), (2.33)-(2.36),
and (2.38) and our definition of ~ that

if f~f"and g~g’, then(f’, ") =(f g), (241
iff~f'and g €S, then 6(o)f' ~0(0)f, (2.42)
iff~f"and te D, then U,f' ~ U,f, (2.43)
Uw~w, VYteD, (2.49)
(2.45)

f~pDf~2 f(()w, VfeK.

E. The Hilbert Space

Let K/K, be the quotient space corresponding to
the equivalence relation ~. We denote by f the
element of K/K, corresponding to the equivalence
class of fin K. It follows from Eq. (2.43) that we may
unambiguously define a sesquilinear form on K/K, by

.8 =<(f8)» VS gek

It follows from this definition, together with Egs.
(2.38) and (2.39), that K/K, is a pre-Hilbert space,
with inner product (f, £). The completion of this space
will be denoted by .

For t € D, we define U,:3 — J€ by

0.f=Uf, VfeK,

(2.46)

(2.47)

this definition being unambiguous in view of Eq.
(2.43). Since JC is the completion of K/K,, it follows
from Egs. (2.25), (2.33), (2.46), and (2.47) that

Utlvt, = Ut1+tg’ Vi,eD,
U, =1,

where [ is the unit operator in X; and

(2.48)

(y1, Uﬂpz) = (U—t%, va), VieD,p,p ek
(2.49)

Thus, by Eqgs. (2.48) and (2.49), {U} is a unitary
representation of D in J. Further, it follows from
Egs. (2.34) and (2.47) that

06 =d, VteD. (2.50)
We define §:S — $(J) by
N
b(o)f = 0(a)f, VoeS, feKk, 2.51)

this definition being unambiguous in view of Eq.
(2.42). 1t follows from this definition, together with
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Egs. (2.32), (2.36), and (2.45), that
W(o) = (&, 6(0)), Voes, (2.52)
W(s*a') = (0(0)d, b(o")d), Y 0,0'€ S, (2.53)

b(o))* = (o™, Voes, (2.54)
an

F=3fb)d,  Vfek.

We define maps g and p,, from U to $(J), by
(2.56)

It follows from this definition, together with Eqgs.

(2.12), (2.18), (2.28), (2.29), (2.45), (2.47), (2.48),
and (2.51)-(2.55), that ‘

p(A*) = (p(A))*, VAeq, (2.57)

p(AB) = p(A)p(B), VY A,Be, (2.58)

pA) = Up AU, YAeN teD, (2.59)

(2.55)

p=0cn, p,=001,

p) = 1, (2.60)
where [ is the unit operator in ¥; and if
0= (A, ", A5 ty, ", 1),
then
0(0) = 4, (41) "+ + (4. (2.61)

3. THE REPRESENTATION

We shall now enunciate our results in the form of
six propositions, whose proofs will be given below. It
will be seen that these propositions embody the
results (i)—(iii), stated in Sec. 1, and that the sub-
stance of the first proposition has been established
in Sec. 2.

Proposition 1: There exists a »-representation g of A
and a unitary representation {U,} of R in a Hilbert
space X, possessing a vector @&, such that:

(i) p(I) = I, the unit operator in J¢;
(i) 0 = &,V tER;

(i) WE(Ay, - Ay ty, -0, 1)
= (&, p,(41) - - - pr, (4 AD),
with
piA) = 0pA0V, YA, -, A€,
L, "', L,ER;

(iv) the set

{ gla NCAY

is dense in J¢; equivalently, the space J may be
generated by application to ¢ of linear combinations
of all products g, (4,) - * * p; (Ay), With 4y, - -+, A, €
W 1y, , 5, €eR,andkeZ,.

{a}€C, {0} €S, N < oo}
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Note: This proposition is not concerned with any
topological properties of the real numbers {t} and
thus does not involve any distinction between D
and R. In fact, it is not established until Proposition 5
that {0} is a continuous representation of R in .

Proposition 2: p(A ) [and thus p(A)d] is strongly
dense in J. Hence, & is a cyclical vector with respect
to A(AN), and thus g is the GNS representation of A
for the state ¢.

Proposition 3: If, for t € R, #, is the automorphism
of B(J) defined by 7,0 = 0,00, 2,V Q € B()), then
{#,} is a l-parameter group of automorphisms of
pA(QI)II'

Proposition 4: The functions W?2(4, B; t,0) and
W®(B, 4; 0, t) satisfy the KMS boundary conditions.
Thus, if 4, B € U, then 3 functions fand g on C such
that:

(i) f(z) and g(z) are respectively analytic in the
strips Imze (—f$,0) and Imze(0,8) and are
continuous on their boundaries;

(ii) f(t) = W®(4, B;t,0) and

gty = W4, B; 0,1),
(iii) f(z + if) = g(2).

VteR;

Proposition 5: {U,} is a strongly continuous repre-
sentation of R.

Proposition 6: There exists a conjugation operator

J, in 4, such that
=1 Jb= [J,0].=0, VteR,

and

A
w’

T = p(AY.

Proof of Proposition 1: It follows from Eqs. (2.48),
(2.49), (2.58), and (2.59) that p is a *-representation
of % and {U;} a unitary representation of R, in J.
Further, (i) and (ii) are established in Eqgs. (2.60) and
(2.50), respectively; (iii) follows from Eqgs. (2.21),
(2.52), and (2.61); (iv) follows from Eq. (2.55) and
the definitions of K and X (= K/K,). QED

Proof of Proposition 2: Since Sy, is dense in S and W
is a continuous function on S, it follows from Eq.
(2.53) that if ¢ € S, then 3 a sequence {c,} € S, such
that 8(e,)d tends strongly to §(c)d as n — oo. Hence,
it follows from Proposition 1 (iv) that if A is defined
as the set

{ga,ﬂ(a,.)a‘) | {o;} €S, {a;} eC, N < oo},
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then A is dense in . Thus, in order to prove Proposi-
tion 2, it suffices for us to establish that if o €5,
then 3 a sequence {B,} €U, such that §(B,)d con-
verges strongly to 8(a)d as n — oo, i.e., that

I B(BYBI — 16(a)d) 3.0

as n— oo
and
(w, J)-lim 3(B,)d = (o).

kOl

In view of the definition of the dense set A, this last
equation may be rewritten as

(0(c")éb, p(B,)B) — (B(c")d, B(0)d),
n— o, VoeS,. (3.2)

In order to show that 3 {B,} which satisfies (3.1)
and (3.2), we note that, in view of Egs. (2.7), (2.11),
and (2.15), postulate (IV) may be expressed in the
form

W(s"*n(y'™(s))) > W(s'*s) as n—0,Vs,5'€S,,
i.e., by Egs. (2.53) and (2.56),
0", ply™ ()d) — (B(s"), B(s))

1
as n-—»>oo,Vs,seS.

as

3.3)
On putting 5’ = 5(I) and s = ¢*¢ in Eq. (3.3) and
using Eqs. (2.8), (2.56)-(2.58), and (2.60), we obtain
the formula

1B (oGN] — [B(a)dll as n— 0,V oeS,.

(3.4)

Further, on putting s" = ¢’ and s = ¢ in Eq. (3.3),
we obtain

B(c", py" (@)B) — (B(0")w, B(0)b)

as n—>o,¥Vo,0eS,. (3.5

Equations (3.4) and (3.5) yield the required formulas
(3.1) and (3.2) with B, chosen as y'") (o). QED

Proof of Proposition 3: The group property of
{#;} follows immediately from the definition of this
set (in the statement of Proposition 3), together with
Eq. (2.48). It remains for us, therefore, to show that
if £ € R, then #,4(A)" = p(A)". For this purpose we
note that, by postulate (IV) and Egs. (2.1), (2.15), and
2.21),

WE(B*, A)(t), C;0,0,0)— W (B*, 4, C;0,1t,0)
as n—o, VA, B, CeU;,terR
Hence, by Eqgs. (2.52), (2.53), and (2.56),

(BB, p(A™ (1)B(C)B) — (H(B)D, p(A)H(C))
as n—o,VA,B,Ce¥,,tecR.



2996

Thus, since p(U;)d is dense in JX (by Proposition 2),
it follows that
(w, ) —lim p(A'"™"(t)) = p(A), Y A€U teR.
This implies that 7,5(%;) < ()", since the bicom-
mutant of 5(2) is also its weak closure. Hence, since
A, is norm dense in ¥, it follows from the definition
of %, that 7,5() <= A(A)"; consequently,
FAAAD) = GAQ) < FAY.

Likewise 7_,(3()") = p(A)”", from which it follows
that p(A)" < #,(p(A"). Thus we have shown that
A <= 7AW" < p(A)", from which it follows
that 7(3(W)") = p(W)". QED

Proof of Proposition 4: By Egs. (2.15) and (2.21),

W®(4, B; t,0) =lim $"(4A™(1)B)  (3.6),
and e
W®\(B, 4,0, t) =lim $""(BA™(®). (3.7)

Using Proposition 5 (proved below) and Egs. (1.1),
(1.3), and (1.4), one may readily use the method of
HHW to derive the KMS conditions for W(4, B;
t,0) and W®(B, 4;0,1). QED

Proof of Proposition 5: By Egs. (1.1), (1.3), (1.4),
and (3.7), W®(B, 4,0, t) is the pointwise limit of a
sequence of continuous functions of ¢, and is there-
fore a measurable function of ¢. Hence, as

W®(B, 4;0,1) = (A(B¥), U p(A)d),

and as p(Aé is dense in X, it follows that U, is
weakly measurable. Further, as noted in Sec. 1
(following the definition of ¢), ¢ is locally normal.
This implies® that % is separable and hence’ that
U, is strongly continuous. QED

Proof of Proposition 6: p(W)" is a W*-algebra, and
therefore a C*-algebra. We define a state @ on this
algebra by

D(Q) = (&, 0B), VY Qe p).
Since the algebra 5(2) contains I [by Proposition 1(1)],
it follows that this algebra is strongly dense in 3(2)"
(cf. Dixmier®). Hence, it follows from Proposition 4
and our definition of @ that @ is a KMS state on
A", ie., that O((F,0)Q"), ®(Q'7,Q) satisfy the
KMS conditions for all @, Q' € f(A)".

Hence the analysis of HHW may be directly applied
to the KMS state ® on A(A)" to yield the required
result. QED

4, CONCLUSION

We have established Propositions 1-6 on the basis

of the postulates (IIT) and (IV). Thus we have shown
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that the principal results of HHW, which those authors
derived from postulates (I) and (II), are also conse-
quences of the weaker postulates (III) and (IV).
One may similarly show that Hugenholtz’s theorem?®
of factor types from postulates (III) and (1V),
together with the assumption that & is the only
vector in J that is invariant under {U,} and that there
is no nonzero element of ()" that annihilates .
The advantages, from a physical standpoint, of
basing the theory on (III) and (IV), rather than (I)
and (II), were discussed in Sec. 1. Clearly, an essential
outstanding problem is that of obtaining conditions
on the interparticle forces for which an assembly of
particles of a given species fulfills (III) and (IV).
Leaving aside this very difficult problem, one may
extend our formalism so as to include local unbounded
observables by methods already developed by one of
us.}® Alternatively, one might seek to extend the
methods of the present article so as to formulate the
properties of such observables in terms of Wightman
functions, defined as appropriate thermodynamical
limits (assuming that these exist) of spatio—temporal
correlation functions between the field operators
describing the system in second quantization. The
construction of such Wightman functions would then
be based on the Hamiltonian formulations of specified
quantum-mechanical systems of particles enclosed in
finite volumes. Thus the theory would be based on
the well-defined nonrelativistic quantal laws for
finite systems. Consequently, it would have a definite
mechanistic basis, and in this respect it would be
different from the present form of relativistic field
theory, where the assumed properties of the Wightman
functions are not derived from any mechanistic model.
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APPENDIX A

We shall now show that the ideal Bose gas model
satisfies conditions (III) and (IV), but violates (II).
In deriving the properties of this model, we shall
make extensive use of the treatment of Araki and
Woods® (AW).

We use the same notation as in Sec. 1 of the present
article for the sets I', L, M, A, , and A, with the addi-
tional specification that each A, (€ M) is a parallele-
piped, of hypervolume V,,, with edges parallel to the
chosen Cartesian axis for I'. We denote by £ (resp. £,)
the Hilbert space of square-integrable functions on I'
(resp. A,,)). The subset of £ with compact supports in
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I’ will be denoted by £;. The symbols D and § will
be used in the conventional sense to denote the
Schwartz spaces of functions on I'. The Fourier
map F:£ — £ will be defined by

(FNk) = f(k) EJ;dxf(x)e_"""”, Vet (A1)

Finally, the space (D) will be denoted, in a usual
way, by 3.

We shall be concerned with free particles whose
masses, in the chosen units, are 1. The Hamiltonian
operator, in £, for a single such particle will be denoted
by h, and the corresponding evolution operator,
exp (iht), by u,. Thus

(uef)x) = [2m)T Jr dkf (k) exp [i(k - x + k*1)],
VfetL, (A2)

where » is the dimensionality of T'. It follows from
this equation that

(Fu, f)(k) = e (k)(F f)k) (A3)
with

e, (k) = exp ik*t. (A4)

It may readily be verified!? from this last equation that
if t #£ 0, then e,(k) is not a multiplier in 3 in which
case it follows from Eq. (A3) that if fe D\0, ie.,
if Ffe3\0, then u,f ¢ D. Thus, by Eq. (A2),

u(DN\0) < S\D, V150 (AS)

We denote by k, the Hamiltonian operator, in
£., for a single free particle of the same species,
confined to A,, with periodic boundary conditions,
and we define u{" = exp (ih,t). Thus, defining K, as
the set {k} for which e¥*= satisfies the periodicity
conditions for A, and denoting the characteristic
function on A, by y,, we have

"0 = 73) 3 70 exp lik - x + k)
Vfiet,. (A6)

It follows easily from Eqs. (A2) and (A6) that, since
F@D) < 8§, then

(s,£) —limul"f = u,f, VfeD.

n—=+ow

Hence, since D is a dense subset of £, in the strong
f£-topology, it follows that

(s,2) =limu{"f—>u,f, Vfet,.

In order to formulate the ideal Bose gas model, we

construct a CCR representation of £ in a Fock space
Jr. Thus, in a usual way, we construct ¥y so that:

(A7)
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(i) For each f e £, 3 operators p(f) and yp*(f) =
(w(f))* in Xy such that

lw(f), v(@L =0, () v»*@L =&/,

Yfgel; (AS)
(ii) ¥ contains a vector Q such that

p()Qr=0, Vfef;
(iii) if s is the algebra of all polynomials in
{w*(f) | feL}, then £Qp is dense in Xp.
It is useful to define self-adjoint operators F(f)
and G(f) in X by the formulas

F(f) = »(f) + v*(f), G(f) = ilp(f) — »*(N)],
Vel (A9)

The algebra®® U is then constructed in terms of these
operators by defining W, to be the W*-algebra
generated by

{exp [iF(f)], exp iG(/)] | f€ €, suppfe A}
and then defining U to be the norm closure of

A, = Y Ua.
AeL

Let H, and N, be the operators in J 5 correspond-
ing to the Hamiltonian and particle number for an
ideal Bose gas, confined to A, subject to the pre-
scribed boundary conditions. Then, in a usual way,
the evolution operator U™, generated by (H,, — uN,),
may be defined in terms of the single-particle operator
u{™ by the formulas

UM Qp = Qp, UMp(f)UM)™ = ple ™ u™f),

VieR, fet,. (Al0)
Hence, by Eqgs. (1.3), (A9), and (A10),
7" exp [iF(f)] = exp [iF(e”™*u;"f)],
ViteR, fetf,, (All)

and
7 exp [iG(f)] = exp [iG(e™u!™f)];
thus, by Egs. (A7) and (All),

(s, ) lim ;™ exp [iF(f)] = exp [iF(e”"'u,f)],

VteR, fet,, (A12)
and

lim 7™ exp [iG(f)] = exp [iG(e~*'u,f)].

On applying the techniques of the Appendix of AW
to the model and noting that D is a dense subset of
£, ., in the strong £-topology, it follows readily from
Eqgs. (A2), (A6), and (A11) that conditions (I1I) and
(IV) are satisfied when restricted to 4; and 4; in the
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set {exp [iF(f)], exp [iG(f)] | f € £}. Hence, it follows
from the definition of U; that (III) and (IV) are
satisfied absolutely.

In order to show that the model violates condition
(I1), it suffices to show that the following statement
is invalid:

(" exp [iF(f)] is norm convergent as n — 0,
VfeDand fixed te R. (Al3)

Thus, we note that, in view of Eq. (A12), the state-
ment (A13) implies that, for all fe D,

7™ exp [iF(f)] — exp [iF(e™*'u,f)]| — O
as n— oo,
i.e., by Egs. (A8) and (A9),

lexp [iF(e ™ (u,f — ug™fN] — Il -0 as n— oo,
VfeD., (Ald)

Further, as is well known, it follows from the defini-
tion of F that, if g is a nonnull element of £, then
F(g) is aa unbounded, self-adjoint operator with
continuous spectrum; thus,

lexp [iF(g)] — IIl =2 unless gl =0.

Hence, Eq. (A14) implies that if fe D, theng Ne Z,,
such that |ul®f — u,f|l =0, YV n> N. This result
contradicts Eqs. (A6) and (A7), since they imply
that u{"fef; and u,fe S\ D if fe D\Oand 7 # 0.
This contradiction suffices to establish that the
model violates (1I).

APPENDIX B

In this appendix we shall show that the BCS model
violates condition (II) and that, in the strong coupling
case at least, it satisfies (ITI) and (IV). Here we shall
make extensive use of results obtained by Thirring
and Wehrl (TW),4 and by Thirring 13

In order to show that the BCS model violates (II),
we note that the article of TW contains results which
may be summarized as follows. There exists a set of
representations, which may be designated by an index
set § = {a}, of the C*-algebra U, such that:

(i) For each o € §, 3 a unique faithful representa-
tion 7, of % in a Hilbert space J,;

(ii) for each w € §, 3 a 1-parameter group {77} of
automorphisms of 2, such that 7¥ varies with « (the
group {r%} is implemented in J by a unitary group,
whose generator is the x-dependent Bogoliubov-
Haag Hamiltonian);

(iii) Constructing {A,} and {7{"} as in Sec. 1 of

D. A. DUBIN AND G. L. SEWELL

this paper,
(s, 1) lim m(r{" 4) = 7,(r%4), YV AeU,.

n*w

(B1)

Suppose now that condition (II) were fulfilled. Then,
in view of (i) and (ii), this would mean that, for
A ey, WA converges normwise to 774 as n— o0,
for each « € S. This implies that 7¢ is independent of «,
in contradiction with (ii). Thus we conclude that the
model violates (II).

As regards conditions (IIT) and (IV), it was shown
by Thirring!® that the model satisfies (II1) in the strong
coupling case. Further, Thirring’s results imply that
any Gibbs state ¢ may be expressed as a direct integral

4= f "d04,, (B2)

where the index 6 € S and where the GNS space and
representation (¥,, m,) corresponding to ¢, thus
satisfy the above properties (i)-(iii). Further, it was
shown by Thirring that

lim ¢ (A1) - - - A7 (%))
= L d08y((17,4y) - - - (rhAD), (B3)

where (" is defined as in Sec. 1. It follows readily
from Eqs. (B1)-(B3) that the model satisfies (IV).
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A certain element Z of the identity component of the conformal group together with the Poincaré
subgroup generate the whole conformal group. In order to prove the conformal invariance of an S-matrix,
only the mvariance under Z has to be checked, once relativistic invariance has been established. The
explicit form of Z for certain physically important representations of the different covering groups of the
conformal group will be derived. The transformation Z turns outto be an integral transformation.

1. INTRODUCTION

The explicit form of the different irreducible
unitary representations of the proper orthochronous
Poincaré group and its universal covering group in
momentum space is well known.! These unitary
transformations have the property that an “improper
eigenstate” of the 4-momentum is transformed into
an improper eigenstate of the same kind. However, we
are faced with a completely new situation if we
generalize the Poincaré group to the conformal group.
The action of the identity component (subgroup
whose elements can be continuously connected with
the identity) of the conformal group S0,(4, 2)/C, and
its physically important covering groups SOy(4, 2) and
SUy(2, 2) is, in general, an integral transformation of
the square-integrable functions in momentum space.
An improper eigenstate of the 4-momentum is
smeared out into a superposition of eigenstates if
transformed by a special conformal transformation.

We shall give the structure of these integral trans-
formations. The reason for the appearance of integral
transformations lies in the fact that the momentum
space is no longer an integral over different homo-
geneous spaces of the conformal group with respect
to certain subgroups, which is true for the Poincaré
group. More physically expressed, plane waves in
Minkowski space, for example, are transformed into
certain superpositions of ‘“‘spherical” waves under a
special conformal transformation.

2. AN IMPORTANT DISCRETE SUBGROUP
OF THE CONFORMAL GROUP

In order to derive that, for example, an S-matrix
theory is invariant under the identity component of
the spin-covering group of the conformal group, it is
sufficient to show that it is invariant under the identity
component of the universal covering group of the
Poincaré group® and one further discrete transform-
ation Z, as these transformations generate the whole
group. In Minkowski space (metric +++4—) Z is

given by
Yi= =y’ yi= +yy".
[Expressed in homogeneous coordinates,
Xp, p=1,2,-:+,6; (x)#0;
(x) = (x), 1> 0;

2 2 2 2 2 2 .
X1+ x3+ x5 — x5+ x5 — x5 = 0;

X
. ’ ,u=1921354a

y =
* X5 + Xg

Z is represented by a rotation in the x, — x, plane by
an angle 7.] The inner automorphism induced by
Z = ¢#47PK0 in the Lie algebra of the conformal

group
My, M) = i(g,,Myy — 846M,,
= 8wMus + 8sM,,),
M,,, P,] = i(g,,P, — g,P), [P,,P,]=0,
[D,M,]=0, [D,P,]=iP,,
[D,K,} = —iK,,
My, K,} = i(g,,K, — g,,K,),
K, K] =0, [P,,K,] = ~2i(g,,D — M,,)
has the following form:
My—>My, My—>—M,,
D——-D, K,—P,,

P;,—~K;, P,—~ —K,,
Ky——P,, i,k=12,3,

From this inner automorphism one can see that the
kernel z(p, q) of the integral operator Z in momentum
space is an improper eigenvector of the operator X,
with the eigenvalue k, = g,,.9,» (P, represented by
Py) In the following we shall deal with two series of
unitary irreducible representations of the group
S0,(4, 2) and SU,(2, 2) which are of special physical
interest. Thus, Z is an unitary operator Z+Z =1,
which has the property ZZ = +1, depending whether
we are dealing with representations which belong to
integer or half-integer spin. A special conformal

2999
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transformation, which is represented in Minkowski
space, for example, by
yr — Yu — buy2
1 —2by + bH?’
induces on the square-integrable functions u in
momentum space the transformation
p = ZH(e?ulul)Zy.

In the following we shall give the mathematical
results concerning the transformation Z. Physical
consequences will be published later.
3. DISCRETE DEGENERATE REPRESENTATION
OF 5044, 2)

The reduction of the most degenerate unitary
representations of the principal series of SOy(4, 2)
with respect to the Poincaré group has been dealt with.?
The representation of the Lie algebra for the physically
interesting discrete series is given by

Muv = i_l(gvv'puav’ - guu’pvau'),
P,=p,, D=i(pd,+2),
Ku = pu(gpp’apap’ + v2/p2) - 2gu;t’(ppap + 2)au'a
3,,=—Q—, U,v,p=121734
op,
in the Hilbert space of square-integrable functions

Lw*(p)w(p)d‘p < .
Here
A={p,:p,>0,p*<0;0rp <0, p*<0;
forv=0,1,2,---},
where v = 0 belongs already to the continuous series.
These representations contain only massive particles

with spin 0. The kernel of the integral operator Z is
given by

1 0
2p, q) = — — (J,{[a + (a® — b}
47 Oa
x J{la — (@* — b3},
a = pg; + pds, b* = pg’,
P=pl—pi<0, ¢*=4q'—qi<0,
p49 q4>0 or P4,q4<0.

The expression given in Ref. 4 as eigensolution of the
K, (for the special case v = 1) does not satisfy the
cigenvalue equations.

To prove the relation

fZ(q’, pz(p, 9)d'p = 8*(q' — q),

one introduces the variables p, & |p| and uses the
completeness relation for Bessel functions.
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4. THE EXCEPTIONAL DISCRETE
REPRESENTATIONS OF SU(2, 2)

The reduction of the exceptional degenerate
discrete series of unitary representations® of SU,(2, 2)
with respect to the Poincaré group®? shows that the
irreducible representations stay irreducible and con-
tain just representations of the Poincaré group,
which belong to mass 0 and discrete helicity 4. The
generators, which are not difficult to calculate,® are
given by

i + 0
My, = i (p0y — pid)) + Ay Py T 9P ,
+ Ps
] D2
My = —ipd; — A ,
P+ D
= —i D1
My = —ipd, + 4 ,
P+ ps
My, = —ipd,, P,=p;,, P,=p,

D= i(pkak + 1),

Ky = pV? — 2p,d, + 1), — m( Pr_ g5 _ 62),
D+ ps
Ko = pV% — 2p,d, + 1)3, — m(a1 _ P aa),
p+ ps

K, = PaV2 — 2(py0; + 1)0,
2iA
P+ ps
(p10; — P20, + i),

(P02 — p20; + id),
2il
p+ps

ia k = 1’ 2, 3’ p= +(pkpk)%7 V2 = akak'
If we replace M,;, P,, and K, by —M,;, —P,, and
—K,, respectively, we get the representations which

belong to negative energy. The Hilbert space is
defined over the square-integrable functions

Ky = pV® +

f »*(p)y(p) ? < oo,

The number A =0, +4, 41, - * - represents the hel-
icity. The kernel of the integral transformation Z is
given by

z(p, 9)
_* ((p + po)(g + g3) + (P — ips)(gs + iqz))‘
47 \(p + ps)(q + g5) + (p1 + ip)(g: — iqs)
x Jo{[2(0 + pig1*}.
The eigenfunctions of K, for A = 0 have been given in

Ref. 9. [They are not the kernel of a transformation of
SU2,2).]
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To prove the relations
* ! dﬂp 3 ’
fz (p,q)Z(p,q)7= q9°(q — ),

3
f 24, P)2(pr @) d—pﬂ = (=1)¥g8%q — "),

one uses Graf’s addition theorem, introduces the
variables p &+ ps, and applies the completeness
relation for Bessel functions.
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Two-particle angular momentum states are constructed which are localized with respect to the magni-
tude of the relative position in the rest system and which have arbitrary 3-momentum dependence. The
associated relative position operator is constructed, and a quantum-mechanical analog of the classical
impact parameter is identified. Two-particle angular momentum states are constructed, which are also
localized with respect to the “mean-position’ of the 2-particle system, and the associated ‘““mean-posi-
tion’ operator is seen to be a generalization of the 1-particle Newton-Wigner position operator.

1, INTRODUCTION

In the analysis of 2-particle scattering processes,
one frequently employs a potential function to
represent the basic interaction mechanism. Based on
macroscopic considerations, it is apparent that such
a potential should in some way depend upon the
relative displacement of the two particles. Relativis-
tically speaking, however, it is not clear how the
parametrization of such a potential by a relative
displacement may be effected since different inertial
observers will not, in general, agree on what is meant
by “relative position.” Intimately related to this
question is the more formal problem of the con-
struction of a covariant relative-position representation
of the 2-particle Hilbert space in question.

Several nonequivalent 1-particle position repre-
sentations have been investigated by Pryce,! Moller,?
and Newton and Wigner,® and their manifestly
covariant generalizations have been given by Fleming.
Since it is based on invariance principles, the Newton-
Wigner representation seems to offer the most
promise for generalization to the 2-particle case. The
natural generalization of the Newton-Wigner for-
malism to the case of 2-particle states which are
localized only with respect to the rest system relative

position is suggested by the states
1Pe) = @y [@gldmen b 1Py, (1.1

where P = (M, 0) and g are respectively the total and
relative momenta in the rest system and w; = (m? +
qz)i, i = 1, 2. The momentum states | Pq) are taken to
have the Lorentz-invariant normalization, given in the
rest system by

(Pg' lp‘l> = 40,0,0%(q" — @), (1.2)
the over-all momentum Dirac distribution having been
factored out. Due to the non-Lorentz covariance of the
Newton-Wigner localization criterion,® it is evident
that the states of Eq. (I.1) do not transform into
corresponding localized states of arbitrary over-all
momentum. One notes, however, that the magnitude
of the rest system relative momentum is a Lorentz
invariant, given by

g = QMY Y{IM? — (m; + m P} [M? — (m; — mpPf}L.
(L.3)

Consequently, states localized only with respect to the
magnitude of the rest-system relative position may
admit a direct generalization to states of arbitrary
momentum.
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To prove the relations
* ! dﬂp 3 ’
fz (p,q)Z(p,q)7= q9°(q — ),

3
f 24, P)2(pr @) d—pﬂ = (=1)¥g8%q — "),

one uses Graf’s addition theorem, introduces the
variables p &+ ps, and applies the completeness
relation for Bessel functions.
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In the analysis of 2-particle scattering processes,
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represent the basic interaction mechanism. Based on
macroscopic considerations, it is apparent that such
a potential should in some way depend upon the
relative displacement of the two particles. Relativis-
tically speaking, however, it is not clear how the
parametrization of such a potential by a relative
displacement may be effected since different inertial
observers will not, in general, agree on what is meant
by “relative position.” Intimately related to this
question is the more formal problem of the con-
struction of a covariant relative-position representation
of the 2-particle Hilbert space in question.

Several nonequivalent 1-particle position repre-
sentations have been investigated by Pryce,! Moller,?
and Newton and Wigner,® and their manifestly
covariant generalizations have been given by Fleming.
Since it is based on invariance principles, the Newton-
Wigner representation seems to offer the most
promise for generalization to the 2-particle case. The
natural generalization of the Newton-Wigner for-
malism to the case of 2-particle states which are
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position is suggested by the states
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where P = (M, 0) and g are respectively the total and
relative momenta in the rest system and w; = (m? +
qz)i, i = 1, 2. The momentum states | Pq) are taken to
have the Lorentz-invariant normalization, given in the
rest system by

(Pg' lp‘l> = 40,0,0%(q" — @), (1.2)
the over-all momentum Dirac distribution having been
factored out. Due to the non-Lorentz covariance of the
Newton-Wigner localization criterion,® it is evident
that the states of Eq. (I.1) do not transform into
corresponding localized states of arbitrary over-all
momentum. One notes, however, that the magnitude
of the rest system relative momentum is a Lorentz
invariant, given by

g = QMY Y{IM? — (m; + m P} [M? — (m; — mpPf}L.
(L.3)

Consequently, states localized only with respect to the
magnitude of the rest-system relative position may
admit a direct generalization to states of arbitrary
momentum.
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In this paper such a relative-position representation
will be developed. In view of the noncovariance of the
localization criterion, it will be necessary to first
construct a displacement-dependent momentum-space
basis in terms of which the relative position states of
arbitrary momentum may be defined. Toward this end,
Sec. 2 will consist of a brief review of the canonical
formalism of Foldy® with regard to the construction of
l-particle canonical states. In Sec. 3, 2-particle
canonical states will be constructed by first performing
arelative displacement onthe standard canonical states
of Macfarlane® and by then projecting out those states
of sharp orbital angular momentum. Such states are
then used in Sec. 4 as a basis for the construction of
angular momentum states of arbitrary P = p, + p,
which are localized with respect to the magnitude of
the rest-system relative displacement. The cor-
responding “relative-position” operator will be con-
structed, and an “impact parameter” operator identi-
fied as the quantum-mechanical generalization of the
classical impact parameter. In Sec. 5, 2-particle
angular momentum states localized with respect to
the over-all “mean position” will be constructed, and
the corresponding “mean position™ operator seen to
be the natural extension of the Newton-Wigner
position operator® to a 2-particle theory.

In this work, only the cases for which m; > 0 and
my > 0 will be considered. As usual, units will be
chosen such that ¢ = 4 = 1.

2. THE CANONICAL FORMALISM

The canonical formalism which was first deveioped
by Foldy® in 1956 is a prime example of the ap-
plication of group-theoretical techniques to the formal
kinematics of noninteracting particles. As used in this
paper, the term “particle” will be synonomous with
“elementary system,” defined by Newton and Wigner®
to be a system described completely by states which
transform within a given irreducibie representation of
the Poincaré group. It will be recalled that the
Poincaré group is that group of transformations of the
form (/, a) which, when acting on vectors x* in
4-dimensional Minkowski space, yield

(I,a):x"—>x""=I*x"+ a*, 2.1)
where

PG = 8, (2.2)

The quantum-mechanical generators of infinitesimal
homogeneous transformations of the form (d/, 0) are
the well-known angular momentum and boost genera-
tors J? and N, i = 1, 2, 3, respectively. On the other
hand, the generators of infinitesimal translations (1,
da) are the 4-momentum operators P#, 4 =0, 1, 2, 3.
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The commutation rulessatisfied by these generators are
[P, J] =0, [P°, NT] = iP?,
[P?, N7} = i0“P?, [N?, N'] = —ie'ikJk,
[Ji, A7) = i€’k 4F,

where A = P, J, or N.

Consistent with the above commutation rules, the
rest states |p s u) of a particle with mass m and spin s
may be defined to be eigenstates of P, J2, and J, with
respective eigenvalues § = (m, 0), s(s + 1), and p.
Such states are seen to transform under a rotation
r(a 8 ), with Euler angles «, #, and y and correspond-
ing operator

Rlr(x )] =exp (—iaJ)exp(—ifJ)exp(—iyJ),
2.4)

2.3)

by the transformation
Ripsu) =3 DR 1fsu),
]

where D3(R) is the s(s + 1)-dimensional irreducible
representation matrix for the rotation R, given by
Rose? as

D;(R) = exp (—ipw)d,,(B) exp (—ivy). (2.6)

The canonical states for general momenta p are then
defined by

(2.5)

psue=L(p)|psp). 2.7

Here, the Lorentz transformation without rotation /(p)
is defined by McKerrell® as

= 1"(p)p",

I(p)’ = p°lm, 1(p)s = U(p)'s = p'Im, (2.8)
ip)'; = 6" + p'p’lm(m + p°)
with the corresponding operator
L(p) = exp (—ilp - N), @9

p being a unit vector in the p direction and { defined

by?

p = (mcosh {, msinh {(sin 0 cos ¢, sin 0 sin ¢, cos 8)).
(2.10)

From Eq. (2.5) and the fact that, for an arbitrary
Lorentz transformation /, with operator L, the operator

R(L,p) = LU p)™ L L(p) 2.11)

represents a rotation, the states of Eq. (2.7) transform
in the canonical manner

Lipswe =2 Dy IR, p)lipsp.. (212)

u
Furthermore, the canonical states of Eq. (2.7) satisfy
P¥lpsu)e = p*1p s pe- (2.13)
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3. TWO-PARTICLE ANGULAR
MOMENTUM STATES

In a recent discussion of 1-particle localized states by
the present author,® a set of intermediate states is
implicitly constructed from the general canonical
states |p 1), by defining for each translation #(x), with
operator T(x), the states

lp A5 X)e = T(X) |p A)

=exp (ip-x)|p ). (3.1
The states of Eq. (3.1) are elements of the rays in
Hilbert space which have as standard representatives
the states |p 1), and as such are also canonical states,
each of which is specified by a point in the parameter
space of the 3-dimensional translation group. In
order to insure that the interpretation of the x’s as the
points of translation space is preserved in the con-
struction of localized states, so that such states may
indeed be taken as a basis for a “position” represen-
tation, the states localized at x are defined as a
superposition of the states of Eq. (3.1), with the x
dependence contained entirely in said basis states.
The Newton-Wigner localization criterion® requires
that localized states defined by

Ix) = f P (p) [ph; %), (3.2)
be normalized, within a constant factor, to
XA | x2y = 8;.,0%(x" — x). (3.3)

If the canonical states are taken to have the non-
relativistic normalization

(P X | A X
= 0,,0%p" — prexp [—ip- (x' — %)), (3.4
it then follows that ¥*(p) is a constant, and the
corresponding localized states are the 3-dimensional
Fourier transforms of the standard ray representatives
of the canonical states. If, on the other hand, the
canonical states are chosen to have the Lorentz-in-
variant normalization
P x| pAix)e = 6,80, p) exp [—ip - (x' — x)],
(3.5)

where 8(p', p) = 20(p)83(p’ — p) with w(p) = (p? +
m2)%, the localized states are seen to be given by

3
ixi) = (2m)t f LP 2oy} |pi; %)
2w

= 2my f %f e} exp (ip - %) [phe,  (3.6)

a “modified” Fourier transform of the standard
canonical states [pA),..
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However, in the case of 2-particle states localized
with respect to the magnitude of the rest system
relative displacement, it is not so apparent how the
integral transformation corresponding to that of
Eq. (3.6) is effected so as to result in a meaningful
interpretation of relative position. The problem of
finding the *“suitable” integral transformation which
aliows for the interpretation of a position space as the
parameter space of a specified translation group may
be partially resolved by first finding the ray repre-
sentatives of the canonical states which are related to
the standard canonical states by the appropriate
translation. In the 1-particle case the suitable basis is
given by Eq. (3.1). The remainder of this section will
hence be devoted to the construction of possible sets of
canonical states which “carry” the displacement
dependence.

Starting with the direct-product state

lﬁV{x; [7212> = lﬁ1/11>c & | Pala)e (3.7)

for particles of mass m; and m, and spin s; and s,,
respectively, and momenta p; = —p, = § = (0,0, ¢),
we may construct rest states of over-all spin s as the
Clebsch~Gordan series

|Psiy = lz C(51595 | MAoh) 1Prdss Pode),  (3.8)
where P = p, + p, = (M, 0) and M = (m? + ¢*)t +

(m2 + g®)}. Two-particle angular momentum states
may now be constructed by applying to the states of
Eq. (3.8) the Wigner projection operator'® for orbital
angular momentum / and z component m and defining
the states

| Plmsiy = f dQDH(R)RLr) |Pshy.  (3.9)
Here r = r(f0) is a rotation with Euler angles ¢, 0,
and 0, with corresponding operator R%(r) which acts
only in momentum space and volume element
dQ = dpd(cos §).

In his construction of 2-particle canonical states,
McKerrell® has defined the total angular momentum
states in the rest system by

IPO([M_I]IS>C %
= (4q )%(21 = 1) 3 C(sj | mio) |Pimst),  (3.10)

which are seen to satisfy®
R | Pa[Mjls), Z D} (R) |Pa'[Mjlls), (3.11)

for arbitrary rotations r, with operator R = RERS =
RSREZ which acts in both momentum and spin spaces.
Moreover, the states of Eq. (3.10) are noted by
McKerrell® to be eigenstates of P, J,, J2, L?, and S2.
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McKerrell® then obtains the states with general total
momentum P by applying the operator L(P) of Eq.
(2.9) to the rest states of Eq. (3.10):

P Mjls), = L(P) |Pa[Mjlls).  (3.12)
These states are then shown to transform under an

arbitrary Lorentz transformation L in the canonical
manner:

L {Pa[Mjlls), = 3 D [R(L, P)] |{Px'[Mj}ls),,
: (3.13)

where the transformation R(L,P) is the natural
direct-product generalization of the transformation of
Eq. (2.11).

An alternative approach to the construction of 2-
particle canonical states is to first apply to the rest
states of Eq. (3.9) for which the orbital angular mo-
mentum is zero a “relative displacement” of amount
p=(0,0,p). A “relative displacement” may be
defined in general as a transformation #(x) on the
coordinate pair (X;, X,) with action

f(x):(xy, Xo) = (%3 + 3%, %X, — $x).  (3.14)

The quantum-mechanical operator corresponding to
f(x) is taken to be

79 = TOANTO (R = TOEITE(— ),

(3.15)

where T and T'® are the respective 1-particle

translation operators. Due to the Abelian nature of

the translation group, the set of #(x) for all x formsa

representation of the translation group. Such a

representation is not, however, a subgroup of the

direct-product representation of the Poincaré group

defined by
AR g) = AW, )A®(, @),  (3.16)

for which
(I, a):xt — I* x" 4+ a*. 3.17)
The effect of the relative translation 7(p) on the
state |P00sA) is

7(p) |P00sAy = f dQT(BIRE() | Psh)

= f dQ exp (i - ORX(r) | Psh),

(3.18)
where the property

RVD(ATE)RD (Y = T(rx) 3.19)
has been used. Here, R¥*?(r) = R (r)R?(r) and

q = r(g0)d = g(sin 0 cos ¢, sin 6 sin ¢, cos 6).
(3.20)
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The rest state of orbital angular momentum /, z
component m, and relative displacement p is then
given by the effect of the Wigner projection operator on
the states of Eq. (3.18):

| BlmsA; p)
= f dQD™(R)RY(r) - T4(p) | P00sA)

=fdQ dQ'D¥(R) exp (ip - )RL(rr") |Psh). (3.21)

It then follows that upon making the variable change
r" = rr’, using the plane-wave expansion

exp (if @) = 3 ("2 + DJr(gp) DG, (3.22)
and using the orthogonality of the rotation matrices

4
+1

one may perform the integral over d€)’ in Eq. (3.21),
yielding

Blmsi; p) = 4n(i)(ap) f QD (R)RX(r) | Ps)

= 4n(i)j(qap) |Plmsh), (3.24)
by Eq. (3.9). Corresponding to Eq. (3.10), the canon-

ical states of relative displacement p may then be
defined by

|\ Pl Mjlls; p)

%
= (%q)*(g-l—-}'—l) > C(lsj I maa) |Plmsd; p)
47 ma

= 4n(i)(qp) | PeMjlls). (3.25)
Moreover, since the relative momentum g is a Poin-
caré invariant quantity, it then follows that the canon-
ical states of general momentum may also be defined
via the transformation L(P) as are McKerrell’s
standard canonical states in Eq. (3.12):

PalMjlls; p) = L(P) {Pa[Mjlis; p)
= 4m(i)}i(gp) |PaM]lis),

Such states are clearly eigenstates of P, J,, J2, L?, and
$% and are proportional to the standard canonical
states except on a set of measure zero, that is, the
set of zeros of the j;,(gp). Furthermore, the states of
Eq. (3.26) have the same Lorentz transformation
properties as the canonical states:

L |Pa[Mjlis; p) = 3, D} [R(L, P)} {IPo’[Mjlis; p)
i (3.27)

for an arbitrary Lorentz transformation L. The
normalization of the states of Eq. (3.26) is seen from

f AODLAMDL) = 2 by ndas (B2)

(3.26)
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McKerrell’s results® [Eq. (4.21)] to be
(P [M'I's"s p' | Pe[Mjlis; p)
= (477)2jl(qp’)jl(qP)aa‘a(sj’ial'las'sa(M, - M)(S(P(, P)
(3.28)
More generally, the relative displacement 7(p) may
be applied to over-all rest states of Eq. (3.9) which
have nonzero orbital angular momentum and,

corresponding to Eq. (3.21), a set of canonical states
defined for each /; > 0 by

|Plm(lymg)sh; p)
= f dQDI(RIRE() - T(8) 1P ly mgs Ay, (3.29)

By following an argument similar to that leading up
to Eq. (3.25), the above equation may be simplified to

|Plm(140)s4; p) = 4(i)'3, 1 (qp) |Plmsh),, (3.30)
where
Fiu@p) = (=) 2 () IC(l1" | 000)%(gp)
L (3.31)
and where only states for which my, = 0 occur. In
paralle] with Eqs. (3.25) and (3.26), the corresponding

states of total angular momentum and general
momentum are then defined by

|Pa[Mjlis; Iy, p) = L(P )[(%Q)é(y—ﬂ)%

4
X > C(lsj | maa)|PIm(1,0)s!; p):l,
mi

(3.32)
which, by using Eqs. (3.10) and (3.12), becomes

[PaMjlis; 1y, p) = 4n(D)'E, , (qp) | Pa[M])ls),.
(3.33)

The ray representatives of the canonical states thus
given by Eq. (3.33) provide for each /, a possible basis
set for the construction of relative position states,
localized with respect to the magnitude p of the
relative displacement in the rest system. Of particular
interest is the set of canonical states given by Eq.
(3.26), which is the specialization of Eq. (3.33) to the
case for which /, = 0. Only for this set is the appear-
ance of orbital angular momentum states with / > 0
due entirely to the initial relative displacement.

4. RELATIVE POSITION STATES

Angular momentum states localized with respect
to the rest-system relative position may now be
constructed by imposing the following requirements:
(a) A complete set of such states be constructed as a
superposition of the states of one of the sets of
canonical states of Eq. (3.33), so that the magnitude
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of the rest-system relative displacement be taken as
the relative position parameter; (b) the only possible
states localized to zero relative position be those states
of zero orbital angular momentum; (c) two states
localized to different relative positions be orthogonal.

Conditions (a) and (b) require that relative position
states with definite total, orbital, and spin angular
momenta be written as a superposition of that set of
Eqgs. (3.33) for which [, = 0, that is, the set of which
all canonical states are generated by the relative
displacement 7(p) in the rest frame. Thus the relative
position states are defined by

Bo(jls) =L°°dq‘w(q) Pu(M)ls; p)

= 4 [ a0V @itap) 1P,
4.1
where P°= (P* 4+ M?! and M= (m? + qz)é +
(m2 + g% The function ¥''(g) may be determined up

to a phase by condition (c), the “localization” criterion
for relative position, which requires that

®'p'(ju)'s' | Pp(ju)ls)
= 0,,,0,/,0,,0,0%(P" — P)p~2(p’ — p). (4.2)
From the normalization of the states of Eq. (3.28)

and the orthogonality property of the spherical Bessel
functions,

L 22 dajap)iap’) = dmp~o( — p), (43)

it follows that, in order for the states defined by Eq.
(4.1) to satisfy Eq. (4.2), the functions ¥"(¢) must be,
up to a phase,

Filg) = (@t gle@E, (44
where E = (M? + P2} is the total energy and e(g) is

the relativistic analog of the classical reduced mass,
defined in the rest system by

@ = (mi+ ) + (m} + gt
and called the invariant “reduced energy.”
The relative position states defined by Eq. (4.1) are

then given in terms of 2-particle standard canonical
states at time ¢ = O by

¢ ¥
IPo(ju)ls) = f dq(fg)fz(qp) Pu(M))ls),, (4.6)

where dj = [g/e(q)] dg = dM is the Lorentz-invariant
volume element, so that the corresponding “wave-
function” distribution is
P u(M))ls | Pp(jm)ls) = (Pp(jr)ls | P'u(Mj)is),
= [g¢/7ERj(gp)5(P’, P).
4.7

(4.5)
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The relative position states of Eq. (4.6) are, like the
canonical states, eigenstates of P, J2, J,, L2, and S?
with corresponding eigenvalues P, j(j+ 1), u,
I(I + 1), and s(s + 1), but are clearly not eigenstates
of the total mass M or energy E = (M? + P2} The
relative position states defined at time ¢ are then given
by the time-translated states

IPo(jp)ls)
= T(t) IPp(jw)ls)

o \b
- f dq(i-)jl(qm exp (—iEf) [PU(M)Is)s. (4.8)
0 wE

As is the case with the Newton-Wigner localized
states,? the relative position states of Eq. (4.6) do not
transform covariantly under Lorentz transformations.
This is seen from the mass dependence of the trans-
formation matrix Di(R(L, P)) given in Eq. (3.13).

By using the orthogonality property of the spherical
Bessel functions [Eq. (4.3)], the standard canonical
states are seen to be related to the relative position
states by

|P u(Mj)l s). = 277-*(qu)*1; p*dpj(qp) [P p(ju)l 5).
(4.9)

The “relative-position” operator for which the
states of Eq. (4.6) are eigenstates is now readily found
by first constructing the operator R? for which

R Pp(ju)ls) = p [Pp(ju)ls)  (4.10)
for the states of Eq. (4.6) with fixed j, u, /, and s. This
implies that the corresponding operator R? which
operates in wavefunction space satisfies, by Egs. (4.6)
and (4.7),

R (P (M)l s | P p(jp)ls)
= p*(P'u(M})ls | P p(ju)l s)
= p'(ae/E)j(ap)B(P', P). (4.11)
Upon noting that, from Bessel’s equation,
Ll I D)jap, 2
dq = dgq q

the operator R? is seen to be

oliap) = (—q

2
R = —(qeE)iq 4 q° 4 geEyt + % .

dq ~ dq q
In terms of derivatives with respect to the total mass
M, it then follows that

(4.13)

R =[R + g2}, (4.14)
where the operator R, is defined by
3 b3
R, = _,-(_‘1.) i(l) (4.15)
€ /] dM\eE
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and satisfies
[Ry, M] = —i(g/e), [Ro,ql= —i. (4.16)

The commutation rules of Eq. (4.16) suggest that
the operator R, may be taken to be the “component”
of the relative position operator R in the direction of
the rest-system relative momentum q. In this case, the

operator
S = (g2t (4.17)

represents the magnitude of the component of the
relative position operator transverse to q, and so may
be interpreted as an “impact parameter” operator in
momentum space. This “impact parameter” operator
corresponds exactly to the magnitude of the classical-
impact-parameter vector s in the rest system, which
satisfies

s'q=0, L=sxgq. (4.18)

5. TWO-PARTICLE LOCALIZED STATES

Two-particle angular momentum states, which are
localized with respect to the parameter space of the
direct-product representation of the translation group,

tXA(X): (X, Xo) = (X, + X, X, + X),  (5.1)

may now be constructed from the relative position
states of Eq. (4.6). The set of localized states is defined
at the origin by

10p(jp)ls), =Jd3P¢Z(P) Pp(iw)ls),  (5.2)

and such states satisfy the Newton-Wigner® postulates
of symmetry, localization, and continuity if the
functions ¢*(P) are chosen such that, if

IXp(jm)is), = TV®(x) [0p(j)ls)y,

= f d*P(P) exp (iP - x) |Pp(jw)ls),

(5.3)
then

LR (US| xp(iis)y

= 6i’]’6u'u6l’las'sp_26(p,._ P)aa(xl - X). (54)
Upon applying this “localization™ criterion to the
states of Eq. (5.2) and using Eq. (4.2), it follows that
the functions ¢* must be constants and up to a phase
chosen to be (27)~ for correct normalization. Hence,
the 2-particle angular momentum states which are
localized with respect to both the overall “mean
position” x and the magnitude of the rest-system
relative position p are given by

IXp()ls), = 2m)E f d*P exp (iP - X) [Pp(ju)ls).
(5.5)
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In terms of the 2-particle canonical states, it follows
from Eq. (4.6) that

3
ixp(jls)y, = (2my? j 0P dq(%) jap)

x exp (iP - x) |Pu(Mj)ls),, (5.6)

where
Pu(M)is | xp(jp)ls)y,
= (q<E[27")ji(ap) exp (P - x). (57)

The 2-particle localized states of Eq. (5.6) are
clearly eigenstates of J2, J,, L2, and S? in addition to
the relative position operator R = (R?)?! of Eq. (4.14).
Furthermore, these states are eigenstates of a “‘mean
position™ operator X*, i = 1, 2, 3, corresponding to
the wavefunction operators for which

X' (Pu(Mj)ls | xp(ju)ls),
= x' (Pu(M))ls | xp(jp)ls),, (5.8)
where, from Eq. (5.7), it follows that
i 1/ 0 P
¥=- _i(a_& * 2E2)'
This position operator is of the same form as the 1-
particle Newton-Wigner position operator in its

canonical representation,® and satisfies the commuta-
tion rules

(5.9)

[, %] =0,

6. SUMMARY AND CONCLUSIONS

In this paper an infinite number of sets of 2-particle
canonical states have been constructed by first
considering the effect of a relative displacement of
rest-system standard canonical states and by then
projecting out of these transformed states their
respective orbital angular momentum components.
Of particular interest was that set of states which were
generated from canonical rest states with zero orbital
angular momentum, for which the resultant orbital
angular momentum was seen to be due entirely to the
initial relative displacement.

By then postulating that a complete set of states
localized to a zero relative position contains only zero
orbital angular momentum components, a set of
states localized with respect to the magnitude of the
rest-system relative position were constructed, as was
the corresponding relative position operator. Lastly,
2-particle angular momentum states were localized
with respect to the “mean position” of the 2-particle
system, and the corresponding position operator was
seen to be similar in form to the 1-particle Newton—
Wigner position operator in its canonical form.

The relative-position states discussed herein are to be
distinguished from the relativistic impact-parameter

[X¢, p?] = —id¥. (5.10)
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states constructed by Chang and Raman.!! In their
case, impact parameter space is taken to be the param-
eter space of the 2-dimensional translation group
which, in the rest system, acts in a plane which is or-
thogonal to the direction of the overall 3-momentum.
The impact parameter states defined by Chang and
Raman® in the rest system are

Ibi) = (2 f d?k (4wt exp (ik, - b) [Py, (6.1)

where k, is the transverse (relative) momentum, « is
the z component of the relative momentum, and the
impact parameter vector b is orthogonal to the
direction of the over-all momentum. Such states may
be thought of as the. transverse projections of the
localized states of Eq. (1.1) in the rest system. In the
particular case for which the P direction is along
the z axis, it follows that

(b | Pp) ~ e"*:d%(p, — b), (6.2)

where p, is the transverse component of the relative
position vector p in the rest system.

On the other hand, the relative position states
given by Eq. (4.6) are, in the rest system, the angular
momentum components of those states of Eq. (1.1)
upon which an integration of the form

§ do d(cos )Y, (0, ¢)

has been performed. Such states are, as in the
case of Fq. (6.2), eigenstates of p = (b + p2)?.
Whereas the relative-position states defined in the rest
system by Eq. (1.1) do not readily admit a covariant
generalization to arbitrary momentum P = p, + p,,
it is believed that the procedure followed in this work
has provided a meaningful relative-position repre-
sentation for systems of arbitrary momentum.

An interesting feature of this development is that a
quantum-mechanical analog of the classical impact
parameter has arisen in a natural way as a consequence
of localization with respect to the magnitude of the
rest-system relative position. As opposed to the
impact parameter interpretation given by Chang and
Raman,!! the impact parameter operator given by Eq.
(4.17) has as its classical limit the magnitude of that
component of the rest-system relative position which
is orthogonal to the relative momentum. Indeed, it
appears that, if one requires that the correspondence
principle be satisfied, it is unlikely that the corre-
sponding impact parameter ‘‘vector” operator S
arises directly via a Newton-Wigner® type of localiza-
tion procedure in the rest system. Accordingly, one
would expect S to be a nonlocal operator, in the
sense that [$¢, $7] # 0.
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self-consistency equations familiar from molecular field methods. We show that the models considered are
not n-asymptotically Abelian in time. We conclude that the characterization of pure thermodynamical
phases as extremal KMS states is the only correct one for these models. We pay special attention (in
particular, in the decomposition of an arbitrary KMS state into its extremal KMS components) to the
fact that the time evolution is not an automorphism of the C*-algebra of the quasilocal observables.

1. INTRODUCTION

The Kubo-Martin-Schwinger (KMS) boundary
condition, first discovered as an analyticity property of
thermal Green’s functions,! was introduced in the
C*-algebraic approach to statistical mechanics by
Haag, Hugenholtz, and Winnink.2 This condition has
proved itself to be such a useful and elegant tool that
many speculations have since appeared about its inter-
pretation in this formalism.3

The aim of the present paper is to confront these
speculations—and, more specifically, the dynamical
characterization of thermodynamical pure phases as
extremal KMS states*—with what actually happens in
some exactly solvable models which exhibit a phase
transition associated with a spontaneous symmetry
breaking.

We consider for this purpose a slightly generalized
version of the Weiss theory of ferromagnetism and
antiferromagnetism, which we define precisely and
treat with the conventional methods of statistical
mechanics in Sec. 2. Everything which could possibly
be said about the didactic value and pitfalls of this
type of naive model has been repeatedly expounded
in the literature®; we shall henceforth not come back
to this and just accept these models as concrete ex-
amples on which one can test more abstract theories.

Since, on the one hand, we want to check, for the

explicit models, whether the thermodynamical pure
phases can be characterized as extremal KMS states
and since, on the other hand, the KMS condition in-
volves in an essential way the time evolution, we first
have to define the time evolution in the limit where
infinite systems are considered. Our Sec. 3 is devoted to
this preliminary question, which we answer in three
successive steps: The first one involves a convergence
assumption which we later prove to hold true for
the KMS states of our models; to avoid circular
reasoning, the second step bypasses this assumption;
the third step is concerned with the particular case of
time-invariant states. The class of potentials for which
these results are obtained contains, in particular, the
case discussed in Sec. 2.

The time evolution obtained in Sec. 3 happens to be
of a slightly more general type than that allowed by
the usual assumptions of the C*-algebraic approach;
specifically, the time evolution in the van der Waals
limit is no longer an automorphism of the C*-algebra
of the quasilocal observables. In Sec. 4 we make the
necessary accommodations to take this fact into ac-
count, and we establish in this context the essential
properties of KMS states as well as their decomposi-
tion into extremal K MS states. A complete characteri-
zation of extremal KMS states is also obtained in this
section in the form of self-consistency equations which
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we then compare to those obtained in Sec. 2, thus
establishing the desired connection between thermo-
dynamical pure phases and extremal KMS states.

Section 5 contains our conclusions and some poss-
ible extensions of our methods. Six short appendices
deal with the more technical computations and proofs
which would otherwise unnecessarily disrupt the main
line of the argumentation.

2. YVARIATIONS ON A THEME BY KAC

In his Brandeis lectures® (see also Refs. 7), Kac
showed that the molecular field method gives the cor-
rect thermodynamical behavior of the Weiss model.
The elegance of his proof is based on the observation
of an elementary property of the exponential function
with square argument. We show in Appendix A that
Kac’s observation can actually be generalized quite
simply to the case where the argument of the ex-
ponential is a positive quadratic form, thus enabling,
by a method paralleling closely that of Kac, treatment
of the case of a periodic Weiss-Ising interaction. We
also compute the higher equilibrium space correla-
tions. These natural generalizations of Kac’s idea
constitute the material of this section and are thus
derived in the most orthodox spirit of traditional
statistical mechanics. All results are obtained, without
approximations, in the thermodynamical limit.

LetN ={0,1, -, N — 1} be a lattice, each point
of which is occupied by a spin o;. The energy of a
configuration {u} is

E(N, {ﬂ}) = —B.EE’;M - Z pivi (N ;0

1, 7N

We assume ,;(N) to be symmetric [v,;(N) = »,,(N)],
real, translation-invariant [v;,, ;. ,(N) = »,(N) with
cyclic boundary conditions] so that »,;(N) = »,_,(N),
and periodic of period p [v,.,(N) = »,(N)]; for sim-
plicity, we write N = pZ, where Z is an integer. To
keep the energy per particle finite in the thermo-
dynamical limit (Z — co), we assume further v, (N) =
f(m/Z. We define P=1{0,1,---,p— 1} and the
sublattice observable M for each jin P as

M;=3 thiimo-
m

We can then write

€, J€

E(N, {u)) = —B %’M,. - ZPMiv”(N)M,-.

We assume finally that the matrix (f;;) of rank p, de-
fined above from the interaction »;;(N), is positive.
Using the lemma of Appendix A, we see that the
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partition function for our system is

Q(B, B, Z) = Y ¢ PEN-U)
{n}

~Treszipnt | [,
x {exp (—/3 > c,.fi,z,-)
x T 2 cosh l:ﬂ(B + 2%&5)]}2

1€P
(where the 4, are the eigenvalues of the matrix f;;). As
the thermodynamical limit (Z — c; p, B, and S
fixed) is approached, the integrand becomes more and
more peaked, and the familiar steepest descent method
gives an asymptotic expansion of the partition func-
tion, the first term of which is proportional to

2277 maxyy, ..., {CXP (—,B.ZE:PQJ};C;)
.7

z
x TT cosh [ﬂ(B +2 Efi,.C,-):“ .
i€P jeP

The position of the stationary points of the integrand
is then obtained in an implicit form, as the self-con-
sistency equations

B, =23 f;tanh [B(B + B))],
jep
where we write

B, =2 Zfiig:i'
jep

These self-consistency equations, considered by
themselves, only determine the stationary points of the
integrand, whereas only the maxima of the integrand
with greatest magnitude contribute to the leading
term of the integral. Due to the transcendental char-
acter of the expression at hand, the selection of these
maxima from among the multiplicity of the solutions
of the self-consistency equations might turn out to be
a somewhat cumbersome task in the general case; we
shall therefore assume that this selection (always
possible in principle when an explicit choice of f;; is
made) is achieved, and we shall use the index set
A(B, §) to label the maxima corresponding to the
largest value of the integrand.

We now notice that the trick used above to compute
the partition function can be used all the same for the
computation of the expectation value of any local
observable A4, in the thermodynamical canonical
equilibrium state. Since these observables are finite
linear combinations of observables of the form Ag =
TT.cq 4., it is sufficient to compute the expectation
value of the latter. For those observables, one finds,
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in the thermodynamical limit,
(App= 2 4o,

2eA(B.B)

where «; corresponds to the relative weight of the
maximum 4, as determined by the steepest descent
method,

<An>1 = 161 <Ai>}.
and '

z eﬁ(B+Bi’}')”A,-(/,t).

p==+1

<A1‘>/1 - ( z eﬂ(B-l-Bi,l)l‘)_l

p=x+1
Consequently, we recognize (B + B, ;) as the
effective magnetic field acting at site i to give

(u:); = tanh [B(B + B; ,)].
Since the B; ; only depend on 2 and on the sublattice
{i + mp}, we write
m; = lim Z7'M,,
Z-x
and then {m;); = (u;); is the magnetization of this
sublattice, characteristic of A € A(B, 8). We then have

B,=2 zfn(mﬁz >
7€l

and we can rewrite the self-consistency equations in the
familiar form of the usual equations of state relating
the applied magnetic field B and the sublattice mag-
netizations {m;);:

{m;), = tanh [ﬂ(B + ZEPﬁxmj)A)].

From this expression we see that the free energy per
site, defined as
—B1(B, f) =Zlim (pZ)7 In Q(B, 2),
can be written as "
=2/
jeP
with
—Bf;=1n2 — §fB,(m;) — In (1 — (my)?),
which is the same for every A € A(B, ).

The relations obtained in this section show that a
natural extension of Kac’s trick® allows us to establish,
in the thermodynamical limit, the exact validity of the
molecular field method for a periodic Weiss potential.
In particular, we can interpret A(B, f) as labeling the
pure thermodynamical phases, the prescribed mixture
of which constitutes the canonical equilibrium state.
In this respect, we might mention that all the pure
thermodynamical phases which are obtained from one
another by translation (B, — B;, ) or, when B = 0, by
flip-flop (B; — — B;) naturally occur in the canonical
equilibrium state with the same weight since the inte-
grand of the partition function is invariant under
these transformations, thus reflecting in the canonical
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equilibrium state the symmetry of the original Hamil-
tonian.

3. TIME EVOLUTION

In the classical treatment presented in Sec. 2, we
could ignore the fact that, at each site j of the lattice,
sits a full spin o; and not only a “‘classical spin”
o7 . This reflects the fact that the time evolution plays
no role in this classical treatment of Ising-like models.
However, in view of the fact that the emphasis in the
present paper is on a dynamical characterization of
pure thermodynamical phases, we should be prepared
to allow for situations where the above simplification
is not allowed any more.

We first consider the time evolution for a finite
system. To define the time evolution in the van der
Waals limit (i.e., infinite volume, infinitely long-range
and infinitely weak interactions), we proceed in three
successive steps. In the first step we consider a partic-
ular case where the van der Waals limit can be carried
out explicitly, leading to a Hamiltonian, the inter-
pretation of which provides a rigorous basis for the
molecular field method; we show, under the assump-
tions of this particular case, the existence of a mean
free field acting at each point of the lattice. This field
is due to the collective action of all the other spins on
the lattice. To free ourselves from the necessity of
assuming the conditions under which this first step can
be carried out, we introduce in a second step a
mathematically legitimate construct (the generalized
mean #,) which properly allows us to define a time
evolution; this construction, however, suffers from
the physical disadvantage of lacking the uniqueness
we would expect from a model as simple as that con-
sidered here. The third step, carried out after the
material of Sec. 4 has been expounded, is contained in
Appendix D, where we prove, using this intermediary
step, that the assumptions of the first step are indeed
justified and that, consequently, the ambiguity intro-
duced in the second step disappears in the final result.
This section ends with a discussion of the time-in-
variant states.

The physical system we consider is therefore an
infinite lattice, each site of which is occupied by a
quantum spin o;. For the sake of simplicity in the
notation, we assume this lattice to be 1 dimensional,
although this restriction can be trivially lifted; let us
henceforth index the sites of our lattice by j in Z,
where Z is the set of all integers. With each site j on the
lattice, we associate the algebra #A(j) of all complex
2 X 2 matrices, i.e.,

3
A)) =S a,ct] g c},
p-
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where ¢° is the identity matrix and ¢/, i = 1, 2, 3, are
the three Pauli matrices. The algebra A(£2) of all local
observables associated with a finite region Q < Z is
then obtained as the set of all finite linear combina-
tions of all finite tensor products of the form ®,.q 4;
with 4; in A(j). A structure of C*-algebra is imposed
on A(Q) by the usual rules of addition, multiplication,
Hermitian conjugation, and norm of finite-rank
matrices. With the canonical embedding

RIRIRA,RIRTI® -,

A(L,) is clearly a sub-C*-algebra of #A(£2,) whenever
Q, is contained in £2,; this property is referred to as
“isotony.” “Locality” is then expressed by

Aj— -

[A(Q)), A(Q,)] =0 whenever £, N Q, = ¢,

which makes sense via the canonical embedding of
£A(Q,) into A(2; U £,). The algebra 4 of all quasilocal
observables of our system is finally defined, via the
canonical embedding defined above, as the completion
with respect to the norm of the union of all A(Q):

= U A(Q).
[¢1aty 4

This last step, referred to as the C*-inductive limit,
has been expounded with great mathematical pre-
cision by Guichardet®; the naive description given
above will, however, already suffice for our purpose.

We next define the time evolution via the following
limiting process. With every finite region Q < Z, we
associate H(2) € A(Q):

H(Q)= ~B> o — > »,(Q)o%?,
e i,7J€Q
where, for the time being, we only assume that the
v;;(Q) are real couplings depending on Q, with

”ia’(Q) = vji(Q)’ v;:(Q) = 0.

Since the Hamiltonian H{{) is bounded, it defines a
time evolution on £, via the formula

o0 tn

Q=3

n=on!

L()",

where the Liouville operator L({2), acting on A, is
defined by

L(Q)[A] = —i[H(RQ), A] for all 4 in 4.

We now observe that the action of «!(£2) on A is
entirely determined by its action on the various 4, €
A(1),since, first, «*(Q) is an automorphism of 4 and,
second, # is generated, as a C*-algebra, by the 4,.
On those particular elements, «*(£2) takes the following
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simple form (for / € Q):

HQA] =3 %L&Q)”[Az],

n=0

where the local Liouville operator L,(£2), acting on
#, is defined by

L,(Q)[A] = —i[Hz(Q), A],

in which enters the local Hamiltonian

for all 4 in £,

H(Q) = — (B +23 v,,.(sz)a;) o
JEQ
we use in the sequel the abbreviation
B(Q) = 2% v, ()05

We now eliminate the volume dependence (2 in the
time evolution by passing to the limit Q — oo; to do
this, we need some further restrictions, the strength of
which will be discussed later.

We first assume that the couplings »;,(€2) are such
that for each i in Z there exists a positive constant c;
such that

%I”M(QH < i

for all finite subsets Q of Z containing i; we further
assume that

lim»,,(2) = 0, for all fixed i, j e Z.

Q-+
These assumptions (which we will refer to, respectively,
as the “stability condition” and the “van der Waals
condition’) are rather benign in the context of mean
free field methods; the first of these assumptions
implies that, for every i in Z, |B,(Q)| < ¢; for all
finite Q containing i, with ¢, independent of Q.

We now restrict our attention to the study of those
particular representations 7 of # for which B, ,(Q) =
(B,(€2)) converges strongly as £ goes to infinity; this
restriction means that we assume the existence of a
bounded linear operator B, , acting on the representa-
tion space J,_, such that for every ¢ > 0 and y in ¥,
there exists a finite integer N(e, y) such that

1(B12() — Byl < €

for every finite interval Q = (/ — N,/ + N) with
N > N(e, v).

The fact that B, , is obtained as the strong limit of
B, .(Q) in w(4) implies first of all that B, , belongs to
m(#4)"; furthermore, together with the “van der Waals
condition,” this implies that B, , commutes with all
w(A4,) (k€ Z) and hence belongs to w(#). Hence,
B, . belongs to the center m(4£)" N w(4) of m(#£)".
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Under these conditions we prove in Appendix B
that, for every local quantity 4 € A(L2,) with €, arbi-
trary finite subset of Z and every fixed time ¢,
m(at(Q)[A4]) (with Q 2 ) converges in the strong
operator topology, as Q — oo, to an element «! [7(A4)]
of w(#)". We further show that ! preserves the norm
of 7(A4) and can hence be extended to #(#£); finally, we
show that, for every finite subset Q < Z, the mapping
! is unitarily implemented from an effective Hamil-
tonian

Hg ,(0) = —EZQ(B + B,;)n(o?)

[belonging to w(+)"] which therefore generates the
actual time evolution (in the van der Waals limit) of
any local quantity 4 € £(£2). Whereas

Ug,, = exp [—iHq, (0)t]

clearly belongs to m(#A)", the global GNS U!, con-
structed in Appendix C, does not belong to m(#£)";
this is in agreement with the results of Haag, Hugen-
holtz,and Winnink (Ref. 2; see especially p. 233).

For mathematical convenience we now want to
generalize the preceding discussion to the cases where
B, .(Q) does not necessarily converge strongly as
Q — oo. To achieve this, we consider the C*-algebra
C(Z) of all bounded functions on Z, equipped with the
sup-norm; let C,(Z) be the linear manifold of all
Jf € C(Z) for which

w[f]=1im23 »,(Q)f())

Q- jeQR
Q31

exists; », is then clearly a positive bounded linear
functional on C,(Z). By the Hahn-Banach theorem,
we can then extend it to a positive bounded linear
functional #; on C(Z). This extension is evidently not
unique, but we shall see that this nonuniqueness
actually neither hampers our discussion nor alters the
generality of our final results; indeed, we shall prove
the KMS states have a time evolution which is actually
determined by », and therefore unique, since all
quantities entering its definition belong to C,(Z). For
every representation 7 of £ and every fixed observ-
able 4 € B(C?), we define #, ,[4,] in w(4£)" N w(4) by

(@, 7, ,[4,1¥) = 7,[(D, m(4,)¥], forall®, ¥ el,.

In particular, we then write B; , = 7, ,[0], and we
notice that this new B, , coincides with the operator
designated previously by this symbol whenever B, ,(£2)
converges strongly as Q goes to infinity.

We then generalize our previous local Hamiltonian
Hg, (o) by replacing in it our previous B, ; by their
generalized versions, just defined. As before, these
Hamiltonians generate a time evolution for all local
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observables A4 belonging to the corresponding m(£(L)).
We denote by «f this evolution, which again maps
each m(#£(L)) into m(#)".

The mathematical structure of the time evolution, as
developed up to this point, differs in several ways
from that postulated in the usual algebraic approach.
First, the time evolution «! is defined for each repre-
sentation separately. Second, «! is locally unitarily
implemented. Third, whereas the domain of «f is
restricted to the (quasi-) local observables, its range
cannot be shown, in general, to be restricted to m(+£)
but only to w(+)", and it is therefore not an automor-
phism of 4. We shall see later that these differences
cannot be due to a faulty or awkward approach to the
thermodynamical limit, but are indeed strongly linked
to the existence, in the van der Waals limit, of several
different thermodynamical phases.

We now want to show that, in the case of time-
invariant states, the time evolution can be extended to
an automorphism of =(#)".

Given any state ¢ on 4, we denote by 7 the GNS
representation associated to it and by ¢ the canonical
extension of ¢ from # to m(A)" defined by

(#; 4) = (D, AD), for all 4 in m(4)",

where @ is the cyclic vector in X, corresponding to ¢.
We now say that a state ¢ on A is time invariant
whenever (zZ; at[m(A)]) is a constant in ¢ for every
(quasi-) local observable A in 4. Although this con-
dition is weaker than the usual one, we can still prove
(see Appendix C) that there then exists a unitary
operator U! on J, [not to:be confused with the
various U{,, defined by the local Hamiltonians
Hg,(0)]: (i) U!® = @ and (ii) & [4] = UI4U, for
all 4 in m(#)", is an extension of «! to an automor-
phism of the von Neumann algebra =(+£)".

4. KMS STATES

We now want to check whether the dynamical
characterization of pure thermodynamical phases
suggested in a previous paper’ makes sense in the
specific model studied in Sec. 2 by means of traditional
methods.

We recall that, in order to get a consistent theory of
symmetry breaking (including crystallization), we
were led* to assume that pure thermodynamical phases
are to be identified, in the C*-algebraic approach to
statistical mechanics, as extremal KMS states. In view
of the character of the time evolution, as discussed in
the previous section, we rephrase the fundamental
Kubo-Martin—-Schwinger boundary condition familiar
in the treatment of thermal Green’s functions as
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follows: A state ¢ on the algebra £ of quasilocal
observables is said to be KMS for the natural tempera-
ture 8 = (1/kT) if the two-time correlation functions
associated with it satisfy the condition

f df,()(; (Ot [m(A)])
- f dify(t)(; o [r(A)]7(C)  (4.1)

for all finite subsets Q and Q" of Z, all 4 and C in
A(Q) and A(Q'"), respectively, and all f of the form

£.0) = f dof (), =0 or ,

where f runs over the space of all infinitely differenti-
able functions with compact support.

Although this version of the KMS boundary con-
dition is slightly weaker than the usual one (see, for
instance, Ref. 4 and references quoted therein), it still
keeps the essential strength of the latter. We indeed
first notice that ¢ KMS on 4 (in the present sense)
implies by the usual argument (e.g., via Bochner’s
theorem on measures obtained as Fourier transforms
of continuous, bounded functions of positive type)
that ¢ is time invariant (in the sense of Sec. 3); in
conjunction with the last results of Sec. 3, this is
sufficient to show that § is KMS (in the usual sense)
on w(A)" with respect to & and that a KMS state ¢
on A (in the present sense) is extremal KMS if and
only if m(#4)" is a factor.®

In view of these results, we can now immediately

compute the extremal KMS states for our model. We
recall that B, ., as defined in Sec. 3, belongs to the
center of w(+)" and that this center is trivial whenever
w is the GNS representation associated with an ex-
tremal KMS state ¢ on #; let us denote by B, the
value of the c-number B, ., thus associated to every
extremal KMS state ¢ on A. Since B, , is a c-number,
! is not only an automorphism of the von Neumann
algebra w(#)” associated with v, but moreover its
restrictions to w(+) and to w(4(L2)) (where Q2 is any
finite subset of Z) are also automorphisms of these
C*-algebras. We now recall that 4(€2) is the algebra
of all bounded operators on a finite-dimensional
Hilbert space, so that all its representations are faith-
ful; ! hence defines an automorphism of #4(£2) which
1s generated by the Hamiltonian

Hg,(0) = —ZEQ(B + B,,,)o1.

Every state on A(Q) is normal since A(K) is finite
dimensional; this is in particular true for the restriction
yo of v to #A(Q). Furthermore, p, is KMS with
respect to the time evolution generated by Hg ,(00)
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on A(Q); finally, £(Q) is irreducible. The density
matrix representing v is then uniquely determined,
and so is, therefore, qo; we can thus conclude that

extremal KMS implies the following for each 4 in
A(Q):

(p; A) = Tr p(D)4, (4.2)

where

p(Q) = {Tr exp [—pHg (0)]} " exp [—BHg, ().
This implies immediately the following four conse-
quences [Egs. (4.3)-(4.6)]:

y is not extremal time-invariant 4.3

since we can, for instance, write p = A;p® + Ap'?,
where p and ‘® are again product states defined
respectively by
<w(i); Al> — {(1/)5 1(4§>,
Tr pi"4;,

j arbitrary, but fixed in Z,

I#J'}
I=j

with
PV =31+ 0) and P =31 — o)
and
4y = }{1 + tanh [3(B + B, )]},
2y = }{1 — tanh [B(B + Bl.w)]};
hence,’® the time evolution is not asymptotically
Abelian, as can also be explicitly seen from

with
A=0¢%5, B=o¢}, and C=1 + is}.
(p; AC) = (yp; A)(y; C) (4.5)
whenever
AeA(Q), Ce A(Q), QNQ =4¢,

so that % is a product state and hence satisfies the
strongest possible cluster property;
(p; o7) = 0 = (y; op),
(p; o)) = tanh [B(B + B,,,)),
B,,, = 25[(p; 0)].
The above three equations determine y; they appear
here as formal generalizations of the self-consistency
equations of Sec. 2, and we check in Appendix D that
the above relations actually reduce to those of Sec. 2
in the particular case considered there.

The equations determine only the stationary points
of our integrand; this implies that not all extremal
KMS states occur in the decomposition of the Gibbs
state ¢. We illustrate explicitly this feature in Appendix
E for periodic potentials of period p = 2. In this simple
case, one can already exhibit as many as nine solutions

(4.6)
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to the self-consistency equations. Among these, at
most two occur in the decomposition of ¢: those
corresponding to absolute maxima of our integrand,
i.e., the absolute minima of the free energy; the
remaining solutions are then either relative minima,
saddle points, or maxima of the free energy, so that
these extremal KMS states can at best be interpreted
as metastable or unstable pure thermodynamical
phases.

We now want to examine the question of the de-
composition of an arbitrary KMS state ¢ in its extre-
mal KMS components ¢ and the related problem of
consistency between the definitions of the time
evolution in the representations respectively associated
with ¢ and the various ¥ entering in the decomposition
of .

Many of the results proved above for extremal
KMS states carry over to any general KMS state ¢;
we already noticed that ¢ is time invariant and that, as
a consequence (see Sec. 3), af " is unitarily imple-
mented in the GNS representation =, associated with
¢ and extends to an automorphism &} of ()" with
respect to which the extension ¢ of ¢ to 7 ()" is KMS
in the ordinary sense. Due to the fact that the time
evolution is not an automorphism of #, the analysis
of the decomposition of a KMS state into its extremal
components, as carried out in our Ref. 4, needs some
refinements. Under the assumption! that

(i) there exist p’s finite such that

vilf]=9,,0/1,

for all /in Z and all fin C,(Z), and

(i) #*, the characteristic function of the sublattices,
{i =np + k|neZ}, with k in P, belongs to C(Z),
we prove in Appendix F that ¢ KMS can actually be
written as a discrete statistical mixture of extremal
KMS states satisfying Eqgs. (4.2)-(4.6) and that the
time evolution defined on 7 (#)" is consistent (in a
sense which will be made more precise in Appendix F)
with that defined on each (#)".

5. CONCLUSIONS

Our main results, for a class of Weiss—Ising models
with periodic potentials, are that:(i) The thermody-
namical pure phases are extremal KMS states; (ii) the
set of extremal K MS states is exactly given as the mani-
fold of solutions of (a slight extension of) the usual
self-consistency equations of the molecular field
methods; (iii) every KMS state (and, in particular,
the Gibbs state in the thermodynamical limit) can be
written uniquely as a discrete statistical mixture of
extremal KMS states.
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The model analyzed here allows a comparison
between the various definitions of pure thermody-
namical phases which have been suggested in the
past*14-1% and points to the fact that the definition
chosen in Ref. 4 isthe mostappropriate. First, themodel
is not asymptotically Abelian in time so that the pure
thermodynamical phases which are extremal KMS
states are not extremal time invariant, a fact which we
exhibit explicitly in Sec. 4. Hence the characterization
of pure thermodynamical phases as extremal time-
invariant states is not appropriate in general situations
where the time evolution is not asymptotically Abelian.
Secondly, since a breaking of the translation invari-
ance Z of the lattice is involved in the phase transition
occurring here, a characterization of pure thermo-
dynamical phases as extremal Z-invariant states is
awkward. We notice in this connection that our pure
thermodynamical phases y are invariant with respect
to a proper subgroup Z,, of Z; since, on the one hand,
the local structure of our system implies that the
translations act in an asymptotically Abelian manner
and since, on the other hand, the representations =,
are primary, it follows that v are extremal Z -invariant
as Z, acts in an asymptotically Abelian manner, the
set e;zw of all Z -invariant states is a simplex, and the
decomposition of a Z,-invariant state (as is the Gibbs
state) in its extremal Z -invariant components is
unique; the multiplicity of left-over extremal Z,-
invariant states which cannot be interpreted as pure
thermodynamical phases is, however, appalling, so
that even a third characterization of pure thermo-
dynamical phases as extremal Z -invariant states
would be far too permissive. Moreover, we showed!’:
that this type of characterization is altogether inad-
equate when the initial group of invariance of the
Hamiltonian is E3, the Euclidean group in three
dimensions.

The proposed dynamical characterization of ther-
modynamically pure phases involves the technical
problem of the proper definition of the time evolution
for an infinite system. We chose to define it for each
representation separately and then particularized this
definition successively to the representations associated
with time-invariant states, with extremal KMS states,
and with general KMS states. In the latter two cases,
we showed that this definition could be made in an
unambiguous manner, whereas this is not the case for
more general representations. For extremal KMS
states we proved that the time evolution is actually an
automorphism of the C*-algebra =(+#) whereas, al-
ready for general KMS states, it can only be shown to
be an automorphism of the von Neumann algebra
w(A)".
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Since the algebra 4 of the quasilocal observables on
our physical system is simple, every representation of
# is faithful, so that the time evolutions obtained for
each extremal KMS state can be lifted up separately to
continuous families of automorphisms of #. These,
however, do not coincide, and this feature is linked
to the existence of several thermodynamical pure
phases. The necessity for this generalized definition of
the time evolution of an infinite system is similar to
that encountered by Thirring and Wehrl® in their
study of the BCS model (these authors, however,
were not concerned with the KMS condition) and has
also been met by the general frame proposed by
Dubin and Sewell'® (who assume the existence of the
Gibbs state in the thermodynamical limit, define the
time evolution for this state, and then prove that
the KMS boundary condition is satisfied). We surmise
from these results that, in the type of models consid-
ered here, the time evolution cannot be assumed to be
given by a single family {«'} of autgmorphisms of #,
but could at best be defined as a family of automor-
phisms of the enveloping von Neumann algebra® of
#, although this mathematical device does not seem
to shed any light on the physical properties of the
systems considered; we therefore preferred to attack
the technical problem of the definition of the time
evolution along the lines presented here.

Finally, we might remark that whereas our investi-
gation was carried out explicitly for periodic Weiss—
Ising interactions (where the comparison with tradi-
tional methods is particularly easy), the framework
developed in Secs. 3 and 4 allows the treatment of
general Kac potentials of the form

vy = lim pf (y i — j)
0

such as those studied by Lebowitz and Penrose!? and
Gates and Penrose!®; the analysis of the latter authors
is carried out for continuous gas models, whereas ours
applies primarily to the lattice-gas translation of the
magnetic models we considered; for the ordinary
Weiss lattice gas the pure thermodynamical phases
can, as usual, be interpreted as liquid and gas.
The Gibbs states follow the actual isotherms, including
the Maxwell plateau.
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APPENDIX A

Lemma: Let W = (w;;) be a strictly positive, sym-
metric, real » X # matrix and let x,---x, be n
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independent variables. Then
€Xp (Z xiwiixa')
" A, $prew +o0
=[H(_¢_)] f dCl"'f de,
i 277 — —o0
X eXp (_% 2 Lwil, + 2t )3 xiwz‘jCj) )
i3 i

where 4; are the eigenvalues of W.

Proof: We first notice with Kac® that, from

+o0
@yt f dnexp (—47°) = 1,

it follows (upon substitution of 5 by { — 2%a) that for
any real a

exp a® = (2w)‘%f+wd§ exp (—1{% + Z#aC)

and then, for everyreala, - - -a,and y, -+ y,,

exp (Sad) = 1ty | Car [,

X exp (.—% Sg+2ty aiyici).

From our assumption on W, the quadratic form
. x,w;;x; can be diagonalized to the form of the lhs
of the above equality (with a; = 2} > 0). With the
substitution {; = a,;x;, we get

eXp (Z xiwia‘xi)
i
+ 00

Z’i 1 oo
=[] e[
i s —o —a
X exp ("‘% Z ay; + 2t > a?)’i%ﬁ),

the rhs of which we can change, by an orthogonal
transformation, to

()] [ ]
X exp (-—%g Lwiil, + 2%5 xiW,-,-C,-),

thus proving our lemma.

-+

APPENDIX B

Let L, ,(€2) and L, , be the local Liouville operators,
acting on B(K,), respectively associated with the local
Hamiltonians H, ,(Q) = m(H,(Q)) and H,,. These
two Liouville operators clearly generate two families of
automorphisms o} ({2) and «f . We first show that
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foreachle Z

s-lim o (Q)[m(4,)] = o} ,[7(4))]. (BY)
s
From
s-lim B, ,(2) = B, , (B2)
s
and
1B, ()] < e, (B3)
we conclude that foreachne Z
s-lim [B + B, ,(Q)1" = (B + B, ,)". (B4)
a7
From
(B, (), 7(4)] = 0 (BS)
and (B2), we have also
[B,,, n(4)] = 0. (B6)
From (B5) and (B6), respectively, we get
L} (Q)[n(4)] = 87, [=(4)][B + B, (D)), (B7)
. Ll,’.tn'['"(Al)] = 617;1[77(‘41)](B + Bl,v)na (BS)
with
8. .[m(4)] = —i[n(0}), m(A)]. (B9)
We notice that
”61,1[77(141)]“ < IIAII) (B10)

From (B4), (B7), (B8), and (B10), we conclude that
sdim Ly (Q[m(A)] = L, [n(4)].  (B11)

Q-0
(Qal)

(B1) now follows from (B11) and from the fact that
the exponential series

3 L 14y = wa]
n=0 N.

converge in norm.
For every finite €}, < Z, every finite sequence

{l -+ -1} € Q, and every Q 2 Q,, we define
a(Qfn(A4, ® -+ ® A )]
= oy, (L7 (4] - o, o [7(4,,)] (BI2)

which extends then by linearity to #4(€2). This evi-

dently coincides for all Q 2 Q, with the 7(«!(2)[A4])

where «!(Q)[A4] is defined in Sec. 3. We then define

in the same manner «f [(A)] for all 4 in #£(€),). Since
llof QAN = [ (4D = o oLm(ADIM,  (B13)

we can conclude from (B1), (B12), and (B13) that
s-lim m(o(Q)[A]) = al[m(A)], for all A in A(LQ).
@385

This is trivially extended to every A4 and 4.
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Since B, , belongs to =(+)" and since every element
A(€2y) of A(£),) can be obtained as a finite linear com-
bination of finite products of the 4, with 1€ Q,, we
see that for each 4 € £(Q,)

n

l!-‘

%(m(A)) =§ Ly [m(4)]), forall Q2 Q,
n=0

!

=

where Lo, , is defined by

La,, Al = —i[Z(B + B,_,,)af,A].

leq2

APPENDIX C

With the notation of Sec. 3 and ¢ time invariant,
we now construct the operator U? on the dense linear
manifold

{r(A)P| AeA(Q); Q= Z}
of ¥, as

Ulm(A)D = U§ ,m(A)Ug', @
for all 4 in A(L2), where Q runs over all finite subsets of
Z, Due to the isotony property, U} is clearly linear on
its domain of definition. The time invariance of ¢
implies

1V (D) = || n(A)PY,

so that U! can be extended in a unique manner to a

unitary operator on JC,. We notice that this operator
satisfies the following two properties:

Uld = O,
Ulm(A)U;! = al[n(A4)], forall 4 in £.
Since the mapping C — ULCU;" is weakly continuous
on B(IK,), ut extends to a spatial automorphism
G[A] = ULAU;Y, for all A in ()",
of the von Neumann algebra w(+)". This important

result can also be obtained as follows: Since

(m(A)) = n(A) = ) m(AQ)),
Q< z

we have, for all Q < Z, all 4 in #£(Q)), and all X in
w(t),
0 = [X, U (Q)m(A)U;(D)]
= [X, Uln(AU;'l = UL[U;'XUL, 7(A)U;,
which again implies U *XU! belongs to 7 (#)". This
implies that the natural extension &’ to m(#4)", defined

by

g[A] = ULAU;', for all 4in =(A)",
maps w(+)" onto itself and is then a spatial auto-
morphism of this von Neumann algebra.
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APPENDIX D

To show that the results of Sec. 3 and 4 contain
those of Sec. 2 in the particular case considered there,
we must check firss that the ambiguity introduced
when we extended », and 7, actually disappears in the
final results and second that the time evolution «f is
indeed the limit of the time evolution for the finite
system.

We notice that, when »,;({2) is periodic in |i — j|
with period p, then the linear functional », defined in
Sec. 3 satisfies

nlf1=v,0f1

so that the natural consistency requirements impose

7S] =7,.,0f1, forall fin C(Z).

Consequently, B, , = B,,,,, and hence (y;o}) is
periodic of period p in j so that, with the assumptions
of Sec. 2,
Bi,w = ZVI[W’; U§>] = 2 zfu<w; U§>
ieP

=23 fi;tanh [B(B + B, )]

JEP

for all fin C(Z),

This establishes our first claim. To substantiate the
second, it suffices (see Sec. 3) to show that B, ,(Q),
which is uniformly bounded, converges strongly to
B, , on a dense domain of the representation space
J, of the GNS representation s associated with y
extremal KMS. To prove this convergence, we con-
sider, for any arbitrary but fixed finite subset €2, of Z,
any fixed 4 in A(£,), and all Q > Q,

[Eﬂ v, (Q)m(0%) — Bi,,,] ) 4 ”

< E%-(Q)Ui | =(AYY|

J€Qq

+

|

As Q — oo, the first term tends to zero. Upon using
the facts that v is a product state, that B, | is a c-
number, and that (y; ¢%) is periodic in j, we see that
the square of second term in the above relation tends,
as Q — oo, to

o A*A>{ 3 7(pi o) — By
j€

2

which also tends to zero by construction of B, .

APPENDIX E

We now analyze further the meaning of the self-
consistency equations in the case p = 2 and external
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field B = 0. When we denote f, = f;; = a and f}, =
b, we find for the free energy (per site) f of a state with
mean free field B, at the even sites and B, at the odd
sites:

f = —atanh (§B,)*> — 2b tanh (#B,) tanh ($B,)
— atanh (8B;)* + B, tanh (8B,) + B, tanh (8B,)
— kTIn 2 cosh (8B;) — kT In 2 cosh ($B,).

One finds then indeed that the extremal points of this
function are determined by the self-consistency equa-

tions

2a tanh (8B,) + 2b tanh (8B,) = B,.

To be specific, let us consider the case —a < b < 0,
and define the temperatures Ty and Ty, respectively,
by Ty = 2(a — b) and Ty; = 2(a + b); hence, Tj; <
T;. The following solutions are obtained readily:

(i) For T > Ty, only the solution B, = B, =0
exists; this solution corresponds then to an (absolute)
minimum.

(ii) For T7; < T < Tj, one has the three solutions

(a) B, = B, = 0 which is then a maximum,

(b) and (c) B, = —B, = 4By, in which B is solu-
tion of 2(a — b) tanh (8B;) = By; these solutions are
absolute minima.

(iiiy For T'< T, one has always five solutions,
namely,

(a) B, = B, = 0 {maximum),

(b)and (c) B, = — B, = + B; (absolute minimum),

(d)and (e) B; = B, = 4 By; in which By is solution
of 2(a + b) tanh (fBy;) = By;.

All these solutions have the property that, when
T — T, (respectively Tyy), one has B; — O (respectively
Br; — 0); therefore, they can be obtained by linear-
izing the self-consistency equations. It turns out,
however, that there are still some peculiar solutions
that cannot be obtained in this manner. Let Ty be the
solution of T cosh? [8B(T)] = a — b. Graphical
methods (for instance) show that Ty < Tyr and that
four new solutions to the self-consistency equations
exist when T < Ty;;, which are of the form B, =
+ B!, B, = £ B[ When T tends to Tyyy, one has
that BI'T and BI' tend to B;; # 0. Together with the
extra solutions occurring at T = Tyy, one has that
the status of the solution (iii.c) changes from saddle
point to relative minimum.

APPENDIX F

We define, for every KMS state ¢ on £, the GNS
representation =, of s, the time evolution &} of
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m,(#)" and the canonical extension & of ¢ to 7 4 (£)"
which is KMS with respect to &, (see Secs. 3 and 4).
We know then? that ¢ can be uniquely decomposed
into states ¢ on ()" which are extremal KMS with
respect to «f. We then construct the representation
7, of my(#£)” the weak closure of which is then® a

L4
factor. This implies that #,(B, , )is a c-number. From

this we conclude, as in Sec. 4, that the restriction y of
P to A is a product state of factor representations.
From this it follows® that the GNS representation =,
of £ is also a factor. Since, on the other hand, y is
KMS on # with respect to the time evolution defined
from # (B, , ), we conclude® that y is extremal KMS
on A with respect to that time evolution. We now want
to show that the latter coincide with the time evolution
defined from y alone in Sec. 4. To this end, it is suffi-
cient to show that

ﬁw(Bl.ird,) = Bl.w’ (Fl)
which we shall now prove.

We recall? that u is the central measure associated
with § and that to every u-measurable set F corre-
sponds an element Dy in 7, (#)” N 7,(+)" such that

(§; ADp) =f (95 A) du(y), for all A in my(t)".
F
(F2)

From the definition of Bl,,d’ we have, upon using (F2),

| 49 B dut) = 83 81, D)
ra
= 29[(¢; o}Dp)]
- 2@[ Lw; %) du(w)] (F3)

As we already saw, the periodicity of #, implies that
the extremal KMS states occurring in this decomposi-
tion are periodic with period p. Let S, be the closed
set of all states y on + such that (p; 4,,,) = (p; 4
foralljin Zand all 4 in A(J).Since p is concentrated
on the extremal KMS states, which are all in S, we
have that the support of wu is contained in S,. For
these states,

7 (p; o) = 2 fruw; o) (F4)

keP
where f; . = »,();) (the existence of the latter limit is
part of the assumptions made at the end of Sec. 4).
We can therefore interchange the mean #, and the
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integral in the rhs of (F3) to get
[ 69 v duto) = 25¢0s 0 dut)

=f B,,, du(y). (F5)
F

Since this holds for every uy-measurable F and since
the integrands of both the lhs and the rhs of (F5) are
w*-continuous in ¢ [the rhs because of (F4)], we con-
ciude that

<¢; Bl.7¢> = Bl,w’ (F6)
from which (F1) follows since #,(B, , ) is a c-number.

Finally, we notice that, since the self-consistency
Eqs. (4.6) admit only a finite number of solutions, the
decomposition of ¢ into its extremal KMS components
is actually discrete; furthermore, the same reasoning
as used in Appendix D leads to the strong convergence
of B,%(Q) whenever ¢ is KMS.
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The Kohn-Hulthén variational principle for the phase shifts, as well as the Rayleigh-Ritz principle
for the binding energies, are used to determine the derivatives of 6, = &(V, E,I,m, k) and E =
E(V, 1, m, k) with respect to the listed parameters. A similar treatment utilizing Hamilton’s variational
principle leads to the corresponding classical results. The relation between the quantum mechanical
and the classical expressions is examined. In particular, it is found that the quantum-mechanical binding
energy corresponds to a certain path average of the classical energy. Some applications of resulting
formulas are briefly reviewed. This work is an extension of ideas originated by Fock and Demkov.

I. INTRODUCTION

Variational principles are certainly among the most
powerful tools at the disposal of the theoretical
physicist. They are widely used in almost every branch
of theoretical physics. It is therefore quite surprising
that one of its most natural applications, namely, the
calculation of derivatives of the stationary quantity
with respect to the parameters of the system, seems to
be overlooked. In fact, if one uses as trial functions
the correct functions for a slightly different system
(different mass, different force, etc.),one is bound to
get the derivative of the stationary quantity with
respect to the varied parameter. This process could be
almost trivial but for the fact that the varied functions
must usually satisfy some normalization or boundary
conditions. The way to overcome this difficulty is to
perform a change of scale—a technique devised by
Fock and utilized by Demkov.?

We shall begin our discussion with scattered states.
The derivatives of the phase shifts, as well as those of
the complete scattering amplitude, will be obtained.
Next, we shall consider the bound states, where the
stationary quantity is the energy. Finally, we shall turn
to classical mechanics and secure the corresponding
derivatives for the action integral.

In examining the correspondence between the
quantum-mechanical (q.m.) results and the classical
(cl) results, we shall see that the q.m. binding energy E
corresponds to —(L),,, where (L), is the time average
of the Lagrangian. This is to be expected on the basis
of the WKB approximation. However, there is a more
striking correspondence due to a purely classical
result, namely, —(L),, = (E,,), where (E,,)is a certain
path average of the classical energy. This is, of course,
reminiscent of Feynman’s path integral method.? We
shall also see, in passing, that even the simplest 1-
particle classical problem has divergences built in
which necessitate a careful limiting process.

Finally, a word concerning the novelty of the results.
Many of the results derived here are well known. They
have been derived, however, using diverse methods
and thus are not as widely known as is warranted.
This article should be regarded, therefore, at least in
part, as a review.

II. QUANTUM MECHANICS
A. Scattered States

We shall start with the Kohn-Hulthén variational
principle for the phase shifts ¢;,>* where 6, =
o(V, E, 1, m, h). The principle reads

ké, = ﬁ ? Ur)LU(r) dr + ké, + O((U, — U))»), (1)

where U,(r) is a trial function satisfying the boundary
conditions

U0) =0, Ufr)~sin(kr — §m +6), (2)

4, being the trial phase shift and U,(r) the solution of
the radial equation

_{d s W1+1) 2m
LU(r) = (;r—z-l-k —T——h;V(r))Ul=0
. . )
with the boundary conditions
Uy(0) =0, Uyr)~sin(kr — 4= +4). (3)

1. Changing the Potential

Let U, = U(V + AV, r) be a solution of (3) with a
potential ¥ 4 AV Then, to first order we have

k8,(V) = k8,(V + AV)
+f°°Ul(V + AV)(L _ 2h—’;’AV + %Av)
0

x UV + AV) dr.
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Hence, using Eq. (3),

2m [
A, = — o ﬁ UNV, nAV dr. 4)
In particular, if ¥ depends on a parameter «,
29, 2m [*_ , av
— = —— | Uji(a, r)—dr. 4/
O Kk Jo (e 1) da r “)

2. Changing the Energy
Let U, = U,(k + €k, r) be a solution of (3) with a
wavenumber (1 + €)k, where € is an infinitesimal
constant. (The corresponding change in E is AE =
2¢E.) Asymptotically
U, ~sin [(1 + €kr — }lm + 6,(E + AE)].

Since the last equation violates the boundary con-
dition (2), U, cannot serve as a trial function. How-
ever, if a change of scale is performed, namely,

U,= Ufr/(1 + €)) = U1 + ek, r[(1 + ¢)),

the boundary condition (2) is satisfied. Inserting U,
into Eq. (1) and changing the variable of integration
fromrtor’ = r/(1 4+ €), we obtain

k6,(E) = k8,(E + AE)
+(1+ e ﬁ “drUL + Ok, )

I+ 1y
’2

X (—42— + k(1 + ¢ —
dr’

— (1 +¢? Zh—’f v + er’)) ULl + o)k, ).

Finally, utilizing Eq. (3), we secure
%, _ k.
0E 2E*J

3. Changing the Angular Momentum

Let U, = U(r) be a solution of (3) with an angular
momentum [ =/ + Al, where [ is regarded as a
continuous parameter. Asymptotically

U, ~sin (kr — = + 6y — 3mAl);
hence, d, = 8,5, — 3mAl Inserting U, into Eq. (1)

we obtain

%‘%’ = }m — 2l + DK™ f wuirz dr. (6)
0

“vk, r)(ZV +r %) ar. ()

4. Changing the Mass
Changing the mass from m to m + Am and keeping
the energy E = /2k?|(2m) fixed causes the wavenumber
k to change by Ak = kAm/[(2m). Choosing the trial
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wavefunction as U, = Uym + Am, r/(1 + €)), with
€ = Am/[(2m), and proceeding exactly as in Sec. I.A.2,
we obtain

9 _ (htky f “vn Y g, 0
om o dr

5. Changing Planck’s Constant
Since m and # enter all expressions only through the
combination § = /#%/(2m), we can immediately obtain
(if only for mathematical curiosity)

98, _ 05, 0&/oh
0h  Om (0&/om)
2m [®. o dV

=—=—| U¥%—dr 8
Bkh o ar ®)
The derivatives (4)-(8) should vanish as the
potential vanishes. This is obvious for Eqs. (4), (5),
(7), and (8). It is also true for Eq. (6), since for
V —0, U, — krj,(kr) and the following mathematical

relations holds:
*® ®  Jra) b
dxi(x) = j PPELE O LAy
|t = 4 [ T

Before commenting on the significance of Eqs. (4)-
(8), let us write down the corresponding relations for
the complete scattering amplitude. These can be
achieved by use of Kohn’s variational principle?

Tk/k,' = Tktfki + <¢;/t| H - E lef,t>
+ second-order terms,

®
and proceeding along the same lines as in Sec. I.A.1-5.
In Eq. (9) Ty is the trial scattering amplitude, vy},
is the trial wavefunction satisfying the boundary
condition

Yo~ €% — 2m[(dniD)]e™|r - TY .,  (10)

where k, = r [k|/[r|, and ¢_* = ¢, is an independent
trial function satisfying Eq. (10) with k replaced by
—k. One obtains

AT, = (y;| AV |y, (11)
oTy _ , _ :
—;’ = (7] OV [0 |9, (11)

aT,- P
2E L = T, — (y]]2V + - VV |y, (12)

o0E
Ty - -
Mo —3T,; — (y, | x - VV [9)), (13)
T, -
h‘a? = 3T, + (¥, 1 VV |y, (14)
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where the notation has been slightly simplified. In
these expressions the p* are exact solutions of the
Schrodinger equation. Equations (4), (5), (7), and (8)
follow from (11)-(14), if one assumes a spherically
symmetric potential.

We shall now turn to discuss the results for the
scattered states. Equation (11) is (under the most
general conditions) an immediate consequence of the
Gell-Mann-Goldberger transformation.® Let T(V)
and p* (V) denote the scattering amplitude and wave-
functions (with outgoing or ingoing spherical waves)
for the potential ¥, and let  denote a plane wave.
Then by the Gell-Mann—Goldberger transformation

TV + AV) = (g, (DI V 12
+ G (MIAV [yi(V + AV)).
Since T;,(V) = (y,; (V)| V |x:), we have to first order
AT (V) = (y; (NI AV [pf(V)).

Curiously enough, it appears as if this result has
never been stated in its present general form. See,
however, Sugar and Blankenbecler,® Austern and
Blair,” and Spruch.?

A special case of Eq. (11a) is of some interest. If we
put V(r, ) = «¥(r) and integrate Eq. (11a) between
o = 0 (no potential) and « = 1 (full potential), we
obtain [since Ty, (« = 0) = 0]

msnm=u=ﬁwwmmwwmm»0$

This exact representation for the scattering amplitude
has been used to discuss the validity of the high-
energy approximation for medium energies.’

An interestirtg application of Eq. (4), namely, the
derivation of the phase equation, has been discussed
by Spruch.® Let

V.(ir'y=Vv@"), r<r,
=0, r>r,

and let U,(r') and d,(r) denote the radial function and
phase shift for this potential. Using Eq. (4) with
AV(r") = Vo a (r') — Vi (r'), we have

&,(r + Ar) — 6,(r)

=—%L%wmwwwmm'
- - %Aruf,(rw(r). (16)

Now for r’ > r, i.e., outside the range of the potential
V,(r"), the radial wavefunction is a linear combination
of the spherical Bessel functions

Ui(r') = ay(n)krjy(kr’y + Bi(r)kr'ny(kr’).
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Comparison with the asymptotic form (3') yields

a(r) = cos 8,(r), Bi(r) = —sin 6,(r).

Inserting these coefficients into Eq. (16), we obtain the
phase equation®®
2m

do) __am,
- Wk V(r)(kr)

x [cos 8,(r) j(kr) — sin 8,(rn(kr)P. (17)

It has been suggested® that the same procedure may be
used to obtain a similar differential equation for the
complete scattering amplitude T, . Unfortunately, this
is not possible, the reason being that the form (10)
for the wavefunction gy is correct only for r — oo
and not for any r outside the range of the potential.

Equation (4') is also interesting from a calculational
point of view. It can be used to facilitate the numerical
search for the parameters of the potential needed to
reproduce the given scattering data.

Equations (5) and (12) have been derived by Dem-
kov.! They are called virial theorems after their
classical counterpart. The physical significance of
04,/0E was discussed by Wigner!* who showed that
h04,/0F is the time delay of the /th-partial scattered
wave in the potential well.

The first derivation of Eq. (6) is apparently due to
Newton.?? As an immediate consequence of (6) we
have (for real V) the inequality

36,/01 < ¥ (18)

(19)

a result first derived by Regge.'® The inequality (18)
has a simple semiclassical interpretation.}? The WKB
phase shift satisfies™

and hence
az+1 - 61 < %”T’

6=2—-

a1 (20)

where 0 is the classical scattering angle corresponding
to an energy E and an angular momentum /, =
(I + %). Hence, semiclassically, Eq. (18) states
simply that 6§ < 7.

No immediate application of Eqs. (7) and (8) seems
to suggest itself. However, Eq. (8) could be used,
presumably, for further investigations of the classical
limit of quantum mechanics.

B. Bound States

We shall begin our discussion by assuming a
spherically symmetric potential. Later on this restric-
tion will be removed. The Rayleigh-Ritz variational
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principle for the binding energy E = E(V, I, m, k) is
E =f U(rH,U(r)dr + O((U, — U,)»), (21)
0
where U,(r) is a normalized trial function, i.e.,

f Uir)ydr =1
0

and U,(r) is a normalized solution of the radial

(22)

equation
Hu = (- oy P ),
- EU,, (23)
L "V dr = 1. (24)

The derivation of the analogs of Eqs. (4)-(8) is essen-
tially unchanged. There are, however, two new
features, both of which will be illustrated in the
derivation of the virial theorem. The first of these is
connected with the normalization condition. In order
to fulfill Eq. (22), any change of scale must be
accompanied by a corresponding change of normaliza-
tion. The second difference stems from the fact that
the energy is no longer a parameter of the stationary
quantity. Nevertheless, we shall see that a virial
theorem does exist.

(a) Changing the potential: We obtain

AE = f URAV dr. (25)
0
In particular, if ¥ depends on a parameter «
0E [ 5 OV
—=| Uj;—dr 25
o Jo ' o (25

(b) Changing the scale: Let
Ulr) = (1 + UL + o),

where U,(r) is a normalized solution of Eq. (23). The
factor (1 + €)¥ is introduced in order to preserve the
normalization. Indeed,

J;in(r) dr=(1+ e)J;in((l + e)r) dr

=f Uiy dr = 1.
0

Inserting U, into Eq. (21) and changing the variable
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of integration from r to r’ = (1 + €)r, we obtain

E=(+ 5)2L°°ul(r')(_ L R (),

2mdr®  2m  p?
+ 4+ (@ — er’)) Uyr') dr'.

Finally, utilizing Eq. (23) we secure

2E =f Ui )(2V + rd—V) dr.
) dr

(c) Changing the angular momentum: We obtain
0E K

(26)

5=E(2l+l)f ‘dr 27
(d) Changing the mass: This leads to
g_E - —(2m)? f vr Yy (28)
m 0 dr

(¢) Changing Planck’s constant: This results in

% _ f vir ¥ gy,
ah o dr

The limitation to spherically symmetric potentials is
really not necessary. Utilizing the Rayleigh-Ritz
variational principle

(29)

= (y,| H |y;) + second-order terms  (30)
(with normalized trial functions), we obtain

= (yl AV [y, (31)

aE
a— = <wl = lw>, (31)

o
= (Y| 2V +r1-VV |y, (32)

aE B

— = —C2m)7 (yp|r-VV |y), (33)

om

0E
=K (ylr-VV |y), 34
o= el iy (34)

where y is the exact normalized solution for the bound
state.

Equations (25) and (31) are well known from first-
order nondegenerate perturbation theory. For the
degenerate case, however, Eq. (31) and perturbation
theory give different results, the difference being of
second order in the perturbing potential. [The use of
Eq. (31) amounts to neglect of all off-diagonal
elements of the perturbing potential.]

As in the scattering case, Eq. (25) can be used to
facilitate the numerical search for the potential needed
to bind a particle in a given level.

The virial theorems (26) and (32) are due to Fock.!5
(See also Ref. 1.)
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Since by Eq. (27) 9E/dl > 0, we have the well-
known result that the energy of a state with a given
number of nodes is a monotonic increasing function
of the angular momentum. The restriction to a given
number of nodes is essential since states with different
number of nodes have separate E(/) curves.

III. CLASSICAL MECHANICS

The variational principle underlying classical me-
chanics is Hamilton’s principle for the action I =
I(qat5, quty). 1t reads

gatar ) = f "Lgs. 40 dt + O(a()) — 4P,
(35)

where g(t) is the physical trajectory which passes
through the points ¢, and ¢, at times #, and ¢,, and
g:(?) is an adjacent path going through the same end
points at the same times. [For convenience of notation,
we have lumped together all generalized coordinates
into one vector ¢(t).]

Without loss in generality, we can limit our dis-
cussion to motion in a central field. In fact, we shall
treat only the radial equation, assuming that the
angular momentum / is given. The Lagrangian for
such a system is

L(r, F) = ymi* — V(r) — B[Q2mr®) = T ~ U(r).

(36)

The action I depends, in turn, on the parameters V, /,
and m.

It is convenient to reverse the order of presentation.
We shall first discuss the bound states and then turn to
examine the scattered states.

A. Bound States

(a) Changing the potential: Let r, = r(U + AU, 1)
be the correct orbit for the potential U + AU. (At
the risk of repetition, we assume that,unless otherwise
stated, all trial orbits go through the same end points
at the same times.) Inserting r(U + AU, t) into Eq.
(35), we have

1) =f2[L(r(U + AU, 1), /) — AU + AU dt

2
= I(U + AU) +f AU dt.
3%

Denoting the time average of F(t) by

(2]
(Flay = (12 — 1) f Fdt, (t,—t)—w, (37)
t1
we obtain
_<AL>av =

(AU)q, (3%)
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In particular, if the potential U depends on a param-
eter «, we have
_ (U

_/oL
\aa/av

\aot av
(b) Changing the scale: Let r(t) = (1 + e)r(t)
where € is an infinitesimal constant. Note that r,(¢)

does not go through the end points r,, 7,.

t2
6I_f (a—"a +%’:ar) dt

(38)

or
2L doL oL
—_— - = ordt +—2¢
f(ar dtar) o ',1
=a—L6rt2.
or |,

Since dr = er, 0F = €F, we obtain
oL  .OL OL|t
+ dt =r—| .
L ( or ar) ’ or|,,
Dividing by (¢, — ;) where (¢, — ;) — c©, we have
(since the motion is bounded)

(5 oo =0

(39)

Finally, using the relations

2T =2E —2U and 2U+rd—U—2V+rd—Ii

) . r dr
we obtain the virial theorem

2E = <2V AN (40)

dr av

() Changing the angular momentum: We have by
Eq. (3%)

(41)

(d) Changing the mass: Inserting r(t) = r(m +
Am, t) into Eq. (35), we have
12

I(m) = fz[%m R vy v

2
— Ami* — am | :, dt
m 2mr?
_I(m+Am)——[ (E—V)dt. (42)
m J,y

Dividing by (t, — #,) and using the virial theorem (40),
we secure
/aL\ /dv\

\Tom/oT TN
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The present derivation of the virial theorem [Eq.
(40)] has been suggested by Fock and Krutkov.1¢

B. Scattered States
Since in a scattered state the particle eventually
leaves the field of force, time averages like Eq. (38)
are useless even if they exist. We shall, therefore,
express our relations in terms of time integrals rather
than time averages.

(a) Changing the potential: From (38) and (38") we
have

179 tg

ALdt = — f AU dt, (44)
i1 t1

t

Ly - [Py, (44)
t1 aa ty ad

(b) Changing the scale: As (1, — t;) — © Eq. (39)
diverges. However, by subtracting 2E = 2T + 2U =
mv? (v, being the magnitude of the initial velocity)
from both sides of Eq. (39) we obtain a relation which
remains finite for all times:

e dv
2U —)dt = —f (ZV + —) dt
J;x ( T dr ) t1 ’ dr

(45)

For t - o, v = v, and r = vyt + s. By choosing the
time scale such that the closest approach occurs at
t = 0, we obtain a symmetric orbit satisfying r(—¢) =
r(t). Letting t,— o and t; — — oo in Eq. (45), we
have

—2f (2V + rﬂ) dt
) dr

= lim {[mv,(vyt + s) — mvjt]

| Ande

= mor — mugt{}?

— [—mug(vet + 5) + modt]} = 2mugs.
Hence

— 2 =B f (2V +r —) dt.  (46)
o o d

The quantity s has a simple physical interpretation.!
It is the distance by which the scattered particle over-
takes a free particle which starts at # = 0 from the

origin and moves with a speed v,.

(c) Changing the angular momentum: By Eq. (41)
we have
to ta
a_‘L_‘ dt = — i

t1 al m Jii

(d) Changing the mass: Using Eq. (42) and the
virial theorem (45), we obtain

f ® (a_L - E) dt — 3sv, = (2m)™* f W (a8)
b \dm m o dr

r2 dt. (47)
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IV. DISCUSSION

A glance at the results of Sec. IIB and Sec. IIIA
reveals that the quantum-mechanical binding energy
corresponds to minus the time-average of the classical
Lagrangian. This is to be expected on the basis of the
WKB approximation. Indeed, the WKB approxima-
tion for y(r, t) = exp [(—i/R)Etlp(r) is'?

p EB(r, 1) = Aexp [(i/A)W(r, 1),

where W(r,t) is a solution of the Hamilton-Jacobi
equation
W+ @my W) + V() = o.

ot (49)

A complete solution of Eq. (49) is given by'®

WG, ) = [ LI, K01 de = (L1,

where r(t) is the physical trajectory passing through r
and r, at times 7 and ¢ = 0. Comparing the logarithmic
derivative of the exact ¢ with that of "B, we have

0 d
—(E-t) & — —({L)y ' D). 50
P ) at(( day " 1) (50)

It is worthwhile to pursue Eq. (50) a little further.
Using our previous notation, we have the well-known
classical result*®

d Ja [ .
—t I(rty, 1ty = 5t_ J;l L(r, ) dt

2 2

= —E(r;ty, 1ty). (51

Integrating the last equation between 1, = f, and
t, = ty,we have (£, > 1))

tp
I(raty, 1it;) — I(rot,, )= — [ E(ryty, 1ity) dt;.
Jig
(52)

In particular, let t, =t -+ ¢, where € >0 is an
infinitesimal quantity. The quantity I(r,t, + €, 1,f))
diverges as € — 0+, since the speed of the particle
must increase indefinitely in order to go a finite
distance |r, — ry| in an infinitesimal amount of time.
However, it diverges in a well-defined manner:

f1+€
Ity + €, 1yty) = f (T — V) dt

ty

_ E[%m(rz —n)’_ V(rl)]

€

— m(r, — 1'1)2 ) (53)

€
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Substituting Eq. (53) into (52) and dividing both
sides by (¢, — 1;), we obtain

t2
(L)gy = —lim lim (¢, — t)! f E(ryt;, rity) dt;
t

€0+ (t2—t1) > 1t+¢€

= —(Eq). (54)
We are thus led to the definition of a new kind of
average, namely, the path average of the classical
energy. By definition, it is the average of the energy
over all classical paths traversed by a particle as the
end time ¢, ranges between #; and 7,. However, in
order to secure a finite result, the limiting process
described in Eq. (54) must be followed. It is this path
average of the classical energy which corresponds to
the quantum-mechanical binding energy:

Eq.m. «> <Ecl>-

We turn now to examine the correspondence be-
tween the classical and quantum-mechanical results
for the scattered states. This can be best understood
using the framework of the WKB approximation.
The WKB phase shift is'*

8, =} + Hm — kro + f "Ik — K1dr, (55)
where i
k = QmE[®)},
k(r) = [2m[R(E ~ V — (1 + pYem)T,

and r, satisfies k(r,) = 0. In Eq. (55), ¢ and r, depend
parametrically on «, E, [, m, and 4. However, when
taking the derivatives of Eq. (55) with respect to a
parameter &, the quantity ro can be treated as a
constant. This is true because

— [k(ro) — 18—’—"—0

Qﬁ,
By differentiating Eq. (55), we obtain integrals of the
form [2 F(r)k(r)~* dr. These quantities are closely
related to the classical time integrals. In fact, if we
associate with the quantum-mechanical angular
momentum Al a classical angular momentum I,
satisfying /,) = A(I + %), we have

f "Rk dr = & f “Fe) dt,
o m Jo

where r(t) is the classical orbit of a particle with
energy E and angular momentum /,;. Performing the
differentiations with respect to the listed parameters,
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we obtain
00, m
— = - — k 1 d
o A2 Jre aoc ()™ dr
i, (56)
o O
ad, fw( k )
—=—ry+ — —1]dr
ok ¢ D \k(r)
= —r— f (v — vg) dt, (57)
0
%671 = ir —fw(l + Hrk(ry dr
= im — Ly mr—2 dt, (58)
m Jo
aé, rok f (k(r) 2 _ k
e R hk -=)d
om 2m+ ro + kT 2mr? Zm) r
la aa,J/
=148, — [=|=|/2m,
[ ’ (h)az 4 (59)
06, zc,)aa,]/
Zoo e, — ()2 /A 60
oh [ ! (h ol (60)

The last two equations can be reduced to our normal
form, namely, that of Eqs. (7) and (8). The first step
is to rewrite Eq. (55) as

8, =4inm + L= +fk(r)dr — kr, r— 0.
To
Converting the last integral into a time integral over
the classical path and using r = vyt 4+ 5 as well as
Eq. (45), we obtain
1S, = My +f r 49 g,
o dr

or, using Eq. (58),

a © dv
B, =1, — r—dt.
! o + o dr
Finally, inserting the last equation into (59) and (60),
we secure
2= m [ 2 (59
66 _ f ®
— = —} — dt. 60’
oh o | dr (60

Equations (56)—(60) are the semiclassical counter-
part of the results derived in Sec. ITIB. It was men-
tioned earlier that the quantity %433,/0E = (88,/0k)/v,
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[Eq. (5)] can be interpreted as the time delay of the
Ith scattered partial wave in the potential weil. Com-
paring with the classical result Eq. (45), we should
expect the correspondence 06,/0k <> —s. This is
indeed the case as can be seen from Eq. (57). For
t— 00,

t
~7 -—f(v — vp) dt = pyt — r(t) = —s.
0

Hence, in the semiclassical limit

090,

= —S.

ok

The interpretation of Eq. (58) has already been
discussed. [See Eq. (20).]

Finally, we shall use Eqs. (59) and (59') to derive a
semiclassical limit on the phase shifts. From Eq.
(59") we see that 94,/0m is positive for an attractive
force and negative for a repulsive force. Also, 4, is
positive or negative according to the force being
attractive or repulsive.® Using this fact in Eq. (59), we
have in either case

dl > dé, .
I+H" s,
Integrating the last inequality, we obtain
%
5 <2+1 (61)

0

V. SUMMARY

Using a technique developed by Fock and Demkov,
variational principles have been applied to calculate
the derivatives of the stationary quantities with respect
to the parameters of the system. The method is by no
means limited to the variational principles employed
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in this article. Comparison of the quantum-mechan-
ical results to the corresponding classical results
leads to the introduction of a new kind of classical
average, namely, the path-average of the classical
energy. In view of the resemblance of this concept
to Feynman’s path integral method in quantum me-
chanics, it is felt that further investigations along
these lines could be worthwhile.
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A method is developed for labeling G,-internal states and for finding the matrices representing
G;-generators. The simple Lie algebra G, is embedded into A4, whose representation spaces are labeled
by Gel'fand patterns. For a given irreducible finite-dimensional representation 'F'(G,) of G, an
optimal representation ®(4,;) > ¥'(G,) is chosen, and a lemma is formulated which enables us to select
the subspace R(*') from the representation space R(®).

I. INTRODUCTION

One of the problems frequently encountered in
applications of simple Lie groups and their finite-
dimensional representations to nuclear and elementary
particle physics is to distinguish (label) different
vectors (internal states) of a basis in a representation
space and to find matrices representing elements of the
corresponding group. One natural labeling makes use
of the weights. Unfortunately, their multiplicities are
often higher than one so that they label subspaces of
the representation space which are not, in general,
1 dimensional.

The state-labeling problem has been solved for
important particular cases: the groups of unitary,!
orthogonal,? and symplectic® matrices. In the first two
cases the matrix representations were found explicitly.
The solutions are based on the possibility of finding, in
each case, a chain of subgroups G, > G,_;, i=
1,2,--+, such that any irreducible representation
®(G,), when reduced to ®(G, ) =V,(G, )@
¥y (G,_1) @ - - -, contains each irreducible component
Y.(G,_,) at most once. However, similar chains of
subgroups do not exist for the five types of exceptional
simple Lie groups. Therefore other methods are needed
in these cases.

One such labeling method that has been used in
special cases* was recently generalized® to apply, in
principle, to any compact simple Lie group. It
describes the basis vectors of the representation space
as products of certain elementary factors. Practically,
however, the use of the method is limited to rather
low-dimensional representations of groups of low
ranks. The difficulties here are in finding the elemen-
tary factors necessary to label different representations
and in elimination of certain unwanted states.

The idea of our method is very simple. For complete
labeling of representation spaces of a simple Lie
group G, it is sufficient to embed G into a suitable
classical group G which has all representation spaces
labeled completely and to select out from the

representation space of G its subspace in which an
irreducible representation of subgroup G acts. Unlike
the method of elementary factors, our approach
enables us easily to find an explicit form of the matrices
representing G by making use of the Gel'fand and
Tsetlin results.-2

To facilitate the use of our method it appears
advantageous to consider each exceptional simple
Lie group separately. Because there is a one-to-one
correspondence between a simple Lie algebra and its
connected Lie group and also because the represen-
tation spaces of the algebra and the group obviously
coincide, we consider the Lie algebras and their
representations only.

The purpose of this paper is to solve the state-
labeling problem and to find explicitly matrix repre-
sentations of the simple Lie algebra G,. Our method
requires only a standard use of Gel’fand patterns.

There are two possible ways to proceed in the case
of G,. Indeed, the lowest-dimensional representation
of G, is orthogonal,® so that one can choose either 4,
or By as the simple Lie algebra containing G,. Accord-
ing to that choice, the G,-states will be labeled either
by Gel'fand patterns of 44 or B;. Our choice is A,
because it has a particularly simple structure of the
patterns needed in our problem [cf. (16)] and because
other exceptional simple Lie algebras can be conven-
iently embedded into an algebra of type 4, .

Section Il contains some mathematical prelimi-
naries. In Sec. III an embedding of G, into A4g is
explicitly specified by finding a projection of Ag-root
space onto the root space of G,. For a given repre-
sentation V'(G,) an optimal choice of representation
D (A4g) = ¥(G,) is made. Section 1V contains the state-
labeling lemma and linear transformations deter-
mining the matrices of generators. In Sec. V two
examples are considered. In the last section the relation
between the completely labeled states of G, and the
corresponding states of each simple subalgebra of
G, is given explicitly.
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If. MATHEMATICAL PRELIMINARIES

Let us first make several conventions and recall a
few facts about simple Lie algebras. So that we can
refer to this section in considering other cases, we do
not restrict ourselves by the algebras of types 4¢ and

G, only.
Suppose that a system of simple roots {«;}, i =
1,2,-++,n, has been chosen for any simple Lie

algebra G and the roots are numbered as in Fig. 1 of
Ref. 7. Let the system {«;}, which forms a basis in a
real Euclidean space R(G), be normalized by the
condition (fmay, max) = 2, Where oy, is the
longest simple root of G and (,) denotes the scalar
product in R(G).

It is convenient to use as well another basis {v;},
i=1,2,--+,n,in R(G), related to {«,} by

;=2 Mvj and by (s, ;) = ¥, ;)95
j=1 (ai s &j

. . 1)

The coordinates a; and a* of a vector
M = z az-'v,- = 2 aiai e R(G)
i=1 i=1
are related as
0= —2— (M) = —— $ ) )
(o, ) (55 o5) i=1 (o5, 02y)

In particular, the weights of a representation of G are
vectors of R(G) with integer coordinates a;.

Let us now restrict ourselves to the simple Lie
algebras of type 4,,.

A Gel'fand pattern’

My py1 My g1 °°° * Mpit,nt1
(8 = . ,
T Moo
myy
3
where m,, are arbitrary integers such that
My g1 2 Mpg 2 Mpp1gr1s and my g0 =0, (4)

is a vector of the space R(®(4,)) in which an irreduc-
ible representation ®(4,) acts. It is also a weight
vector of ®(4,) with weight M given by

n i+l z i—1
M o= z vi{_’{zlmk'i+1 + ZkZ mki - zmk_i_l}

i=1 =1 =1
n ) i n+1

= z‘xi{ kai i Z mk,n+l}, )
-1 &= n+1lz1

as can be verified, for instance, by comparing the set
of patterns (3) corresponding to the same irreducible
representation ®(4,) with the weight system of ®(4,,).
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If M is the highest weight of ®(4,), integers m,,in (3)
take their maximal values m,, =m, ,,, for any
p < q < n+ 1. Therefore, instead of (5), one has

n
M = zvi(mi,n+1 — Mypa,n41)

i=1
n T ) . n+1
n+1—i i
= 2% ——_Emk.n+1 - Z mk,n-H)'
i=1 ( n+1 =1 n+1r1

III. EMBEDDING OF G, INTO 4, )

In this section the embedding of G, into Ag is
specified by an explicit projection f* of the 6-dimen-
sional root space R(4g) onto the 2-dimensional
R(G,). For any given irreducible representation ¥'(G,),
we find the lowest-dimensional representation ®(A4,)
such that

D(4e) = D(Gy) =¥ (Gy) @V1(G) @ ¥(G @ - -,

©)
where ®(G,) is the reducible representation of G,
induced by ®(4,) and the ¥,(G,), i=1,2,---, are
other irreducible components of it. Few details of the
calculation are given because it is a particular case of a
general method.”

Let us denote the simple roots of G, by f; and §,,
and the basis of R(G,) conjugate to {8, , f,} by {1, 72}.
According to (1), we have

=26+ 38, and 7, =B + 26,. @)
To find the projection f*(R(4,)) = R(G,) one has to
insert the weights

M =7, My=1—1,,

M,=0, M;=7 —27,, ®)
of the lowest-dimensional representation of «, into
the Table I of Ref. 7. From that table one has imme-
diately

[*) = 3f*(vg) = 3* () = f*(ve) = 72,

My = —7 + 27,
My=—11+ 7

S¥*@y) = f*(5) = 1. )
Thus a vector M € R(4,) is projected as follows:
F¥M) = mi(ax + a5) + mo(a; + 2a; + 20, + ag)
= f,(&® + &) + By(a* + & + a* + &%), (10)

where the coordinates a; and a* are related by (2).
According to Theorem 0.11 of Ref. 8, we have

FHAID(4)]} = A[P(G,)], (11)
where A[®(G)] is the weight system of the representa-
tion ® of G, and also

(8™ = ("), 12)
where M and f*(M) indicate weights of (g). Con-

sequently, the same pattern (g), which is a weight
vector with an A4¢-weight M € A(Q(4,)) given by (5),
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is also a Gy-weight vector corresponding to the weight
[*(M) € A@(Gy).

The remaining problem to be solved in this section
is to find for any given irreducible ¥ (G,) a representa-
tion ®(4g) such that (6) holds. Obviously, many
representations of A, satisfy that requirement. There-
fore, it is a matter of convenience to choose from them
the one of lowest dimension and simplest structure of
its Gel’fand patterns (3). Our choice is made by the
following:

Lemma 1: Let ¥'(G,) and ®(A4;) be irreducible
representations of G, and Aq with the highest weights

Nh = al’Tl + a27'2 and Mh = azvl + al'Vz, (13)
respectively. Then:

(a) (4) > ¥ (Gy);

(b) if also Q(4) = Y(G,), then the dimension of

Q(A,) is not lower than that of ®(4,);
(c) patterns (3) form a basis in R(®(4,)) provided
my;=0 forany i<
and i=3,4,5,6,and 7,

and my; = a,.

(14)
(15)

Proof: Assertion (a) follows immediately from (9)
and (11). Assertion (b) is verified by calculating the
dimensions of all eight nonequivalent Ag-representa-
tion whose highest weights M@, i=1,2,---,8,
satisfy f*(M?) = N,. Any other representation
which has M in its weight system but not as the
highest weight is obviously of higher dimension than
®(Ag). Finally, (c) follows from the form (13) of the
highest weight M, and from (4).

my =a, + a,

Because in the following we shall deal only with
patterns satisfying (14) and (15), we can save con-
siderable space by rearranging their nonzero elements
and rewriting them as

m
“) (16)

( @+ a

a4 Mg
We shall omit also the first column containing co-
ordinates of the highest weight whenever this leads to
no ambiguity. The 4¢-weight M of (16) is given by (5).
The Gy-weight N of (16) follows from (5) and (10):

Mg Myz My Mhg My,

Mys Mgy Mayg Moy

2 .

N =f*(M) = 'rl(—mu +21(2m32 -_ mj3
=
— myy + 2my; — mis))

2
+ 72(2m11 + 3 (=3m; + 2m;5 + 2my,

=1

-_ 3m55 + 2m,~6) - 2a1 - a2) . (17)
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IV. LABELING STATES AND CONSTRUCTING
MATRIX REPRESENTATIONS

We start with the representation ®(4,) found in
Sec. IIl for any given irreducible representation
¥ (G,), and with its representation space R(®) spanned
by patterns (16). First, we express the G,-generators
as linear combinations of generators of 4. Since all
matrix representations of the latter algebra have been
found explicitly, we have thus obtained explicitly a
(reducible) representation ®(G,). In order to find the
subspace R(Y) of R(®), which is irreducible with
respect to the given representation V' (G,), we first find
one vector (g,) € R(Y). Applying linear transforma-
tions from ®(G,) to (g;), one can generate the whole
subspace R(Y). In addition, this procedure auto-
matically selects from the reducible representation
®(G,) its irreducible component ¥'(G,).

Following the notation of Gel'fand and Tsetlin,!
the Ag-generators as represented in ®(4,) are matrices
ILjand Iy — I, ;,,wherei#jandi,j=1,2,+--,
7, with the following commutation relations:

Ui Ikp] = Iz‘pa i#p,
[Iiks Iki] = Iii - Ikk,
Up, ;1 =0, if ks£p, i)

The coefficients of linear transformations I;;(g) are
known explicitly for all patterns (g) and all values of
the indices.! Consequently, the matrices I;; are known.

It can be verified, e.g., using the commutation
relations, that the representation ®(G,) of G,
generators is

le = Iy — Ias + Iss — Igq,s
Hﬂz = %(Iu — Iy + 2133 — 2155 + I — I77),
E—ﬂl = Igy + Igs,

1 _
E, = \7§'(I21 + \/5143 + \/2 Iy + Ig),
) ) _ (18)
E—ﬂl—ﬂz =-—=(—Iy + \/2 Iy — \/2 Iy + I3p),

J3
1 _ _
E—ﬂ1—2p2 = \_/_3(_\/2 Iy + Ies + 15 — \/2 I7y),

E—ﬁl—3ﬁ2 = —I5 + I,
E—2ﬂ1—3ﬂ2 = Iy + Iy,

and the generators Ey , E; , * * +, etc., corresponding
to positive roots, are obtained from E_5 ,E 4 ,- -,
etc., by permutation of indices of each ;.

Our solution of the G,-state-labeling problem is
contained in the following:
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Lemma 2: Let ¥(G,) be an irreducible representa-
tion of G, with the highest weight N, = a;7; + a,7,.
Then a basis in the representation space R(Y) consists
of the vector

(g) = ay+a, ap+a;, - a4+ a a1+az)
8n) = a a, a
(19)
and all linearly independent vectors
By o E_pi(g)E“‘ﬁi(l)(gh)’ (20)

where i(k) =1 or2and 1 < k < 10a; + 6a,.

Proof: Let us first show that (g,) € R(Y). According
to our convention (16), (5'), and Lemma 1, the A,-
weight M, = a,», + ay7, of (g,) is the highest weight
of ®(4,). Its multiplicity is just one, and itis the only
weight of A(®(4,)) which is projected by f* into N,,.
Then, from (12), one concludes that (g,) must belong
to R(Y). The linear transformations E_; and E_j are
explicitly given by (18) and Ref. |. Each operator
E_,, subtracts the simple root §;, i = 1,2, from the
welght of the pattern. The assertion of the lemma then
follows from Theorem 0.5 of Ref. 8. The maximal
value of k is equal to the maximal number of simple
roots B;, i = 1, 2, which can be subtracted from the
highest weight N,. Its value may be found, for
instance, in Ref. 6 or 8.

In fact, we have already solved also the second part
of our problem, i.e., we have found the matrix elements
of G,-generators in the representation ¥'(G,). Indeed,
the matrix elements are obtained by applying the
linear transformation (18) to the vectors (19) and (20)
of R(Y).

Suppose (g) is one of the basis vectors (19) and (20).
Then the generators in the representation W'(G,) are
effectively given by the linear transformations

2
Hp,(g) = ("‘mu + El(zmn — Mz — My
i=
+2mys — mje))(g),
2
H,(8) = %(2mu + 3 (= Im 2+ 2

— 3mys + 2myg) — 2ay — az)(g),

Eh(g) =gllag3(g;3) + ale(gie))s
E_;(8) =1—21 [b3a(832) + bis(£i5)],

J. PATERA

E;(g) = \_/lg-(aiz(giz) + g,l[\/E a3y(gl)
+ 2 ali(gl) + aé7(gé7)]),
E_,(8) = J%(bél(gm) + 2 1VZ bis(ely

+ 2 b8l + bis(gé'a)])- @

Here (gj_,,) denotes a vector obtained from (g),
where in each pattern m;, ; has been replaced by
m; . + 1. Similarly, (g, ,) is obtained from (g)
by substituting m, , , — 1 for m,, ; in each pattern.
If such a replacement should contradict the defining
inequalities (4), the corresponding pattern would be
zero. The coefficients @, and b are given in Ref. 1.
For the remaining generators one can either write the
linear transformations using (18) as above or find the
corresponding matrices by commutation of E.,
and E g, .
V. EXAMPLES

To illustrate our method, we consider two examples.

(1) Let N, = 7,, Then, from (13), M, =, and
both W(G,) and ®(4g) are 7 dimensional.® Conse-
quently, the state labeling is trivial: Both spaces
R(®) and R(Y) have common orthogonal basis
consisting of patterns

m m m

(22)
The matrix representation of generators is obtained
when (22) is used in (21).

(2) Let N, = 7,. Then from (13), M, = », and the
dimensions of ¥(G,) and ®(4,) are 14 and 21,
respectively.® The basis of R(Y') is spanned by vectors

111111)

() = (&) = (11111

e 111111)
() = E_»,(2) (11 o

(8) = E_p(g5) ~ (111110) + Ji(llllll)’

11110 11100
111110 111111
=FE_ ~ 2 "
(80 = E_p,(8) ~ /2 (11100 ) + (11000 )
111110
= E_ ~
(gs) ﬁz(g4) (11000 )

111100) (111111)

(ge) = E—[il(g«l) \/2(11100 10000
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111100 111110)
= E_ ~/ + ’
(&) = E_p(2) (11000 ) (10000

111100
= E_ ~?2
(8) = E_5(2o) ( o~ )

111110 11111
+ (10000 ) + (00000 )

111100)

(80) = E—p,(87) ~ E_p,(g0) ~ (10000

(8w) = E—ﬂz(g7) ~ E—ﬁz(gs)
= {111000 111110
~ ./2 s
J (11000 ) + (00000 )
(gu) = E—ﬂz(gs) ~ E—p(gm)
= (111000 111100
~ 2 ,
\/ (10000 ) + (00000 )

(810) = E_p,(g1) ~ (110000) + \/5 (111000),

10000 00000
110000
= E_ ~ ,
(212) ﬁz(g12) (00000 )
100000
= . 23
(s (00000 ) 23)

Because the vectors (20) are not normalized, we have
omitted common factors in (23); ~ denotes propor-
tionality. As in the first example, the matrix repre-
sentation of generators is obtained when (23) is used
in 21).

VI. SIMPLE SUBALGEBRAS OF G,

It is in the nature of problems in physics that we are
often interested not only in a particular group but also
in some of its subgroups. Therefore it is useful to
know not only a complete basis in R('Y’) but also its
relation to representations of a subalgebra G contained
in ¥'(G,). Once again one can repeat the embedding
procedure of Sec. Il for G < G;, find the corre-
sponding projection f* of R(G,) onto R(G), and refer
to Dynkin’s theorem in order to conclude that G,-
weight vectors are also weight vectors for G. Below,
only results of such calculations are given (see the
general method in Ref. 7), ie., the G-weights of
Ag-patterns (16) used for labeling of G,-states.

There are five different simple subalgebras in G,.?
In order to specify completely each subalgebra, its
type and index®1° j, are indicated in each case.

(1) Subalgebra 4,; jg = 1; y, and y, are the simple
roots, and {0y, o0} is the basis conjugate [cf. (1)] to
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{y1, 72} Then
f¥r) =0+ 0, and f*(r) = 0y,
and consequently
f*¥(N) = oy[—myy + 2(myy + myg) — (15 + My)
—(myy + may) + 2(my5 + my;)
— (mys + mye)] + aa[myy — (myy + myy)
+ myy + My + myy + My — (g5 + My)
+ myg + my — (2a; + a5)), (25)

@4

where N is given by (17).
(2) Subalgebra A4;; j; =1; y is the simple root.
Then
f*@) =y and f*(r) = dy. (26)
Using (17) and (26), one has
F*WN) = $y(myy + mas + mys + myy — 20, — ay).
@7
(3) Subalgebra 4,; j; = 3; v is the simple root.
Then
f¥r) =3y and f*(r) =v. (28)
Using (17) and (28), one gets
SHWN) = Yy(my + myg + mys + myy + myy + myg
+ m26 - 401 - 2a2). (29)
(4) Subalgebra 4,; j; = 4; y is the simple root
[rr) =2y and f*(rd) =7. (30)
From (17) and (30), one has .
SXWN) = y(mys + Moy + myg + mgs — 2a; — ay).
€)Y
(5) Subalgebra (principal) A;; j, = 28; y is the
simple root
S*() =5y and f*(r) = 3y.
From (17) and (32) one gets
SEWN) = y(my + muy + My + myz + mys + my,
+ My + My + Moy + myg + myg — 6ay, — 3a,).

(33)

(32)

ACKNOWLEDGMENT

I am grateful to Dr. A. K. Bose for several stimulat-
ing discussions.

! 1. M. Gel'fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71,
825 (1950); also Supplement Il of I. M. Gel’fand, R. A. Minlos,
and Z. Ya. Shapiro, Representations of the Rotation and Lorentz
Groups and Their Applications (Pergamon, New York, 1963). The
results were rederived and signs of final formulas corrected in G. E.
Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).



3032

21. M. Gel'fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71,

1017 (1950); also Supplement I of Ref. 1.

3 D. P. Zhelobenko, Usp. Mat. Nauk 17, 27 (1962) [translated in

Russian Math. Surv. 17, 1 (1962), Chap. 13].

1V, Bargmann and M. Moshinsky, Nucl. Phys. 23, 177 (1961);

M. Moshinsky and V. S. Devi, J. Math. Phys. 10, 455 (1969).

5 R. T. Sharp and C. S. Lamm, J. Math. Phys. 10, 2033 (1969).

J. PATERA

¢ For example, see A. K. Bose and J. Patera, J. Math. Phys.
11, 2231 (1970).

7 A. Navon and J. Patera, J. Math. Phys. 8, 489 (1967).

8 E. B. Dynkin, Am. Math. Soc. Transl., Ser. 2, 6, 245 (1957).

? E. B. Dynkin, Am. Math. Soc. Transl., Ser. 2, 6, 111 (1957),
Tables 16 and 25.

10 J. Patera, Nuovo Cimento 46, 637 (1966).

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 10 OCTOBER 1970

Rough-Surface Scattering: Shadowing, Multiple Scatter,
and Energy Conservation

P. J. LyNcH AND R. J. WAGNER
TRW Systems Group, Redondo Beach, California 90278

(Received 16 February 1970)

Multiple-scatter and shadowing effects are included in an extended theory of high-frequency
scattering from a surface rough in one dimension. The single-scatter probability of slopes relation,
corrected for shadowing, is an immediate consequence for any stationary random process. The
double-scatter contribution (shadow corrected) is derived as well, and it provides a significant correction
for surfaces with appreciable rms slope. The total power scattered by a perfectly reflecting rough surface
is numerically evaluated as a test of energy conservation; the results show that the double-scatter
formulation is substantially more accurate than the conventional single-scatter, unshadowed theory,
particularly in the cases of large angles of incidence or very rough surfaces.

1. INTRODUCTION

The current interest in remote sensing? has
focused attention on the interaction of radiation
with surfaces. The classical theories®* have dealt
with surfaces of regular shape. The applications to
the irregular, “rough” surfaces more appropriate to
ocean and land, however, are usually based on
assumptions tailored for computational ease. In
particular, the Kirchhoff, or physical-optics, boundary
conditions are used® to provide an expression for the
angular scattered intensity which, upon subsequent
ensemble averaging, reduces to a mathematically
tractable form. The popular basis for the Kirchhoff
approximation is that the surface curvature be
negligible in a wavelength, but it is more instructive to
view it as a “‘local”” approximation. Thus, it is a valid
representation when only the surface region in the
immediate vicinity is responsible for the field at a
surface point.® On the other hand, this approximation
will give rise to serious errors when the nonlocal
effects of shadowing and multiple scatter are prevalent.
These latter effects are especially important near
grazing incidence or for general angles of incidence on
irregular surfaces with appreciable rms slopes.

The physical-optics theory provides. some freedom
in the choice of wavelength, but the additional
restriction of geometrical optics yields an exceptionally
simple angular distribution of scattered energy. Only

those portions of the surface which can connect the
incident and final directions by specular scatter take
part in the scattering process. For a random rough
surface, the average scattered intensity is proportional
to the probability density of these specular slopes.
This result has long been evident for normally dis-
tributed surfaces,” but Barrick® has extended the
result to any stationary random process. Again, the
theory is in error because of the neglect of multiple
scatter and shadowing. Indeed, it is easy to show that
energy is not conserved. The objective of this paper
is a geometrical-optics theory of scatter from a
1-dimensional surface which contains all double-
scatter corrections as well as a consistent formulation
of shadowing. The vehicle for comparison with the
single-scatter, unshadowed theory will be the energy-
conservation integral. Though the choice of cylindrical
symmetry is hardly physical, the results will certainly
provide estimates of the severity of multiple scatter
and/or shadowing as well as the critical range of
angles for both effects.

The procedure is to make use of the incoherent
nature of the scattering in the geometrical-optics
realm and simply sum the scattered intensities from
every (planar) surface element. We construct a ray
trace, in principle, for each surface element and seg-
regate the elements in classes according to the
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Multiple-scatter and shadowing effects are included in an extended theory of high-frequency
scattering from a surface rough in one dimension. The single-scatter probability of slopes relation,
corrected for shadowing, is an immediate consequence for any stationary random process. The
double-scatter contribution (shadow corrected) is derived as well, and it provides a significant correction
for surfaces with appreciable rms slope. The total power scattered by a perfectly reflecting rough surface
is numerically evaluated as a test of energy conservation; the results show that the double-scatter
formulation is substantially more accurate than the conventional single-scatter, unshadowed theory,
particularly in the cases of large angles of incidence or very rough surfaces.

1. INTRODUCTION

The current interest in remote sensing? has
focused attention on the interaction of radiation
with surfaces. The classical theories®* have dealt
with surfaces of regular shape. The applications to
the irregular, “rough” surfaces more appropriate to
ocean and land, however, are usually based on
assumptions tailored for computational ease. In
particular, the Kirchhoff, or physical-optics, boundary
conditions are used® to provide an expression for the
angular scattered intensity which, upon subsequent
ensemble averaging, reduces to a mathematically
tractable form. The popular basis for the Kirchhoff
approximation is that the surface curvature be
negligible in a wavelength, but it is more instructive to
view it as a “‘local”” approximation. Thus, it is a valid
representation when only the surface region in the
immediate vicinity is responsible for the field at a
surface point.® On the other hand, this approximation
will give rise to serious errors when the nonlocal
effects of shadowing and multiple scatter are prevalent.
These latter effects are especially important near
grazing incidence or for general angles of incidence on
irregular surfaces with appreciable rms slopes.

The physical-optics theory provides. some freedom
in the choice of wavelength, but the additional
restriction of geometrical optics yields an exceptionally
simple angular distribution of scattered energy. Only

those portions of the surface which can connect the
incident and final directions by specular scatter take
part in the scattering process. For a random rough
surface, the average scattered intensity is proportional
to the probability density of these specular slopes.
This result has long been evident for normally dis-
tributed surfaces,” but Barrick® has extended the
result to any stationary random process. Again, the
theory is in error because of the neglect of multiple
scatter and shadowing. Indeed, it is easy to show that
energy is not conserved. The objective of this paper
is a geometrical-optics theory of scatter from a
1-dimensional surface which contains all double-
scatter corrections as well as a consistent formulation
of shadowing. The vehicle for comparison with the
single-scatter, unshadowed theory will be the energy-
conservation integral. Though the choice of cylindrical
symmetry is hardly physical, the results will certainly
provide estimates of the severity of multiple scatter
and/or shadowing as well as the critical range of
angles for both effects.

The procedure is to make use of the incoherent
nature of the scattering in the geometrical-optics
realm and simply sum the scattered intensities from
every (planar) surface element. We construct a ray
trace, in principle, for each surface element and seg-
regate the elements in classes according to the
number of intersections the incident ray makes with
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the surface. The average of the single-scatter intensity
yields another general derivation of the probability of
slopes theory, though it is automatically corrected for
shadowing. The averaging of the double-scatter
intensity is also carried through under the assumption
of negligible correlation between the two surface
scattering points. The result is complicated analytically,
but it represents no difficulty to the computer. The
integration over all physical angles of the scattered
intensity yields the energy integral. A numerical
evaluation for the double-scatter theory demonstrates
energy conservation.

2. PARTIAL-SURFACE REPRESENTATION

We consider radiation of unit intensity and beam
width S, incident on an irregular surface described by

= {(x, y) = {(x). The incident and scattered rays
are contained in the (x, z) plane, and the sense of
the angles is clockwise (Figs. 1 and 2). We restrict the
wavelength to the geometrical-optics limit; i.e., the
wavelength is small compared to all surface parameters.
The scattering process is incoherent in this limit as each
surface element simply specularly reflects the incident
radiation.® The radiation arriving at any surface
element may come not only from the incident beam
but also from prior scattering by another surface
element. Also, a given surface element may be shielded
from the incident beam if the illumination direction is
nonnormal. These two effects of multiple scatter and
shadowing must be accounted for in a proper sum-
mation of scattered intensities from each surface
element.

We imagine a ray trace for each sutface element,
and we will include that element in one of a number of
classes depending on the character of that trace.
Initially, we divide the total surface into two parts,
2 =Q+ Q, where every surface element in Q is
visible to the incident beam with direction k,. The
elements in ' are shielded from the incident beam,
and their ray traces have zero weight. The illuminated
subset is now split into two parts, Q = Q, 4 Q/,
where every element in €, is characterized by a
specularly scattered ray k, which does not intersect
the surface elsewhere (Fig. 1). For every element of the

F1G. 1. The scattering configuration for a surface element in £2;.
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FIG. 2. The scattering configuration for a surface element dS$ in Q,.

subset Q) = Q, + Q;, the ray k; does intersect the
surface again, but now €, is defined as a smaller
subset with the property that the follow-up ray k,
does not intersect the surface elsewhere (Fig. 2). We
continue this bookkeeping until we achieve an empty
subset, say Q, ., (a maximum of n surface scatterings):

2.1

The ray trace associated with any surface element
in Q begins with the incident beam and follows all the
subsequent surface interactions. The initial polari-
zation is taken as either vertical or horizontal, and the
scattered radiation will retain this polarization because
of the cylindrical symmetry. The incident power
intercepted by a surface element dS; in Q is unit
intensity times the elemental area projected onto the
incident wavefront, i.e., (—k,-#,)dS,. If the re-
flectivity is r(k, + fy) (for either vertical or horizontal
polarization), then the power leaving dS, in direction
k,, due to the excitation by the incident beam, is

dp(x,) = dp, = r(ﬁo . ﬁl)(_ﬁo i) ds,. (22)

If dS; is an element of €2, , then dp, leaves the surface
for good. The probability that dp, is visible 'to an
observer oriented at angle 6 is Pg (6) = 6[0 — 6,(xy)],
where 6; = —6, — 2 tan™'s, by Eq. (A3). Here s, is
the surface slope at point x; . Thus, the power reflected
into 6 from a dS, € is Py (6) dp,, and the total
power reflected into 6 from €, is

Soy1(0, 6y) EJ‘Q dsl(_f‘o . ﬁl)r(f(o - i)

x 0[6 — 0,(0,, s1)]. (2.3)

If the element 45, does not belong to £, , it belongs
to Q;, and the infinitesimal column bearing dp,
intersects the surface about some point x,, cutting out
an element of area S, . The prime is to emphasize that
this area is dependent on the size and orientation of
dS, . The power leaving dS, in direction k,, due to the
excitation of dS; by the incident beam, is

dps = r(ﬁl - fiy) dp; . (24)
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If dS, € Q,, dp, leaves the surface. The probability of
reflection into a given observation angle 6 is Pq,(6) =
6(6 — 6,(x,)], where 0, = (w + 0p) + 2(tan"15, —
tan~ls,) by Eqs. (A3) and (A7). The total power
reflected into 6 from Q, is then ‘

Soy«(0, 6o) EL dsl("‘f‘o . ﬂ1)"(1‘(0 * ﬁ1)"(ﬁ1 + fi)

X O[0 — 04(0,, 51, 59)].  (2.5)

We can generalize the above for n scatterings. The
scattering effect of the rough surface on the incident
radiation can then be written as

So}’(e» 00) = SO ZV&(B, 00)

=f ds; cos (a)r,6(60 — 0,)
nl
+f dSl CcOs (al)rlrgé(o -— 02) + L
Q3

4+ 1 dS;cos(a)ryry- - r, 86 —0,),
2
(2.6)

where (—k, - 8,) = cos «;, and an obvious abbrevia-
tion for the reflectivities has been introduced. Now,
cos «; must be positive, for all the ; lie in the il-
luminated subset. Also, the reflectivities are positive, so
that each term in Eq. (2.6) is positive. Thus, by taking
just the first m terms as an approximation, we have a
lower bound to the scattered intensity.

The total scattered power is found by integrating
Eq. (2.6) over all observable angles —37 < 6 < §.
Since the 0, in the & functions are restricted to the
observable range by the partial-surface construction,
we have

v
suf% 46 7(0, 6,)

= | dS,; cos (a))r; + f dS; cos (o))ryry
Qg

231

+ -4 f dSycos(a)ryrsr,. (2.7)
Qn

Again, each term is positive, so that the retention of
the first m terms provides a lower bound to the total
scattered power. There is no absorption for a perfectly
conducting surface, and so the right-hand side of Eq.
(2.7) must equal the incident power when r = 1. From
Egs. (2.1) and (2.7), we have

.
f A6 10, 607 = 1] = s‘,—lfa'!s1 cosa, =1, (2.8)
—3= o]
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for the projected area of the illuminated subset must
make up the beam front. This statement of energy
conservation provides a useful standard for testing the
validity of a theory of rough-surface scattering; in
particular, it provides a basis for comparison of Eq.
(2.6) with the uncorrected single-scatter theory.

3. ENSEMBLE AVERAGE OF SCATTERED
INTENSITY

As it stands, Eq. (2.6) appears to be no more than a
formal device for keeping track of the final destinations
and magnitudes of the incident rays. However, the
application of this equation to the problem of scatter
from random surfaces permits the replacement of
deterministic surface classes by known probability
functions. We will view {(x) as one of an ensemble of
possible surfaces generated by a stationary random
process and calculate the ensemble average of (6, 0,).

We can convert the integrations over the £2; into
integrations over the entire surface X by defining two
functions which take on only the values of zero and
unity. Thus, we introduce an illumination function
€(x; ko), which has value unity if the surface point at x
is illuminated from k, and which has value zero if that
point is shadowed. In addition, we define »(x, k;) to
have value unity if the specularly scattered ray which
leaves point x in direction k, intersects the surface at
some other point, whereas it has value zero if k; does
not intersect the surface again. With these definitions,
we can now write Eqs. (2.3) and (2.5) as

Soa(6, 60) = f S, cos (a)r(c0s ap)e(xy; ko)
X

X 1 — (x5 kIS0 — Oy(s)]s (3.1
Soy=(0, 00) =-LdS1 cos (ey)r(cos o)r(cos ay)

X e(xy; kohw(xy; ky)

X (1 — v(xg; ko)]0[0 — Oy(s1,82)].  (3.2)

Here, X, is the point of intersection of the ray k; , and,
as such, it depends on the initial illumination point x, .
The integrands are independent of the y coordinate
because of the cylindrical symmetry.

It is a trivial matter to average Eq. (3.1). The surface
element is dS; = (1 + si)* dxydy, and cosea, is
dependent on x, only through the slope 5, [Eq. (A4)].
Thus, Eq. (3.1) depends on x; only through s(x,),
€(x,), and »(x;). For any stationary random process
there are no preferred points, so that the probability
distribution P(s,, €, ¥; x;) [= P(s;, €, %)) is in-
dependent of x,. Therefore, the averaging process
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leaves a trivial coordinate integration:

So<yl(05 00»
r L ©
=f d ylf dxlf ds,
-L ~L —®

X 21: Zl:op [s1, ex(ky), vi(k)]fa(s1)

€1=0 v1=

X (1 — 1’1)6[0 - 01(51)]
— QL)L) f " ds\P [s1, (ko) = 1, (k) = 0]
X fi(sD)0[0 — 6,(s1)), 3.3)

Ay =0+ sf)’}[cos az(s)]ra(sy)- (34)
The segments along the x and y axes cut out by the
incident beam are taken here as 2L and 2L’, res-
pectively, so that, in these terms, Sy = (2L")(2L) cos 6,.
The ray k; must intersect the surface if |0, > 4=
(Fig. 2). Thus, P [»(k,) = 1] = 1 for |6,| > 4=, and
P(s,, ¢ =1, », =0) must vanish for this range.
For |6,| < }w, the probability that the ray k; does not
intersect the surface elsewhere is equivalent to the
probability that the point x, is illuminated by the ray
—k, . By use of Eq. (A3), s5,(6,) = —tan [4(6, + 6,)],
we can change the integration variable in Eq. (3.3) to
0,:

(y1(6, 6))

ir
=secl,| db,

—57

X fi(s)d(6 — 0y)
= sec 0, d—;‘gi) ‘ P [sl(e) = —tan (00—;—@):'

X P[ey(ky, —k) = 1] 5:(0)IAilsy(6)]- (3.5)
The conditional probability in Eq. (3.5) is the prob-
ability that a surface point is illuminated from both
the incident and final directions, given that the slope
at the point is the specular slope. Equation (3.5) can
be checked against the familiar result for normal
statistics by the assumption of full illumination and
the use of Eqgs. (3.4) and (A4) and the identity

tan (60 + 0) _ (sm 6 + sin 00). (3.6)
2 cos 0 + cos 0,

The conditional probability of Eq. (3.5) has been
the subject of several theoretical investigations, each
with somewhat different results. The formulation by
Sancer,'® which combines techniques of both Smith!*
and Wagner,!? seems to be the strongest theoretically,
and it yields the best numerical results by far for the
energy-conservation calculation in Sec. 6. We list: his

where

dst;(el) P [51(6,), ex(ky, —ky) = 1]

1
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results for a normal random process:
P [e(6,,0) = 1 |~5'1(6)]
= [l + 2(B + Byl = S(6, 6p)), —37r<0<0,
= (1 + 2By = S(0,), 0<0<b,,
= (1 + 2B)! =5(06), 0,<6<}m,
(3.7
where
B = [4mVexp (V3 — (mIV(1 — erf V)],
(3.8)
V = [0 |tan 6|12, 3.9
8 = 2%s,. (3.10)

The quantity B, follows from B by replacement of
by 6,. The rms slope of the surface is s,.

An approximation must be made in carrying out
the averaging process for Eq. (3.2). The integrand
depends on x; and x,(x;) through s(x,), s(x,), e(x),
»(xy), and »(x,). Therefore, for a stationary random
process, the appropriate probability density depends
on [x, — x;|. We will neglect this dependence and
assume no correlation between the random variables
at points 1 and 2. Though this might seem to be a
severe restriction at first, it actually makes con-
siderable physical sense. As the angle of observation
must lie in the physical range {0] < 4, the double-
scatter process, 6, to 6, and 6, to 6, will almost always
consist of a pair of slopes s, and s, which are ap-
preciably different in value. But the slope of a random
surface changes appreciably in a correlation distance
T. Thus, we expect |x, — x;| > T for the typical case,
and the correlation effects will then be perturbations.
With this assumption, the coordinate integration is
again trivial and, from Eq. (3.2), the average intensity
takes the form

So(va(8, 60))
L L 0 [+
':f dylf dxlf ds,| ds,
—L’ -L —00 —o0
1 01 1

x>y 2 Plsy, sz, €x(ko), v1(ky), va(ksy)]

€1=0 v1=0 vo=0

X fo(51, sp)ewa(l — v,)0{0 — 04(s;, 5,)]
= (ZZL)(ZL’)J‘m dsgfw ds,

X P[sy, 52, €1(ko) = 1, v)(ky) = 1, wy(ky) = 0]

X fo(s1, 52)0[0 — Bx(sy, s9)], (3.11)
where

Filsis s = (1 + sDHeos ax(s)lrsra(s:, 59 (3.12)
Once again the probability density must vanish if
{02] > 4, for the probability that k, intersects the
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surface at some further point x; is then unity. For
|6;] < 3, the probability that k, does not intersect
the surface elsewhere is equivalent to the probability
that point 2 is illuminated by —k,. It is clearly
advisable to change variables in Eq. (3.11) from (s,, s,)
to (8,, s1), where the equations of transformation are

_sitan [§(6, — 0] — 1
s{ + tan [3(6, — 6)]
The last equation is derived in the Appendix [Eq.
(A8)]. The new integration ranges are —n < 0, < 7,
—o0 < §; < oo, for every s, in the infinite range can
be coupled with some s, to reach a fixed 6, by multiple
scatter. On the basis of the preceding remarks on the
probability density, Eq. (3.11) now takes the form

705 80))
= sec 6, f o, f " s, | 252051, 0)
— —© 302
X fals1, $a(s1, 03)16(6 — 65)
X P [s1, 55(51, 03), &x(ko) = 1,
ex(—kp) = 1, »y(ky) = 1]

(3.13)

’
§1 =58, S

@ (]
= sec 190f_wds1 Z—S; folsy, 59
X P[sy, 53, e(ky) = 1, e(—Kk) = 1, »(k;) = 1],
(3.14)
where
8 = s1 tan [3(6, — 0)] =1
*T s+ tan [3(6, — 6)]
and
0s; _1d+ sp) sec® [3(6, — 0)] . (3.15)
06 2 {s, + tan [$(6, — O)]}®

By comparison with Eq. (3.5), we see that both the
simple linear combinations of incident and final angle,
(6, + 0) and (6, — 6), must enter for an accurate
description of the scattering. It remains to express the
fifth-order probability density in terms of known
functions. We now specialize to normal statistics.

4. DOUBLE-SCATTER PROBABILITY DENSITY

We will simplify the notation slightly and replace
the statements (k) =1 and »(k))=1 by the
symbols 7;(k;) and I;,(k,), respectively. The probability
density of Eq. (3.14) can be broken up and written as
the product of five probability functions, four of them
conditional:

P[s,, Sg, Iy(ky), I15(ky), Io(—Kk)] = P(s)P,P;P3P,,
4.1)

P. J. LYNCH AND R. J. WAGNER

where
P, = PlIy(ky) | s1], - (4.2)
Py = P[Iy(ky) | 51, Ii(ko)], (4.3)
Py = P[s} | s, Ii(ko), Ia(ky)], (4.4)
P, = P[Iy(=K) | 51, 53, Ii(ko), T1o(k))].  (4.5)

The quantity P, is simply the probability that a
surface point with given slope s, is illuminated by the
incident beam. For normal statistics, it has the
form?°

P, = S(0y)u(cot 8, — s,), 4.6)

where S(6,) was defined in Eq. (3.7) and u is a step
function with value unity for positive argument and
value zero for negative argument.

The function P, is the probability that the ray k;
intersects the surface at point 2, given the slope and the
fact of illumination at point 1. If |6;] > 4w, this
probability is exactly unity. For |6;] < 4w, P, can be
recast exactly in terms of monostatic and bistatic
illumination probabilities. By the argument used
previously in Sec. 3, we have

Py=Pnk)=1 I 51, 11(Ko)]
=1—Pnk)=0 |Sl’ I, (ko]
=1 — P[L(—ky) Isl’ Liky)], 104 <37 (47)

But, P[I;(ky, —k,) “1] = P[I(k,) Isl]Plll(_kl) sta
I (ko)], so that, for the entire angular range of 6,,

Py = 1 — P[I,(ky, —k;) ISI]/Pls 64] < 3,
Py=1, 16,] > 37 (4.8)

The shadow functions are expressed mathematically in
Eqgs. (3.7) and (4.6).

Approximations must be made for the probabilities
P, and P,. We note, first, that the explicit condition s,
can be suppressed in both since the two conditions
I (ko) and I,,(k,) are sufficient to determine the slope
at point 1 from Eq. (A3). In words, Py = P[s? | ;(k,),
I5(k,)] is the probability density for the slope at the
intersection point 2, given that point 1 is illuminated
by the source and given that the specular ray k, does
intersect the surface at point 2. The condition 7,(k,) is
important for 6; equal to and somewhat larger than
the incident angle (P, vanishes for 0 < 6; < 6,), for,
here, the requirement that k, not intersect the surface
while k, does will restrict s2 to slopes near that of k,.
For other 6,, with the continuing assumption that
points 1 and 2 are well separated (s; and s? are then
uncorrelated), slope statistics at point 2 are primarily
affected by the condition of “illumination” at point 2.
In the absence of an extended shadowing theory, we
make what seems to be a reasonable and accurate
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approximation and neglect the condition 7,(k,):

Py~ P[s I Io(ky)]- (4.9)

A mathematical statement for the right-hand side of
Eq. (4.9) has been derived by Wagner'? for normal
statistics, and the result is consistent with the work of
Smith.1* The distribution of slopes which can be
illuminated by k, is again normal. As the range of
illuminated slopes varies with 6,, the normalization
factor for the conditional statistics is dependent on 6, :

Py~ (—2—) u(sy — cot 6)P(s3), 0< 6, < 3,
1 —erf V]

~

)u(cot 6, — P,

—£7T<01<0:
(4.10)

(1 —erf I}

2
~ ——Po, 7} :
(1 +eer1) D, 16 > b

where
Vl = [6 Itan 61”—15

P(s) = (n0®F exp (=s¥8%), 6 =2%,. (4.11)

Once again, the u’s are step functions, with value unity
for positive argument and value zero for negative
arguments.

The complicated P, is exactly unity in the double
range —7 < 6, <0,0< 0 < 0,. For this combi-
nation of (6, 6;), point 2 is to the left of point 1
(Fig. 3). The surface to the right of point 1 cannot
intersect k, because of the condition I;(k,). The ray k,
connects points 1 and 2 because of the condition
I ,(k,). The ray k will always be to the left of k, if
0 < 0 < 0, and so cannot intersect the surface for
this range of observation angles.

There are no certainties for other combinations of
(0, 0;). As an example, consider the case 0 < 6; < =,
where the point 2 is to the right of point 1 (Fig. 2).
Even when 0 < 6 < 0,, the distance between the two
points may be such that the surface can intersect the

FIG. 3. P, is exactly unity for this configuration of angles.
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ray k to the right of point 2 while the ray —k, achieves
sufficient altitude to clear. From this last, it is clear
that I;(k,) is still an important condition for angles
outside of the special double range, but there is no
theory available for P, as it stands. In order to
proceed, we drop the conditions on point 1 for (6, 6;)
outside the double range. This leaves

P, ~ P[I,(k) l S5, Ia(kp)],
—lr<0<0 or 6>6,,

and
0<0<b,,

Equation (4.12) has the superficial appearance of a
bistatic illumination probability, but the ray k;
originates from a surface point rather than from a
source at infinity. This distinction effectively divides
the 6, angular range into subranges |0;| < 47 and
|6,] > 3. First we note that s is the slope connecting
k, and k. But, from Eq. (4.9), P, is zero unless s3(s,)
can be illuminated by k; [the step functions in Eq.
(4.10) permit only those values of s, for which this is
true]. Thus the only s permitted in Eq. (4.12) are
those which are illuminated by k,, and the only
distinguishing feature, with respect to illumination,
between the conditions 59 and 1;,(k,) is the origin of k;
at a surface point. For |0;] < 4w, the two conditions
are very nearly redundant (see next paragraph), and
I,(k,) can be dropped with negligible error. Equation
(4.12) then has the form of Eq. (4.2) with 6, — 6 and
sy — 59. If 9 is illuminated by k,, it is illuminated by
—k, so that the mathematical statement of Eq. (4.12)
is

0<6, <. (4.12)

P[Iy(k) | s3, I'1a(ky)] =~ P[I,(k) ' sa] = S(0),
0] < 47, 0< 6, < 3m,
and

—in<0<0 or >0, —-ir<b, <O

(4.13)

When {6;] > 3w, the fact that k, originates from a
surface point can affect the probability that k reaches
the observer. Thus, there are ranges of 8, (7 + 6,) <
6 < §m, for 0, negative (Fig. 3) and —}r < 6 <
—(m — 6,) for 6, positive (Fig. 2), for which k lies
below —k,; and so must strike the surface with
certainty yielding zero for Eq. (4.12). For k just above
—k,, the effect of I;,(k,) on the shadowing of k
should decrease fairly rapidly with increasing angular
difference. In order to proceed mathematically, we
will assume a stepfunction behavior at k = —k, with
P, = 0 when k lies below —k, and P, = S(0) for other
k. This concludes the breakdown of P, into illumi-
nation probabilities. We can now group the preceding
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results together:
S(0), 0 <0, <im,
[1, 0<0<b,,
S(@), other 0, —ir <6, <0,
Py~ [1, 0<06<0,,
ul(w + 6,) — 61S(6), other 6,
b < —4m,
ulf + (m — 6)15(6), 6, > 3.
(4.14)

The quantity S(6) is defined in Eq. (3.7).

5. (y5(0,65))

We wish to combine the results of Sec. 4 with Eq.
(3.14). As a preliminary, we streamline Eq. (4.14) by
the introduction of yet another function w(f, 6,)
which takes on only values of zero and unity:

- < 61 < Os
.1)

w®,0)=0, 0<0<0, and
=1, all other (6, 6,).

We can now construct the function

S0, w8, 001 = 1 + (0, 0)[S0) — 1], (5.2

which assumes the forms S(6) or unity in accordance
with Eq. (5.1). By Egs. (5.1) and (5.2), Eq. (4.14)
becomes

1, 0 < 01 < ‘%ﬂ',
1, —ir <0, <0,
P, = 516, w0, 6] {17 0~ O
01 < —%77',
ulf + (7 — 6],
61 > %ﬂs
(.3)

where the fact that u[(m + 0,) — 6] =1for 0 < 6 <
6y, 0, < —4m has been used.

The substitution of Egs. (4.1), (4.6), (4.8), (4.10),
and (5.3) into Eq. (3.14) yields the following expression
for the double-scatter coefficient:

ajt+1 .
ds,T(sy, w)A(sy),

aj

4
(7«0, 60)) = gl (5.4)

where

2

- = 0
PSS, o6, 0]

T(s;, 0) = P(sl)S(oo)(

X sec 0,

0
%;—2 fis1, ) (5.5)
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and
(rom 5) ul(® + ) — 6],
(1 ;EZ:;) u(—s, — tan ;)

(4,) = X u(s) — cot 8)), (5.6)
( S(ogéo) Y)uceott, - s,
(1—1—;—%) ul(r — 0) + 0,]

The integration limits in Eq. (5.4) are
a; = — o, a, = —tan [4(6, + 7)), a3 = —tan }6,,
= tan [}(37 — 0,)], and a¢; = cot §,.

6. ENERGY CONSERVATION

An important application of the scattering formal-
ism is the calculation of the total power scattered into
the physical range of angles. It is especially instructive
to consider a conducting surface, for we know what
the result should be from Eq. (2.8):

3
| By 0,07 = 1) = 1.

It has been shown!® for a normally distributed surface
that the uncorrected probability of slopes theory does
not, in general, satisfy Eq. (6.1), with the deviation
from unity dependent on incident angle and roughness.
When shadowing alone was accounted for, the con-
servation condition was fulfilled at grazing incidence.
In this section we present and discuss a ‘computer
evaluation of Eq. (6.1) for the single- and double-
scatter coefficients as applied to the case of normal
statistics. A number of roughnesses and several
incident angles are considered. The results are then
compared with the uncorrected theory and the
conservation condition.
The equation of interest is

N(6p) = Ni(65) + Ny(6,)

P14
=L,,d9 [(r1(6, 665 1 = 1)) + (¥2 (6, 05 r = 1))].
(6.2)

We use Eqs. (3.5) and (3.6) for the single-scatter
theory N;(0,) and Egs. (5.4)-(5.6) for the double-
scatter correction N,(0,). In addition, we evaluate the
totally uncorrected theory M(6,), which follows from
Eq. (3.5) by setting the illumination probability equal
to unity. For a perfect reflector,

(6.1)

bz
M(6;) = f ds1Ppormu(s)(1 + 5 tan 8), (6.3)
1
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TasLE 1. Energy-conservation coefficients.

0, 0, s,=tanl10° tan15° tan30°  tan45°
1° M 1.0000 0.9998 0.9167 0.6828
N, 1.0000 0.9984 0.8308 0.5262

N, 0.0000 0.0015 0.1450 . 0.3752

N 1.0000 0.9999 0.9758 0.9014

15° M 1.0000 0.9984 0.9168 0.7162
N, 0.9999 0.9946 0.8359 0.5522

N, 0.0001 0.0048 0.1397 0.3595

N 1.0000 0.9994 0.9757 0.9116

30° M 0.9997 0.9905 0.9192 0.8201
N, 0.9988 0.9791 0.8514 0.6338

N, 0.0011 0.0180 0.1251 0.3071

N 0.9999 0.9971 0.9765 0.9410

45° M 0.9950 0.9713 0.9415 0.9973
N, 0.9889 0.9482 0.8788 0.7645

Na 0.0096 0.0436 0.1021 0.2063

N 0.9985 0.9918 0.9809 0.9708

60° M 0.9741 0.9536 1.0369 1.2715
N, 0.9532 0.9150 0.9123 0.9055

N, 0.0394 0.0712 0.0753 0.0846

N 0.9926 0.9862 0.9877 0.9901

75° M 0.9710 1.0420 1.4277 2.0284
N, 0.9123 0.9172 0.9497 0.9711

N, 0.0742 0.0714 0.0449 0.0262

N 0.9865 0.9886 0.9945 0.9973

89° M 4.5449 6.6339 13.7000  23.3580
N, 0.9862 0.9909 0.9960 0.9980

N, 0.0126 0.0084 0.0037 0.0019

N 0.9989 0.9993 0.9997 0.9999

where
b, = —tan [}(37 — 6))]
and

by = tan [$(6, + 4m)]

from Eq. (A3). The numerical results are presented in
Table 1. The quantities Q = M, N,, N,, and N are
evaluated for the seven angles at the left and the four
rms slopes between tan 10° and tan 45°.

It will be noted that M(8,) is too small for angles
near normal incidence and much too large for angles
near grazing. The former ‘“‘energy loss” is a con-
sequence of the single-scatter theory in that all surface
slopes are available to scatter the incident radiation.
Therefore, surface elements with slopes outside the
range b, < 5, < b, scatter the incident rays into final
directions outside of the physical range —in < 6 <
3. The double-scatter theory &, returns much of the
lost radiation to the observation range. The infinite
catastrophe for near-grazing incidence is due to the
neglect of shadowing corrections. The incident beam
intercepts a surface length of sec 6, times the beam
width. The same amount of energy is incident regard-
less of 6, so that the large intercepted surface for
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6, — 3 is greatly shadowed. An appropriate shadow-
ing theory will eliminate the sec 6, factor. The quantity
1 — M(B,)is displayed in Fig. 4 for several rms slopes.

The shadow-corrected, single-scatter theory has the
property Ny(8,) < M(8,) over the entire range of 6,.
This makes sense, for not only is there the energy loss
associated with M, but in addition the shadowing
correction in N, reduces the output into any nonzero,
observable direction. Of course, any scattered ray
which is shadowed is a multiply reflected ray, and N,
must account for part of this shadowed radiation.
This is clearly the situation as, from Table I, we note
that N(6,) is much closer to unity than M(6,) for all 5,,
save for the odd angular range where M passes unity
on its way to infinity. In this latter respect, we note
that N(0,) < 1 for all 8,. This is most gratifying, and
it is a result dependent on the choice of shadow
correction, Eq. (3.7). The shadowing theory of
Wagner, e.g., leads to numerical results for ¥ which
approach unity at grazing incidence from above.
Thus, the energy-conservation integral provides a
standard against which the various shadowing
theories may be judged. We display 1 — N(6j) in
Fig. 5 for comparison with Fig. 4.

The numerical results differentiate between the
relatively smooth 10°, 15° surfaces and the rough 30°,
45° surfaces. Thus, for the surfaces with modest s,,
the quantity N,(6,) starts off at or near zero for normal
incidence, then rises to some maximum as 0, increases,
and finally falls back slowly to zero as 6, approaches
grazing. Now, the most likely slopes for scatter are
—tan a < § < tan «, where tan « = § = 235, and «
is defined relative to grazing. For a reasonably smooth
surface and normal incidence, the scattered rays are
not likely to strike the surface elsewhere. As 0,
increases from zero, the normals to the important
range of “far” slopes (the positive slopes of Fig. 1)
make larger angles with the incident rays. Therefore,
the scattered rays leave these slopes at larger angles
from the z direction. The probability of multiple
scatter thus increases as 0, increases. However, the
far slopes are also being shadowed, with only the
unimportant steep slopes initially but with the shadow-
ing condition eventually extending to positive slopes
< tan a as 6, increases. The maximum multiple scatter
occurs near 47 — 6, = a; for increasing 6,, the slopes
responsible for multiple scatter are increasingly
shadowed.

For the rough surfaces, on the other hand, there is
multiple scatter for all angles of incidence. The
quantity &, is a maximum at normal incidence and
decreases monotonically with 0,. This decrease for
increasing @, arises because the normals to the
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Fic. 4. Energy nonconservation for the uncorrected scattering theory, with rms slope as parameter.

important “near” slopes (negative slopes of Fig. 1)
make smaller angles with the incident rays. The
corresponding scattered rays leave the surface at
smaller angles relative to the z direction and, thus, are
less likely to intersect the surface again. At }7 —
6, < «, this mechanism is joined by the substantial
shadowing of far-side slopes responsible for multiple
scatter. The table indicates that the double-scatter
formalism is not sufficient for s, = 1 and near-normal
incidence; i.e., the higher-order scattering coefficients
in Eq. (2.6) are not negligible. The monotonic de-
crease of muitiple-scatter effects with 6,, however,
means that an accurate description is still possible for
some range of angles prior to grazing.

7. CONCLUSIONS

A ray-optics approach has been applied to the theory
of scattering from l-dimensional, random rough

surfaces. In principle, the theory can account for
shadowing and all orders of multiple scatter. As a
practical matter, shadow-consistent descriptions of
both single and double scattering are presented in
terms of known functions. The former is just the
familiar proportionality of scattered intensity with the
slope probability density, but now the appropriate
illumination probability is included as well. The
double-scatter correction provides computational
accuracy; it has appreciable value for large angles of
incidence on relatively smooth surfaces and for all
angles of incidence, save grazing, on the rough
surfaces (s, = tan 20°). In order to test the ability of
the theory to conserve energy, a numerical evaluation
of the energy integral is carried out for a perfect
reflector. The double-scatter formulation successfully
accounts for the incident energy when s, < tan 30°,
and it is far superior to the conventional single-scatter,
unshadowed theory for any rms slope.



ROUGH-SURFACE SCATTERING

3041

0.1
0.05}—
) s = 0,466
=057 /0
> —— 0= 0.087
0 4{{{__“
50 = 0.268
=)
2
z '0.‘] P
1)
-0.2}-
-0.3 | | ] | | | ] |
0 10 20 30 40 50 60 70 80 90
%

F1G. 5. Energy-conservation discrepancies for the corrected scattering theory and the s, of the previous figure.

APPENDIX

We derive here the basic geometrical quantities
appearing in Eqgs. (3.5) and (3.14). We first consider the
parameters associated with point 1 and define

(AD)

—Ko- B, =cos oy, f;+%=cosp,

where f, is measured clockwise from the z axis. It
follows immediately that the slope at point 1 is
s, = —tan ;. From Fig. 2,

0, =0y + 20y, Bi=0p+ o, (A2)
so that .
Br = 36, + 6)
and
s5; = —tan f; = —tan [}(6, + 0] (A3)
We can also write cos o, in terms of 6, and s;:
cos a; = ¢os (ff; — 6,)
= (1 + 3 ¥cos 6, — 5,sin B,). (A4)

The procedure for point 2 is the same. We define

—ky By =cosa,, fy-2=cospB,, (AS)

and f3, is measured clockwise from the z direction.
The slope at point 2 is 5, = —tan f8,. From Fig. 2, the
angle between —k; and the z axis is # — 0;; thus, we
have

ay— Pp=m—0;, 20,=(m—0)+ 0. (A6)
The solution of the preceding pair of equations yields

B = —4(mr — 0, — 6,), and

s, = —tan f, = tan [3(m — 8, — 6,)]. (A7)
By use of the relation 6, = —f, — 2 tan™! 5, from Eq.
(A3), we obtain s, as a function of s, and 0,:
1 —_— —
5y = sy tan [3(6p — 6,)] 1 (A8)

s; + tan [§(6, — 6,)] .
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The remaining quantity needed is cos «, as a function
of s, and 0,, for this is the argument of one of the
reflectivities, Thus, from Eq. (A6),
cos a, = cos [$7 + 3(6; — 6))]

sin [$(6, — 6,)]
= —sin [§(6, + 6,) — B.]
= —(1 + ) {sin [3(8 + 0,)]

+ 5, €08 [4(6, + 6,1}

(A9)

The reflectivities will be written here for convenience.
If we distinguish them as ry = |Ry|® and rg = |Ry|®
to denote vertical and horizontal polarization, re-
spectively, then we have

K cosa; — (K — 1 + cos® oc,-)*
Kcosa; + (K — 1 + cos?a)t’

Ry(cos a;) =
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Here, € is the relative complex permittivity, and u is
the relative permeability.
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Case’s technique utilizing Green’s functions for dealing with boundary-value problems of the neutron
linear-transport theory is exploited. We show that the Fourier coefficients of the Green’s function over the
Case spectrum are precisely the normal modes. In particular, if we assume that the scattering kernel is
rotationally invariant (which indeed we do assume) and approximate it by a degenerate kernel consisting
of spherical harmonics, the set of modes is deficient for problems lacking azimuthal symmetry. We also
show that the expansion of the scattering kernel, in terms of spherical harmonics (or any set of orthogonal
functions for that matter), permits the linear factorization of the Fourier coefficients of the Green’s
function in terms of the lowest element, with the proportionality functions consisting of complete
orthogonal potynomials. As a consequence of this attribute of Fourier coefficients, the eigenfunctions
(continuum and discrete) also factorize, which then permits decoupling of the appropriate singular
integral equations. To illustrate our idea, we solve half-space and slab problems. However, the basic
procedure is kept sufficiently general so that the extension to problems involving other geometrics
remains straightforward.

~

1. INTRODUCTION

The normal-mode (eigenfunction) expansion tech-
nique of Case,! in dealing with boundary-value prob-
lems, has achieved considerable success in the types of
problems for which the normal modes (continuum
plus discrete) form a completeorthogonal set. However,
there are several problems of interest, for instance, in
the theory of neutron diffusion and kinetic theory of
gases,? where the sets of modes are either deficient or
the appropriate integral equations are regular. In

particular, in a recent paper by Case et al.,? it has been
shown for spherical geometry that one cannot directly
adapt the above-mentioned technique. In this paper,
we consider the Green’s function approach also due to
Case. We show that the Fourier coefficients of the
Green’s function for the appropriate neutron 1-speed
transport equation over the Case spectrum are pre-
cisely the normal modes. In particular, if we assume
that the scattering kernel is rotationally invariant
(which indeed we do assume) and approximate it by a
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degenerate kernel consisting of the spherical harmon-
ics, then the set of modes is deficient for problems
lacking azimuthal symmetry. However, if the index of
degeneracy is allowed to approach infinity, then the
deficiency of that set vanishes. Furthermore, we also
show that the expansion of the scattering kernel, in
terms of spherical harmonics (or any set of orthogonal
functions for that matter), permits the linear factori-
zation of the Fourier coefficients of the Green’s
function in terms of the lowest element with the
proportionality functions which consist of complete
orthogonal polynomials. This attribute of Fourier co-
efficients then leads to the factorization of eigenfunc-
tions (continuum and discrete) and the eventual
decoupling of the singular integral equations. The
main advantage of Green’s function technique over
the normal-mode expansion technique is that the
normal modes appear “naturally” in the Green’s
function, with the additional terms (if any) which
make the set complete also appearing as an integral
part of it.

To illustrate our idea, we solve half-space and slab
problems. The latter type of problems are treated in
somewhat greater detail than the former. In particular,
two limiting cases of thick and thin slabs are con-
sidered. We begin by first presenting the basic for-
mulas? and relevant mathematical tools.

2. BASIC FORMULAS

In the 1-speed approximation,? the neutron-trans-
port equation we consider is

(1 + Q- V)¥(r, Q)
- f dQf(Q - Q)¥(r, ) + 0(r, R), (1)

where & is the unit velocity vector, ¥ is the angular
density, Q is some given source function, and f (£ - ')
is a rotationally invariant scattering kernel. The appro-
priate Green’s function satisfies

(1 4+ 2-V)G(r, ;1,2
= f AR - )G, Q' 1y, o)
+ 8(r — r)0(R2 - ). (2)

The quadrature for the angular density is

¥(r, Q)
- f 40 G, R; ¥, )0(F, &)
vV

+ f dQdS'G(r,R; 1), )i(r) - R, Q), (3)
S

where V is the volume in which the angular density is
to be determined, S is the boundary of V, r, is a point
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on S, and #; is a unit normal pointing into V. The
integral equation for the surface distribution ¥'(r,, &)
is

¥(r,, Q)

=f dQ'd*r'G(r,, R; 1', )01, ')
14

+f dQ'dS'G(r,, ; 1, Q)ii(r;) - QY (r;, Q)
8

= 0. )]
The object is to construct the Green’s function
from Eq. (2) and solve the integral Eq. (4) for
the surface distribution® ¥(r,, 2). Having obtained
W (r,, ), we then determine the angular density ¥'(r, )
by Eq. (3). The basic mathematical tools relevant
to such a treatment are the elementary use of Fourier
transforms and the theory of singular integral equa-
tions of the type
BEIW + =8 |~ A 9T6) =10, ()
27i Jr v —
Reduction of Eq. (4) to the integral equation (5)
should become obvious soon. .

3. GREEN’S FUNCTION FOR THE 1-SPEED
TRANSPORT EQUATION AND
EIGENFUNCTIONS

In this section, we take a cursory look at the
relationship between the eigenfunctions of the 1-speed
transport equation and the Fourier components of the
corresponding Green’s function. We express the scat-
tering kernel f(& +L') in Eq. (1) in the degenerate
form

i n_ N2+ 1 ,
f@-o)=3s=pp@.2),
where N is arbitrary. Usmg the addition theorem for
spherical harmonics, i.e.,

P(Q-Q) = () Yin(R)

7
m=—1 21 + ( )

in Eq. (6), the 1-speed transport equation then may be
written as

(1+Q-V¥(r, Q)= Z 2 bY (YY), (8)

0 m=—1

where the inner product is defined by

o) = f 4Qf(R)g(R). ©)

Let us consider the Fourier transform of Eq. (8), i.e.,
set

lF(l', ﬂ) = 1)3 Jdakeik"wk(ﬂ)- (10)

2
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Then, Eq. (8) becomes
1+ ik Q@ =3 5 bY@
The appropriate Green’s function satisfies
14+ -V)G(r, 2; 1y, )
= % i lszzfn(QXGYzm) + 6(r — 1)3(R - ).

=0 m=—
(12)

To construct the Green’s function, let us take the
Fourier transform of Eq. (12); i.e., set

(11)

G(r, R; 10, Q) = f Phe gk, Q; R,y).

(13)

(8- Q)

14 ik-Q°
(14)

Now, every solution of Eq. (14) must be of the form

~%bh RN 5L - )
FTS T rik-@ 1+ ik-Q’
where &, = (gY,,) are to be determined. If we
multiply both sides of Eq. (15) with Y;.,(S2) and
integrate over £2, we get a system of linear inhomo-
geneous equations for &, . They are

(2n)®
The result is
YR
g(k, R, @) =lz b,—‘—(—)—

Y,
1+1k-9<g lm>+

Ermlk, S2¢) + (15)

YA Y
Ak, Qo 6,6 m,—b/—M>)
l,zmél ( 0)( i m l\1+lk'9
= }Il”m’(gﬂ) . (16)
1 + ik M SZO
Simple calculations will show that
/ YltnYl’m’ \
\1 + ik -Q/
2md fl Wy (4, 0)Y,, (u,0)
= LTMOmpy m\f%s Ny Ve
1+ ik i\ H
By using this simplification in Eq. (16), we get
N Yy S20)
Em m = Um\“ ™0 , 17
z=2|:m|l 1w(k) 1+ k-9, 17
where
Aip(k) = 0y — Zﬂbf Yiu(pt> 0) Yy (g2, 0)-
ik
(18)
When the determinant (the dispersion function)
A (k) = det A7) (19)

of the system (17) is nonzero, for any fixed m, we have
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the unique solution

S duli) Yem(S2%)
viml A, 14+ kR
where d,,(}) denotes the signed minor of the matrix

(#47) associated with the /th row and the /’th column.
In particular, the homogeneous equations

£, = m<I,  (20)

Y ()
~ S, £ (k) =0 21
g l’Em ll+ik-9§lm( o) @1
and
l; Eimty =0 (22)

then have the unique solutions g = 0 and §,,, = 0.
On the other hand, when A, =0, Eq. (22) and,
consequently, Eq. (16) have nonzero solutions, and
the number of linearly independent solutions is equal
to the nullity of the matrix (4]%) (i.e., the difference
between its order and its rank). In any event the most
general Fourier representation of G is of the form

Olr, @10, ) = )3 3 b Y ()
fdak ik-{r—T¢) 5 1Im\> 9&g) ‘flm(k 90)
14ik-Q

etk “(r—rg)

14 ik-Q°
(23)

We note that the Fourier components &,,, of G, given
by Eq. (20), are sectionally holomorphic functions in
the complex k-vector space, with a branch cut for
k = —joo to —iand i to ico, and they have poles at
the zeros of the dispersion function A,,. In what
follows, we look at £, in terms of their relation to the
eigenfunctions of Eq. (11) over this spectrum (the
Case spectrum),® and also examine a certain recurrence
relation leading to the factorization of &,,, in terms of
the lowest element &,,,, .

Our first immediate observation is that, for a fixed
direction of k, the difference of boundary values of
&,,, about its branch cut are precisely the continuum
eigenfunctions? of Eq. (11); i.e., if we denote such
functionals by E,,(k, &), then

E,(k, &, ¢) = &u(k. L, 6) —
or, explicitly,

MR- d*k
+ &( o)(2 )sf

ik, Qs @) (24)

N

Elm =ll=z| IYl’m(Qk; ¢)
AL+ ikQ)_ AL+ ikQy).
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satisfy Eq. (11). Here, Q, = k -, and + (=) denotes
the boundary value as k approaches the branch cut
from the left (right) side. On the other hand, if k; is a
simple zero? of A, (k), then the discrete eigenfunction
[of Eq. (11)] is given by

Flm(kj9 Qlw ¢) = ]}l_gcl(k - kj)slm(ka Qk’ ¢)s (26)

ie.,

1 N l Y Qs,
Funlkyy Qo $) = —— 3 dm( ,,k,-)————' (. 9),
A (k) v=Tmt "\l 14+ ik,;Q,
27

where A’ (k;) is the derivative of A, (k) evaluated at
k = k]'.

It may seem peculiar at first sight that, for a fixed
point in the Case spectrum, there are N number of
eigenfunctions for / ranges from |m| to N. However,
we shall see presently that all such eigenfunctions are
not distinct. In fact, they differ from the lowest eigen-
function (/ = |m|) by a multiplicative factor which is
a polynomial in (i/k). To see that, consider Eq. (16)
rewritten in the form

ik - Q \
m6’67mn‘1 +b/Ytn-_—_ m )
gﬂfl(ll ( b)) l\ll+k9l/
— Yl'm'(go)
14 kR
Using the recurrence relation for spherical harmohics,
Qlem(SZ) = Alel+1 m(g) + Al—l mYl—l m(g)’ (29)

where

(28)

- 3
A, = ((l +1—-mi+1+ m))’ (30)

Q@+ D@2+ 3)
we obtain

z(b, — 1)&;,, + Alm§l+1m + A mbiam
= _ZYIm(QO)s (31)

where, for convenience, we have put k = i/z. From
this equation, we conclude that

Elm = hlm(z)smm + Wlm(za szo), (32)

where 4,,,(z) are complete orthogonal polynomials (in
the Stieltjes sense) satisfying the following 3-term
recurrence relation:

Almhl+1 m(z) + Z(bl - l)hlm(z) + Al—l mhl—l m(z) = 0’
(33)

and W,,(z, Q) are also polynomial in z. Equation (32)
gives us the desired factorization of &,,, (mentioned
above) in terms of the lowest element &,,,,. Two
immediate consequences of this equation are (1) the
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factorization of eigenfunctions and (2) a convenient
representation of the dispersion function A,,. In
other words, we have

Elm(v’ Sz) = hlm(v)Emm(v: 9))
Flm(lvi H Q) = hlm(vi)me(lyi ’ 9)’

(34)
(33)

and
A(z2)=1- Zlg Ibzhzm(2)< = """\- (36)

Equations (34) and (35), of course, follow by defini-
tions (24) and (26), while Eq. (36) is obtained merely
by substituting &, in Eq. (28) by means of Eq. (32).
In particular, for the lowest element &‘mm, we have

Am(z)fmm(zs 9) = Z z VVlm(z 9)
- k

I=|m]
X ((Slm - bl<Yfm——z—a Y, \)
Z = 3

mm/ ’
(37)

from which we may readily construe the explicit forms
of the lowest eigenfunctions.

The results of this section may be summarized as
follows:

(i) The Green’s function for a degenerate kernel of
the form given by Eq. (1) was Fourier transformed.
For the Fourier components (£,,,) of G, we obtained
a set of inhomogeneous linear algebraic relations.

(ii) It was then shown that the difference of bound-
ary values of &, about the Case-spectral line gave
rise to the continuum eigenfunctions of Eq. (11), while
the discrete ones consisted of the

’V,-) Elm >

()

lim (z —
2>v4
v; is a simple zero of A,,.

(iii) Using the recurrence relation for spherical
harmonics, we obtained a 3-term inhomogeneous
recurrence relation for £,, which permitted us to
express all &, linearly in terms of the lowest coeffi-
cient £,,,. As a consequence of this factorization,
all the eigenfunctions for fixed m and » (or »,) become
proportional to the corresponding lowest eigenfunc-
tion, with the factors being orthogonal polynomials
in » (or v,).

We may remark here that result (ii) is valid inde-
pendently of the geometry, the type of functions used
to express the scattering kernel, and the rank N of
degeneracy. Result (iii), on the other hand, though
valid for any geometry, is crucially dependent on the
fact that we expanded the scattering kernel in terms of
orthogonal functions. In other words, the Fourier
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coefficients of G satisfy a 3-term inhomogeneous re-
currence relation of the type given by Eq. (31) if and
only if the scattering kernel is expanded in terms of a
set of orthogonal functions. The coefficients then
factorize in the way given by Eq. (32) and the corre-
sponding eigenfunctions as given by Eqgs. (34) and (35).
As a final remark, we wish to state that the above
factorization of &,,,, in terms of a single lowest ele-
ment, is not possible if the scattering kernel is a
function of all velocity components, such as in the
energy-dependent case.?

In what follows we shall restrict our treatment to
1-dimensional problems. In particular, for the purpose
of illustrating the general formulation discussed above,
we shall consider half-space and slab problems. For
the latter, the angular density in two asymptotic
limits of thick and thin slabs will be given.

4. ONE-DIMENSIONAL PROBLEMS (GENERAL
FORMULATION)

The 1-dimensional version of the Fourier repre-
sentation of the Green’s function [Eq. (23)] is

G(x, ; xp, ) = — Zb Yin(S2)
ik ezk(w—azo) 5 (k o
X m\Ks
Lo 1+ ikp v
® et'k(x—mo)

1
M(R-Q)— | dk ,
+ )27rLo 1+ ikp

(38)

where y = £+Q. Let G, denote G for x > x,, and
G . for x < x,; the point source is presumed to be at
x,. First, consider x > x,. In order to express G in
terms of eigenfunctions of Eq. (11), as discussed
previously, consider the integral in Eq. (38) over the
contour C shown in Fig. 1. Assuming that A,, has no
zeros on the real k axis, the sum of the integrals from
— o0 to oo and that around the branch cut equals the

K PLANE

(]

Fi1G. 1. Contour x > x,.
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residue arising from the zeros of the dispersion
function A, (k) in the upper-half k plane®; since
X > xy, the integral along the semicircle at infinity
gives zero contribution. Hence

G, = zi Z blYlTn(Q)

mTi,m

X fimdkeik(z—zo)( Sl—m _ ?-m )
i A+ ikp)_ (1 + ikp),

M
+i2bY L (R2)Y ¢~ (e m}vm,p 1m(Vim; » S20)
i,m j=1

ozl ©
+8(@- Qe 28, (39)
7
where M is the total number of zeros »,, of A,, in the

upper-half k plane, ®(u) is the Heaviside step func-
tion, and F,,(v..,, $2) are the discrete eigenfunctions
of Eq. (11). The explicit form of F, , is as given by Eq.
(27), with k; replaced by ifv,,

Putting k£ = ify in Eq. (30) and using the Plemelj
formula

1/ — @)y =T (v — W] F imé(v — p), (40)

we re-express G, in the form

1 N
m=—N1

S ;—'Mz

x (fr [ l(v e (1,8

} earn ©
T il Do) + E(y Q)16 2

M
+ 27 zle—(z_mo)/vmfFlm(”m, ’ 90))
j=

(0]

+ 6(9 sz) —(Z—Eo)/ﬂ (al't) (41)
where we have now identified &, (v, ) — & .(v, Ry)
with the continuum eigenfunctions E,, (v, ;) [Egs.
(24) and (25)] and have used the identity

N 1
z z "‘elm = z z Alm (42)

1=0 m=—1 m=—N l=|m|

We note that the singular part of G, is appropriately
expressed in terms of the continuum eigenfunctions
and has a Cauchy-type kernel, but that the second
term on the right-hand side contains the sum of the
boundary values of §,,,, which are not eigenfunctions.
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However, if we write Eq. (17) in the form

l’m(szo)

_”O

Z 5zm(z Q)A7(z) = (43)
and consider the difference of its boundary values as
z approaches the cut (—1 < » < 1) from the top and
the bottom, then we obtain

N
2 A — A GONER + )
N
= 2 (A + AT)(E — )

— Amipd(u — po) Yrn(S2o), (44)

which relates &;,, + &, to the eigenfunctions
S—lkm - El_m(:_: Elm)'

By means of this equation, we may now replace the
second term in Eq. (41) by the right-hand side of Eq.
(44), if we note that [see Eq. (18)]

AT () — AL (@) = 4" ibu Y (Q)Y,,(R). (45)

Thus, using Eqgs. (44), (45), and the factorizations
given by Eqgs. (34) and (35) in Eq. (41), we get

N e—im¢

G, = 4
""_'E'N /"'Ymm(.u’ 0)
! d” —(z—ac Vv mm("’s 0)
9 0
(2711 oy — U Anll?) = 4ty
+ %B ( ) mm(.u" 0) ——(ac—a:o)/u@( )
i
+ i 8(u — po)e” =@ ()
x(db- - 3 eme®), @9
where
Ay(p,v) = E M 2 () — Al (W), (47)
N
B.(w) = Z M W) + A (W (p), (48)

Al (1) = 8y, — 2h,

X [ e F O Yo, 0,
(v — ¥)s

and h,,(v) are polynomials given by the recurrence
relation (33).

(49)
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Similarly, for x < x,, we have
N —im¢
G.=— S
m=—N l‘l’Ymm(.u’ 0)
° d _ E, (v, &
v (_l—ﬂ.'j v e—(:c wo)/vAm(Iu’ 'p) m (7‘; 0)
27wi Jav —u 47%iy

mm(.u’ 0)

+ %Bm( ) *(z—zo)/ng(_‘u)

+ ze—(a:—zo)/vm,Am([u’ _'Vm,)
— pud(u — po)e” ‘“"”"”“9( —1)
x (068 = 3 emes).

m=-—N

F'mm(_vmj ’ sz0))

47t

(50)

A few remarks are due here. In the expression (46),
the last two terms cannot cancel so long as N, the
rank of degeneracy of the scattering kernel, is finite. In
other words, for the problems lacking azimuthal sym-
metry, the set of eigenfunctions (E,,, Fp..) do not
possess half-range completeness for degenerate kernels.
This was to be expected, because any arbitrary func-
tion of ¢ cannot be expanded in terms of a finite set of
e'm®, Consequently, the last two terms are there to
substantiate the deficiency of the set (E,,,,, Fun), a8
may be seen by letting N approach infinity; the terms
cancel, and hence the deficiency becomes zero. On
the other hand, for azimuthally symmetric problems,
the above set is complete over the half-range of »;
this is readily seen by integrating Eq. (46) with respect
to ¢ from 0 to 27. The same remarks apply to G,

5. APPLICATIONS
A. Half-Space Problems

As an application of the above formulation, let us
first consider the half-space problems. Shifting the
point source to the origin (x, = 0), we may write
the integral for ¥'(x, &) [see Eq. (3)] in the form

—zm¢
Q+ S £
f(x ) m=z’ N U Ymm(:u 0)

_1. tdy —a/v
% (55 | B P A AT
+ %Bm(u)e‘“"‘@(/t)f‘m(u)
+Ze"/""‘fA (TR729) bd (v,,,]))

Z e—lm¢

T m=—N

Y(x, Q) =

)

+ O (‘F(o Q) —

x J; 'm0, p, ¢')), (51)

where f(x, ) is the angular density due to source
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and where
L) = f dQ'u¥ (0, ') —Ei—"‘(:—s—z—) (52)
4y
and
SZI
I, ) = f AQUT0, ) ﬁl’ﬂ—"‘——’ (53)
¥t

are the coefficients to be determined from the given
boundary condition. An equation that determines
them is

N
YO =70+ 3 3
X (—1—5‘

e—im¢

1
3[4 (u )T)
27

+ 3B, (W1, (1) O (1)
M
+ 3 Al vm,)F:’n(vm,))

0y — U

1 ¥ .
+ ®(/z)(‘1"(0, Q- 3 e

W m=—N

27 ,
XJ dd'e’™ (0, u, qS’)). (54)
0
In solving this integral equation for any specific
problem, we assume that'¥'(0, &) for x > 0 is known,
so that

1 2 im
00 = - L dde™ W0, Q), u>0, (55

is also known. This entails a considerable amount of
simplification in the solution of the integral Eq. (54).
If we multiply it by ¢ and integrate over ¢ from 0
to 2, we obtain a set of 2N + 1 decoupled integral
equations of the form

Lo 4T
2mi Jov—pu

+ 3B, (wWI'(p) = @, (u), (56)
where

D,.(11) = 1Y (i, OY (0, 1) — fu(1)]

M
= 2 An(s ) L(Vm,) (57

and

1 27 .
Fuwy =L f dpe™1(0, Q). (58)
27 Jo

The set of Eqgs. (56) are singular integral equations,
which may be solved by the standard procedure due to
Muskhelishvili.® In fact, an elaborate solution for
m = 0, but arbitrary N, has been given by Mika.,1
Since the procedure for m 5 0 is the same as for m =
0, we merely state the pertinent results.

Let us assume that the zeros of A, (z) [see Eq. (36)]
are nondegenerate and the polynomials 4,,,(z) [see
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Eq. (33)] are simple, i.c., of degree precisely / — m.
Splitting the kernel in Eq. (56) into the singular and
the regular parts, we rewrite it in the form

An() — AL (w) [ dv
2mi 5'fo vy —u Tu(®)

+ HALW + AT () = B(w), (59)

where

D, () = O(p)
1 ldva(v) Am(.us 'p) — Am(/'t’ :u)

27i Jo v —u
(60)
and where we have used the fact that
Ap(u, 1) = Ag(u) — An(u) (61)
and
B (1) = Aj (W) + AL(w) (62)

[compare Eqgs. (15), (16), and (17) with Eq. (36)].
In Eq. (60), the integral may be written as a sum over
the moments of I',,(») as follows:

Am(,u’ 'V) _ Am(;us :u)
v—u

Ny o Y.(u0
= 4772iluymm(,u’ 0) z bl—M [hlm("') - hlm(["’)]
1=|m| Y—nu
(63)
If we write 4,,,(») as
B = 3 Cell, mp, (64)

k=0
then

h —h b |m] k-1 L
m(¥) lm(/u) - 2 ZCk(l, m)u ~i~1,,3 (65)
Y —U k=1 j=0

Substituting the appropriate ratio in Eq. (63) by
means of Eq. (65), we obtain

Am(ﬂ) ’V) - Am(.ua .u)
v—p

N
= 47T 0)_ 2 biTin(is O

1—|m] k—1
x Coll, myp==47.  (66)
0

k=1 j=

Denoting the moments of I, (») by g;,,, i.e.,

1
Eom = f T, (3), 67)
0

we re-express @,, [Eq. (60)] in the form

N
B (1) = Pu) = 27t Yo 0)_ 3 biYin(s 0
=|m|+

I—|m} k—1

X 2 ch(l’ m):u' _j_lgim- (68)
k=1 j=0
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The solution of Eq. (59) is

Ar() + AL() ~
=0
) = s or)
AALB)  2mide v — A
(69)
while the conditions that determine I') (v, ) are
m(u)
duy W) =0 j=01,---,M—1,
f e _ Q,(u) =0, j
where (70)
1 1 (* du
- —————— - —_— A+ . 71
) = o (- [ 2 areazn). 01

Equations (70) give just the sufficient number of con-
ditions to determine the unknown discrete coeflicients
I“:n(vm,). The moments g;,, may be evaluated by using
Eq. (67).
B. Slab Problems

Let us take the volume V¥ under consideration to be
the slab between x = —}L and x = {L. Assuming
that there are no sources (Q = 0), we see that the
integral representation of ¥'(x, L), by virtue of Egs.
(3), (46), and (50), is then

N
Y(x, Q)= >

m=—N ,qum(y’ 0)
1
X (QLJ‘ i e—(z+4}L)/vAm(/" ‘V)P(,:,)(’V)
2rmiJov —

+ 3B, (e L)) (1)

e—im¢

M
+ z e_(z+1}L)/Vm,Am(H, vmj) D(r}z)(vmi))

i=1

+ DG ) (xp(_%L, Q) — 2L
N . 27 o i
x 3 e[ Tapensvi—iL.u )
m=—N 0
N e—im¢
m==N UYpmm(p, 0)
[}
x (955 | 77 e TR0 A
2riJav—u

+ 1B, (e O(— ()
M
+ Y e A4 (4, —v,,)D ("?(”””))

i=1
— AR~ (VUL R) - -
27
N . 27 o
x 3 eime f d¢'e™ WL, u, ¢')).
0

m=—N

(72)
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The coefficients I'V»®(») and D+ (,, ) in Eq. (72),
which are to be determined, are defined as

E,.(v, Q')

() = f dQUP(FIL, Q) 22D (73)
47y

and
me(:i:vmj s 9')

47t ’

(74)

D(nl;)'(z)(vmi) =fdQ'ﬂ'qf(;%L’ 9')

where W(F3L, Q) is the surface distribution at
x = F}L. The rest of the symbols have the same
meaning as previously.

In dealing with any particular problem, we assume
that W(F{L, Q) for (42%) are known. In that case, we
may reduce Eq. (73) to two sets of decoupled singular
integral equations by letting x approach F 3L, multi-
plying both sides by ™, and integrating over ¢’
from O to 2zr. The result is

1B, (W, An(pt, YT ()

M
+ 2 A, ¥ ) DY)
i1

M
—L
- zle /vmjAm(,u’ ~Vm; Dg)(vmj)
=

1 [ dv

P eL/”Am(,u, v)F(,ﬁ)(v)

1Y — U

- /"’Ymm(,u’ O)Tm(—%Ls /“)’ )24 > 09 (75)

B, (W', A TR ()

M
+ ZAm(:u” _vmj) D(Wzl,)(vm,')
j=1

M
= 2™ A v ) D (0)
~

1
— L[ g, T )
2ridoy — u

= _/"'Ymm(/h O)lFm(%La /l), p<0. (76)
Clearly, exact solutions of these integral equations

are not feasible. However, they are well suited for
approximations in the asymptotic limits.

1. Thick Slabs (L > I)

For this limiting case we can solve Egs. (75) and
(76) for the coefficients by the iterative procedure dis-
cussed in Ref. 4. Thus, in the zeroth approximation,
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we ignore the terms involving the exponentials e™%/.
Equations (75) and (76) then reduce to Eq. (56) for the
half-space problems. Let us, therefore, assume for a
moment that I'®(y), D{?(v,,), and 'Y (), DX (v,,)
are known in Egs. (75) and (76), respectively. Then,
formally, solutions of Egs. (75) and (76) are

) A+(7’)+A (») o
B0 = o) O
_A;;(’V) m(v) (1)
ey P
where

(I)f”l,)(‘l‘) = ”Ymm(vs O)lpm(_%L’ ‘V)
M
- z Am(v’ vm,v)D(wlu)(vm;)
=1

M
+z e Livm; 4 (= vmj) D(nz;)(vmj)

1 f° av

2mi

— 27ivY,, (v, 0) Z b Y., 0)

eL A, (v, VT ()

1y -

I—|m| k-1

X 3 SChmi gy, 9
= §==

1
gy f dv'T %), 79)

and

L (' xa)

2midoy — ' An(u)

X ' Yoty O i (— 3L, p)

— S DY) RO, 7,
_J-—IL/v,,. ; D(z’(vm,) RY(, —)]

1 0 d L/vr(2)( )

2mi
X [RY(,v) —

IDe) =9

1y —

R, ), (80)

with
1

1 d ’
R(l)(v v) = ﬂ\____f l’l’ m(/")
2mi Jov — p A (W)

The additional conditions that determine the discrete
coefficients are

An(p', 7). (81)

Jdﬂyf m((”'))d)(l)( ) 0 J - 0 1
A (82)
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Similarily, for Eq. (76), we have
An() + A ()

@, \ _ @, v
B0 =S i
_ AZ(”) m( v) (2)
A (WALB) ) (83)
where

D) = — (u Yn(tts O¥ 3L, )
N |
- EAM(”’ _vm,-) D(nzz)(ymf)
j=1
JM
+ ze—L/ijAm(‘u, vm;‘ D(Wll)(vm,)
i=1
1
+ f dv .
0y —pu

' N
Ymm(/’t, 0) z blYlm(:u” 0)
I=|m|+1

I M TR0 ()

— 2mip

i—|m| k-1
X3 3Gl mpt -lgzaz) (84)
¥=1 i=0

0
g —f ldvv"F(,ﬁ)(v), (85)

2mi 1y — ‘u Am(,u)

X u'Yu(y', O, (3L, 1)
M

+ Y [DRm)RYG, =¥,
j=1

_ —L/Vm,D(”l')(vmj)R(,,z,)(V» vm;z)]
I S L

2mi
X [RP(,v) — RP(» )],

1 du x,, '
2__ _aw (l‘l) A ).

miJay — p AL()

The additional conditions are

I3 =

e_L/v’P;I,)(’V')

oy — v

(86)

R, v') = (87)

Jm(ﬂ) 2)
d - .
fWA()q)() 0, j=0,1,--,M

Consider Eq. (77) first. In the zeroth approximation,
ignore all the terms involving the exponentials. The
coefficients I'\Y(») {denoting the degree of approxima-
tion as [I"¥(»)],} are then given by

AXO) + AZ0)
285y T e

ARG) — AZ0)
AF)AL®)

T3] =

F2)], (88)
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where
[(D:rl.)(l‘)]o = :qum(/" O)IFM(_ %L’ :u)

M
- glAm(l"" 1’m,) D(#.)(Vm,)

N
— 2mipYm(ps 0)1_ IEI +1blYlm(.”’ 0)
1—|m| k-1

x 3 ZClmu g

k=1 j=0

(89)

and
1 ’ —(.
[12’(v)]0 = g*_l_ J' _dﬁ_ im_(/“__)
2mi Jov — p AL(W)
X /'I”Ymm(,u"’ O)wm(_%L’ /")

M
- z Dg)(vm,)R'(nlt)(V’ vm,)-

i=1

(90)

Similar quantities for I''® should be obvious. In the
first approximation, the correction to Eq. (89) for
'Y (y) is obtained simply by retaining the exponential
terms in Eqs. (78) and (80), with I"®(») and Di:’(vmj)
replaced by [['®(»)], and [D®(v,, )]y, respectively.
Thus,

(1) _ A;(”) + AL W
] = 2A$(v)x;,(v) ®,, (Mh
An() — A
- ——_A;(v) A(v) I (], (91)
where

[O2(M)] = [P )],

M
+ gle_L/v”'jAm('y, - vm,)[D(vrzs)(vm;)]O
1 0

27

L RN I

1y —
(92)
and

I = UV,
+ 3 eI, )LRD G, =)

0 '
o [ e,
27i Jry — 9

X [RY®, ) — RY(, )] (93)
The same iterative procedure may be followed to
approximate the discrete coefficients D{Y(,,) which
are determined by Eq. (82). The procedure for obtain-
ing I'® and D{? is exactly the same. Here we omit
the details. '
2. Thin Slabs

Because this situation is physically much simpler
than the limiting case (L 3> 1) considered previously,
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one can obtain the integral representation for ¥'(x, &)
by dealing directly with Eq. (3). The approximation
procedure for various other situations is discussed in
Refs. 2 and 4. To avoid repetition, we merely state the
pertinent results here. Thus, if we write

¥(—3L,Q) = ¥Y(L,Q) + P(—1L,D),
<0,

V(L Q) = ¥(—1L Q) + ¥(L 9),
u>0, (95)

where ¥'(F3L, R) are to be of order L, then one can
show that*

%4

YL, Q)
~ f dQ¥(—1L, @)0) + YL, )O(—u)]
{G-(3L,R; —3L, Q) — G.(—3L, Q; 1L, Q")
+ G<(_%La ﬂ; éL, Q') - G—-('—%L’ 9’ _%L,g/)}’
(96)
where
G:x:(_%Ls 9; _%L5 ﬂ/)

= lim
—+—} L(From within ¥V
¥ H {From without V.

G(x, Q; —3L, Q). (97)

For a homogeneous medium we have

F(-1L.9) = V(L. Q). 98)

The combination of Green’s functions, occurring in
the right-hand side of Eq. (96), may be calculated
explicitly by means of Eqs. (46) and (50). It is given by

G, —G,+G.—G_

N e-——im¢

B "‘=2_N :qum(:u's 0)

X ( J ldv(e—L/v — DE,...(v, RVH .(v, 1)
0

1 M
+ (e E — DAty Vi ) F minVim, » )

‘7T2 i=1

- Am(;u’ —vm;)me(—vm; ’ 9')))

N
1 S eimw—w)
N

27T Mm=—.

+ o= )06 = ¢ -
I

x [(e72" — 1)O(u) — (e¥* — 1)O(—w)], (99)
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where for convenience we have defined

1 . 1 A | Bu®)

H,(v,u)=—F¢
. ) 2mi v — u 4ntiy 87tiu

oy — ).

(100)
In general, the contribution from the terms involving
discrete eigenfunctions [in Eq. (99)] is small compared
to the terms involving the continuum eigenfunctions.
Let us therefore ignore that term and further
approximate the terms involving exponentials as fol-
lows:

fldv(e_L/ Y — 1)F(v)
o
=f dv[F(») — FO)e " - 1)
0

1
+ F(O)J; dv(e X" — 1)

= 5 (__—1)'7:@ 1dw‘"[F(V) — F(0)]
1Jo

n=1 n

+ F(O)'fdv(e"l"" - 1.

Since
1 o —L n
f wet =3 B | pogr — 14 ),
0

n—o n!(l —
nat(in (1 n)

where ¢ = 0.577216 is the Euler’s constant, we get

f ldv(e—”“ — 1)F(»)

0
= z(_—l;)f dvw"(F(») — F(0))
n=1 n! 0

+ F(O)(;; ;}(‘1—’“_)7) + Llog L — 1+ y)).
(101)

Retaining terms only up to quadratic in L, we see
that Eq. (99), by means of Eq. (101), becomes

G, —G,+G.—G_
g [Ll LE,, (0, R)H, (0, 1)
= _— 0 mm\Vs m\Vs
m=z—-N 1Y, 0) & #

+ L((y — DEyn(0, R)H (0, )

MADHOO KANAL

= [t B @) 0,10
0
- Emm(o’ gl)Hm(O’ :u)))

1
+ %LZ( f v (E (0, ) H (3, 1)
0

— Epp(0, R)H (0, 1)) — Eyn(0, 2)H (0, m)].

(102)

The angular density " may now be calculated simply
by inserting the expression (102) for the given com-
bination of Green’s function in Eq. (97).
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Electromagnetic propagation, influenced by arbitrary tensor constitutive functions in an unbounded
medium, is considered. The general expansion of the determinantal eigenvalue equation for the disper-
sion relations is obtained, exhibiting, for the first time, the functional dependence of the eigenvalue

equation on the constitutive tensors.

I. INTRODUCTION

The dispersion relations for the propagation of
characteristic electromagnetic waves, governed by
tensor constitutive functions in an unbounded
medium, come from the determinantal eigenvalue
equation

detM =0, )

where the Maxwell dyadic M is given by?
M=nkk — 1) + T Q)

InEq. (2),k is a unit vector in the direction of propaga-
tion, 1 is the unit dyadic, n is the index of refraction
defined as n = ck/w, where k is the wavenumber and
w the angular frequency, and T is a dyadic defined
from the permittivity dyadic € and the conductivity
dyadic o by the equation?

I' = ¢;'[e + (i/w)o]. 3)

Equation (1) is, of course, the condition that the
homogeneous wave equation M.E =0 have non-
trivial solutions (the characteristic modes).

When the I for a particular situation has a suffi-
ciently simple structure, it is common practice to
arrive at the eigenvalue equation by directly expanding
det M in a suitable coordinate system. There are
situations, however, in which the structure of I is
complicated to the point that one would prefer an
alternative to directly expanding det M in order to
find the eigenvalue equation. Such situations occur,
for example, in the consideration of propagation in
certain anisotropic plasmas.

The purpose of this paper is to derive the general
expansion of det M for arbitrary T, an expansion
which has not been obtained before. In situations
with a complicated I, this expansion leads to the
eigenvalue equation with less algebraic manipulation
than would be required if det M were evaluated
directly. In addition, the expansion shows, for the
first time, the structure of the general eigenvalue
equation, exhibiting those functionals of T which

actually enter into the calculation of dispersion rela-
tions. The expansion is presented in Sec. IL.

The considerations of this paper exclude material
media with either a permanent or induced magnetiza-
tion. The constitutive equations considered are the
linear relations

Ik, 0) = ok, ) - E(k, 0),
D(k, ») = e(k, w) - E(k, w),

(42)
(4b)

in wave-vector (k)-angular-frequency (w) space,
where J, D, and E are the current density, displace-
ment, and electric field strength, respectively. Equa-
tions (4) are, of course, not the most general linear
constitutive relations, but they are the ones most
often encountered in practice.

II. EXPANSION OF THE DETERMINANT
OF M

We evaluate det M in a coordinate-independent
manner to emphasize the generality of the result. The
definition of det M is®

3)
where the €'s in Eq. (5) are the completely anti-

symmetric Levi-Civita symbols. We may write M as

M =T + n2kk, ©)

det M = (1 /3 !)EijpequMiqurMps 3

where the dyadic T is defined as

T=T — nl. @)

When Eq. (6) is inserted into Eq. (5) and the result
multiplied out, the only terms that survive are the
term containing no components of k, which by Eq.
(5) is det T, and the three terms containing a product
of two components of k. These three terms are all
equal since they differ among themselves by cyclic
permutations of their indices. The remaining terms
all contain components of k x k and, hence, vanish.
We have, therefore,

det M = det T + n2e;; e0n Tie Tik k. (8)
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The second term in Eq. (8) can be evaluated by
expressing the product of Levi-Civita symbols as a
sum of products of Kronecker deltas. When this is
done, we arrive at

det M = det T + }n2[(Tr T)2 — Tr (T2
+2k-T2k —2(Tr k- T-k]. (9)

The various functionals of T called for in Eq. (9)
are readily evaluated in terms of T, from Eq. (7).
The most complicated of these functionals to evaluate
is det T. The evaluation can be carried out either by
using the definition (5) or by directly expanding det T
in some coordinate system, since T has the same
matrix form in all coordinate systems. The result for
det T is

det T = det T' — §n2[(Tr T2 — Tr (I?)]

+mTr T —nt (10)

The other functionals required by Eq. (9) are
TrT=Tr I — 3n (11a)
Tr (T%) = Tr (I'®) — 2n2Tr T + 3n4, (11v)
k-T-k=k-T.k—n2, (11¢)
k.T2k=k-T2.k—2nk.T.k + 1. (l1d)

When Egs. (10) and (11) are inserted in Eq. (9), we
have

detM=(k.-T.knt +[k-T2.k —(TrT)
xk.T.kn* +detT. (12)

Equation (12) is the general expansion of the
determinant of the Maxwell operator, for arbitrary T
It is seen to depend on the four functionals Tr I,
det T, k- TI'.k, and k- I'"* . k—the latter of which,
incidentally, does not require one to square I' since
it can be evaluated as

k.-I2k=k.T).(T-K). (13)

The eigenvalue equation for n, which ensues by setting
the right-hand side of Eq. (12) equal to zero, is not
biquadratic in », as it superficially appears to be,
since, in general, I depends on k.

We have derived Eq. (12) without reference to any

HARRY GELMAN

particular coordinate system. Considering the simplic-
ity of the result, we see that the derivation is perhaps
longer than it should be. However, the method has the
advantage that it emphasizes the generality of the
result and leads to it unambiguously. We may verify
the expansion in a way which also serves as a simpler
derivation. We choose a coordinate system in which
k lies along one of the coordinate axes, say, the x axis.
Then det M may be written, in explicit determinant
form, as

'y A Ty
detM =T, Ty — n? j AN (14)
Iy | Ty — n?
The polynomial form of this determinant is
det M = An* 4 Bn? 4 C, (15)
where 4, B, and C are given by
A =Ty, (16a)
B = F13F31 - 1-‘11]'-‘33 + F12P21 - P11F22’ (16b)
C=detT. (16c)

In the coordinate system we are using the element I'y;
may be written k - I' - k. The structure of the right-
hand side of Eq. (16b) suggests that we add and
subtract the term I'2, . The form of B is then

B=T,l - y(Tr ) = (%), — I'y(Tr T). (17)
For k along the x axis, B may be written
B=k.-I?.k— (TrDk-TI.k,

and Eq. (15) is identical to Eq. (12) in this coordinate
system. Since det M and the form of the coefficients
A, B, and C are invariant under orthogonal trans-
formation, the identity holds in all coordinate systems,
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The present work is concerned with what are called polynomial algebras as an extension of the work
of Ramakrishnan and his colleagues on the algebras of matrices satisfying conditions like L™ = I and
L™ = L*, Assuming L,, to be an m-dimensional linear space, we generate a class of associative algebras
called polynomial algebras by requiring that every element L of L, satisfy a polynomial equation
L* 4+ P L*1 + -+ - 4 P, ='0. We show that some very important algebras which physicists have found
useful can be obtained by various restrictions on the polynomial. A few general properties of these

algebras are established.

1. INTRODUCTION

In a series of contributions, Ramakrishnan and
his colleagues have initiated and studied the matrix
algebras obtained by imposing restrictive polynomial
conditions! like

L™=1 and L™= I* (1.1)

The work presented here extends these studies by
imposing more general polynomial conditions, leading
to what we shall call polynomial algebras.

Let L, be an m-dimensional linear space over a
field F. We generate a class of associative algebras
called polynomial algebras A[a!, a2, ---, «™] with
{a!|i=1,2,---,m} as generating elements by
requiring that every element!

L(x) = %0t + X0 4 -+ - + xmm":

(1.2)
belonging to L,, satisfy a polynomial equation
Plx; Ll=L*+ P L*' 4 -+ P, =0, (13)

where n is independent of m. We show that some very
important algebras in physics such as Clifford and
Grassman algebras (ordinary and generalized) and
spin and parafield algebras are indeed polynomial
algebras.

In the second and third sections, we define poly-
nomial algebras and study operations on them. In the
fourth section, we recover a number of different
algebras of physical importance as polynomial
algebras. In the fifth and last section, we study the
transformations of the algebras and obtain their
automorphism groups.

2. CHARACTERISTIC EQUATIONS OF
POLYNOMIAL ALGEBRAS

Let A[a!, a2, - -+, a™] be an F-algebra defined by
a set of generating elements {«*|i =1, -, m} over
a field F. We write Afad, -+, &%, .-+, a™] for the
algebra obtained by restricting the generating rela-
tions of A4 to those containing o, - - -, =1, g+l -« .

«™ only. Further, we denote by A[al, -, o, o,
a2, ... ™) the algebra, if it exists, obtained by
substituting o' for «*! in the elements of 4. Ob-
viously, the restriction and substitution operations
can be extended to a finite number of generators of
A. Wewrite A, - -+, «™] -=- B[, - - -, B*] for two
isomorphic algebras 4 and B under «f <> §* and
m=n.

Let I denote the set of positive integers. F-algebras
Afa):{A[al, -+ ,a™],mel} are called simplicial
algebras (S A) if they satisfy the following conditions:

(a) For every A[al, - -+, a™] € A[a] algebras

A[ml,'--,&il,“-,&"",'”,oc’"]
and
A[al’ cee O(.jl, d.h, cee 0(.“, Of.j', e

exist for all 0 < k, I < m;

, o]

(b) 8;: 41, -+ -, a™]
= Al e, L 8, it e g

(c) o, A, - -+, a™]
= Al e o, o, at e ],

for all /.

¢ and o are called the face (restriction) and degener-
acy (substitution) operations, respectively.? Simplicial
algebras can be directly defined without referring to
generating elements. Then under 4 and o the gener-
ating elements should be stable.

Note that the simplicial conditions can be extended
to the index set /® /---®I when considering
algebras A[{e}, {6}, - -, {v}], where [{a}, {f},---,
{y}] are sets of generating elements. This is accom-
plished by extending the above definitions under the
mapping i<> (i, --,i) and considering the set
{o?, B, - -+, ¥} of generating elements simultane-
ously under 6, and o,. Hereafter 4[«] denotes the set
of algebras A[«] and those obtained from A[«] by
substitution and restriction operations. Now let an
algebra A, € A[a] have n generators and let u: A, =+
A, be an isomorphism. Suppose that «®,: .- afe
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written in the reverse order are the generators of A,
not contained in wu[A,] and o, -, o't are the
generators of A, such that u[«’] = u[e/+1]; then

p=0, 08 o @1)

where 1 < i, < < <m 1 L)< <j,Ln
and n + s = m + ¢t. Further, the factorization is
unique. Now, for simplicial algebras A[«], we have
the following:

e 61:: © 67.1 U’At 4

Theorem: The set of necessary and sufficient con-
ditions for

Alfa?, - - 2.2)
where p;,q;€land 1 <p; <py " <py,and 1 <
g1 < ga ' - < qn, is that the A[«] satisfy the simplic-
ial conditions.

Proof: Obviously, that (2.2) implies the simplicial
conditions and the simplicial conditions imply (2.2)
is seen from (2.1).

Suppose A[al, + - -, «™] is an algebra not necessarily
associative with a finite basis over an infinite field F.

Let?

., Ot.p”] = A[(qu, SO th"],

L(x) = x;0! + %02 + -+ + x,,0™ (2.3)

be an element of the linear space L, over F with
{af|i=1,---, m} as basis elements. L(x) satisfies a
minimal equation

Plx;L]=L*+ P L 14+ P, =0, (24)
where P,, r=1,---,m, is a homogeneous poly-
nomial of rth degree in x;, x5, **, X, and x =
(%1, , X,,). It is important to note that (2.4) holds for
every general element L(x) € L,, .

Let A[«] be simplicial algebras not necessarily
associative with finite basis over an infinite field F.
Since
Afal, -, an]-=- Ao, -, gl e e Glmom oo , &™]

for m>n

when m — n elements are deleted, it easily follows by
considering the cases with n =1,2,+-+,m — 1 that
the coeflicients P, of the minimal equation P[x; L] = 0
of L(x) € L,, form the rth-degree symmetric homo-
geneous polynomials (SHP’s) in x. Hence, the P,,
r=1,++,n,are given by

1
Py =a; Z Xis
2 2 2
P, = apy Zt X, Xi, + apay Z Xis
f1<ig

2.5)

21482, . . 3 @r
xilxiz xir s

P=3

[ay as

r
]a[al.az."'.ar] z

1< <y
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where i,e([l1,2,---,m] and [a,,a,, - ,a,] is a
composition of r, i.e., integers a; > 0 are such that

da;=r.

Example 1: Consider the algebra Ale!, -, e™]
with generating relations e'e’ = d,¢' and 1, . ., =
e! + e + -+ + ™ The characteristic equation of
L(x) =Y xetelL, is Plx; L} = II(L — x;) = 0.

Obviously, by considering index sets [i;, <+ ,i,] < I
in the above example with et 4 e* + - -+ 4 ¢'m =
i1 s » WE Obtain simplicial algebras A[e].

Example 2: Let A[o!, - - -, «™] be either a general-
ized Clifford or Grassman algebra (see Sec. 4). It is
important to note that the degree of the minimal
equation of L(x) = Y x,«f € L,, is independent of m.
This is not true in the case of simplicial algebras in
Example 1 which do not intuitively correspond to
polynomial algebras.

Polynomial condition: Simplicial algebras

Ala]:{A[a}, -« -, a™]; me I}

are said to satisfy the polynomial condition if all the
polynomials P[A}:{P,[x; L]; L(x) e L,} associated
with A[«] have the same degree k (say). For m > k
the minimal equation P, ,,[x;, ", Xp1; L] = 0 of
X0 + - 4 x, pa™te L, is obtained from that
of xjor + -+ + x,a™e L, by adding terms con-
taining x,, ., to the SHP’s that are the coefficients of
P, [x; L], without altering their order and weight. In
what follows, all the SHP’s so obtained from an SHP
L are represented by £ itself without specifying its
variables.

Isotropy condition: Simplicial algebras A[x] are
said to satisfy the isotropy condition if there exist
functions {F,,(x,, * * * , X,,); m € I} such that AF_*L(x)
satisfy the minimal polynomial equation

P[A4,0,---,0; L]} =0.

The isotropy condition is very restrictive and
implies the polynomial condition. F,(x;, -, x,,) is
a homogeneous function of degree one. Obviously,
F? should be an SHP for some s < k. Let r be the
minimal integer with this property and F* = £ an SHP.
Then it follows that, for simplicial algebras satisfying
the isotropy condition,

Plx;Ll= T +b8) =0, (26

i=1

where b, € K, a suitable extension of the field F.



POLYNOMIAL ALGEBRAS

Simplicial algebras A[«) are said to satisfy the
factorizability condition if there exists an SHP £ such
that every P[x; L] can be factorized as in (2.6) over
a field K > F with fixed integers p and ¢. Obviously,
simplicial algebras satisfying the isotropy condition
are factorizable. Simplicial algebras which satisfy the
Sactorizability condition are called polynomial algebras.

Hence, from definition, with every set of polynomial
algebras A[x] an SHP £ is uniquely associated, but
for multiplication by a constant. Polynomial
algebras A%[«] associated with the same £ are called
associated polynomial algebras with polynomials PE.
In particular, if PL is of degree r, which is also the
degree of £, then PL can be taken as Pf:L7 =11
Algebras with the polynomial condition L™ = £ are
called basic polynomial algebras. For r =1, A%[«]
reduces to F.

3. OPERATIONS ON POLYNOMIAL ALGEBRAS

If the polynomial algebras 4 [«] with moduli over an
infinite field F are a direct sum + of the polynomial
algebras A;{«,],i=1,---,¢ and if P[x; L] = 0 and
P,[x; L] = 0 are the polynomial equations of A[«]
and A;[a;], i= 1, -+, ¢, respectively, then

t
Plx; L] = ]I Pilx; L]. 3.0
=1

From this it follows that, if the A[«] are polynomial
algebras with moduli, then 4,[«;] for each i is a set
of polynomial algebras and conversely. If A[«] is
associated with the SHP £, then each one of the PA’s
A;[«;] is associated with £ and conversely.

Consider two sets of simplicial algebras A4[«] and
B[B]. We define their sum A[x] ® B[f] to be the
algebras

Cla @ Bl:{C [ ® I+ 1® B

(3.2)
and their product A4 [«] ® B[#] to be the algebras

Dla ® Bl:{D, [0 ® B*; &> ® B2 - -+ ;o™ ® B™]}.
(3.3)

The extension of simplicial operations to 4 @ B and
A ® B is direct. The minimal polynomials associated
with Cla @ f] and Dla ® B8] are symbolically given
by P,lx; L] ® Pglx; L] and P,[x; L] ® Pglx; L]
which have as their roots the sums (products) of the
roots of the polynomials P, [x; L] and Pg[x; L], with
minimum multiplicity such that they are the minimal
polynomials associated with the algebras 4 ® B and
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A ® B, respectively. Hence, if 4 and B are polynomial
algebras associated with the SHP’s £ and A, then
A®B and A ® B are associated with the SHP’s
£ + M and LM, respectively.

4. POLYNOMIAL ALGEBRAS IN PHYSICS

In this section, we consider a few polynomial
algebras which are of interest to physicists. First we
consider the polynomial algebras

Alal:{Alat, -+, a;mel}

satisfying a second-degree polynomial equation. We
assume that F is the real field and L(x) = x;a! +
-+ 4+ x,,a™ € L, satisfies, without Joss of generality,
the minimal equation

L2+P2=07 (4‘1)

where Py = ay; ' X;X; + a3 3 x2. Substituting for
L and equating the coefficients of x,x; to zero, we
obtain the generating relations

wlod + wlal = —2apl, if i=j,

if i), (4.2)

= —'0211,

of A[x]. Obviously, the A[«] satisfy the simplicial
conditions. In fact, if we waive these conditions, the
above set of generating relations can be generalized to

ale? + ot = —ayl,

Lj=1,2,--,m, (42))

where [g,;] is a symmetric matrix. The representation
theory of this algebra was considered by Landsberg.?
Now let us recover some familiar algebras.

Grassman algebras: Algebras isomorphic to Grass-
man algebras® are obtained by taking a, = a,, = 0
in (4.2) when the generating relations become
oo + ol = 0.

Clifford algebras: We choose a, = —1 and g5, = 0
in (4.2); then we obtain Clifford algebras, with the
generating relations

alod + oot = 26Y, “4.3)
Obviously, this is an isotropic polynomial algebra with

L=xt=xt+x3+---. “4.4

Algebras of annihilation and creation operators: Now
let us consider a mixed algebra obtained from (4.2").
For that, let m = 2» and

aii = 2’
=0,

if li—j=v»,

otherwise. 4.5)
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This is the »th-order algebra of annihilation and
creation operators. To put this in the familiar form,
we introduce

it v+i

agdd=0o and @' =" i=1,2,-",»
Then the commutation relations (4.2) under (4.5)
become

a'a’ + dat = a'a’t + alait = 0,

a'a’t + a'la’ = 2691 (4.6)

Now consider the index set I ® I and the algebras
Afa, a'] satisfying the polynomial condition
P[Z, z-; L] = ‘L2 = 2{2121 + 222-2 + A + Zviv}, (4.7)
where

L =73 (za + za").

By equating coefficients of products of z; and 7,
we recover the commutation relations (4.6). Algebras
of annihilation and creation operators are isotropic
algebras with

£ =212 = (2,2, + 2% + ). (4.9)

As is well known, there is an intimate connection
between Clifford algebras of order 2» and the algebras
of annihilation and creation operators of order ». To
establish it, we put

w1 = (@i + a2, o¥ = i(a’ — aN)f2L  (4.10)

Then L = ¥ x,«' becomes L = ¥ (z,a* + Za'") and
x? = Y x? becomes |z|> = Y z,Z;, where

;= 2~1}(x25—1 + ixy;)

4.8)

and z; is the complex conjugate of z; when we obtain
Eq. (4.7) from (4.1) with a5, = —1 and a5 = 0.

Generalized Clifford and Grassman algebras: Now
we consider a few polynomial algebras A4[a] satis-
fying polynomial equations of degree greater than
two. The generating relations of these algebras cannot
be obtained from the polynomial condition alone.
The conditions on «’s, obtained by equating the
coefficients of products x; to zero, generate algebras
of infinite order.

Now consider the algebras® A[a]:{4[a!, -, a™];
mel} satisfying the generating relations o'a’ =
wola?, i < j, and («f)? = g over an infinite field F
containing g and a pth primitive root « of unity.
These algebras obviously satisfy the simplicial con-
ditions. If a = 1(0), A[a] is called the simplicial
set of generalized Clifford (Grassman) algebras
Agclpl(Agelp]) and, when n =2, the ordinary
simplicial set of Clifford (Grassman) algebras are
recovered. Note that, for p > 2, these algebras are
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order dependent on the generating elements. From the
generating relations it can be verified directly that

2} [ai(l)]px[ai(z)]m Cen [mﬂ'("ﬂ]?m =0 (411
{i

if at least two p; # 0, where [p,,ps,' -, pn] is a
composition of p and {j} -=- S, the set of all permu-
tations of [1,2,-:-,m]. Hence, from (4.11), we
obtain
= (%0 + x0% + « -+ + x,,a™)?
=a(x} 4+ x5+ -+ x7). (4.12)
Since the roots of the Eq. (4.12) in L are distinct, it
is the minimal equation of L(x)e L,. Hence the
A[«] define polynomial algebras since the degree of the
minimal equation of A[al,-: -, a™] is independent
of m. In fact, the algebras A[«] are the basic poly-
nomial algebras associated with € = x? + x3 + - -.
Given two simplicial sets of generalized Clifford
algebras Agclp] and Agclgl, where p and g are
relatively prime, then Agc[p] ® Agclgl = Agclpgl
Hence, if p = p7ipp2 - - - p is a prime power decom-
position of p, then

Agolp] = T@I Agelp™] @.13)

Generalized Spin and Parafield Algebras: Given the
simplicial (polynomial) algebras A[a], let us consider
the algebras > Afa] = A[x] ® - - - @ A[a], s-times
introduced by the usual inductive process. These
are also simplicial (polynomial) algebras. The roots
of the minimal polynomial equations of > * A[u] are
sums of the roots of the minimal polynomial equa-
tions of > *~1 4[] and A[«]. Now, to obtain the com-
mutation relations of >° A that are independent of
s, we consider I = a‘a’ — a/a’, where

g =alIe " @l+I0a® I
+-+I0le -0

are the sth-order helicity operators associated with
«’, and find the commutation relations [e*, I¥/].
These commutation relations are easily seen to be
independent of s. Hence, to obtain their explicit form,
we have to only consider the case when s =1 and
evaluate [«*, I’} from the defining relations of A [«].

When we take for A[a] the Clifford algebras 4.
(annihilation and creation operator algebras A4,.),
we obtain the spin (parafield) algebras. The com-
mutation relations of spin algebras are easily obtained
from Egs. (4.3):

[, I¥] = 6%ai — 0%al,

Since the index set for A4,, is I ® I, we have to con-
sider M = a‘a’ — a‘a’ and N¥ = a'la’ — a’a’! and
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their complex conjugates. The following commuta-
tion relations are easily obtained from (4.6):

[a¥, N¥] = &*a’ and [a*, M¥] =0.
The minimal polynomial equations satisfied by

spin >° A, and parafield X* 4, algebras are easily
obtained as

(L — }*E)L? — }(s — D) - - - (L2 — §0) = 0,
if s is half-integral,

(L2 — L) (L2 — (s — 1)) -+ - (L2 — ©)L = 0,
(4.14)

where L and £ are given by Eqgs. (4.1), (4.4) and (4.8),
(4.9) for spin and parafield algebras, respectively. It
is interesting to note that, by considering the coeffi-
cient of z2 from (4.14), we obtain the Ryan-Sudarshan
relation’ (a%)***! = 0, (a9)® # O for p < 2.

Note that the D ®Agc[p] are a generalization of
spin algebras which reduce to ordinary spin algebras
when n = 2. These generalized spin algebras and their
parafield algebras will be considered elsewhere.®

if s is integral,

5. AUTOMORPHISMS OF A[«]

Let A[x] be a set of simplicial algebras satisfying
the polynomial condition. In this section, we shall

consider the groups G[A]:{G'[«!,--:,a™];mel}
of all nonsingular transformations
riat = riad, .1

when A['a] give rise to the same type of generating
relations as that of A[«] and the groups

Gz[A]:{Gz[xls T, xm]; m GI}’
of all nonsingular transformations
txt = tix,, (5.2)

leaving invariant the coefficients P,[x,, - - - , x,,] of the
minimal polynomial expression P[x;L]. Because

every transformation of Gl [4) = G'[al, -, a™]
defines a transformation of G2 [4] = G*[x,, - ', x,,]
in an obvious way, we have

G.[A] © G%[A] < aut {L,}, (5.3)

where aut {L,,} is the set of all automorphisms of the
vector space L,,.

It is instructive to find® Gi [Agolpll, i =1, 2, for
the simplicial set of generalized Clifford algebras
Agclp). Obviously G [p] = TIZC,, where C, is the
cyclic group of order p. To find G%[p], the trans-
formation ¢ should leave invariant > x?, i.e.,

d'x? =7 x]. (5.9
Substituting (5.2) in (5.4) and comparing the coeffi-
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3 =242 p—-2 7
cients of x?x?2x2 and x}%x,x,, j # k # I, we have

Sy =1, (5.5)
S e =0, (5.6)

and '
Syt =a (say), 5.7

respectively. If we write (5.5) and (5.6) together, we
have

> () = o™ (5.8)
Hence, it follows that
det ([£)7®) # 0. (5.9)

The algebras turn out to be quite distinct depending
upon whether a = 0 or a # 0. From (5.7) it follows
that

1 1

thel 1
= a(()* ™ (5-10)

i, 1
If a = 0, it follows from (5.9) that there exists no
index i such that t/ =0 forj=1, -+, m and from

(5.10) that there exists only one j(i) for each i such
that

19 £ 0. (5.11)
From (5.9), it is obvious that j(i), i=1,---,m,
is a permutation of (1,2, -+, m). From (5.5) and
(5.11) we have
(ﬂ'(i))p =1.

Hence ti¥) = w% where w is a primitive pth root of
unity in F. Now, it is easily seen that p™m! linear
transformations exist leaving Y x? invariant when
p>2

Theorem: The groups G*, [p] = G'[Asclpll, i =1, 2,
of the simplicial set of generalized Clifford algebras
Agclp] are given by

Gul2] = G,[2]-=-0,,
the mth-order orthogonal group over F,

Gnlp#21'="T[C, isgivenby ‘o' = o™
®
where p, is any integer mod p, and
G4lp#2-=T]C,®5,
®

is given by 'x; = w"x (i), (5.12)
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where j(i), i= 1,2, '+ ,m, is any permutation of
1,2,---,m).

Let us now consider general polynomial algebras
(PA’s) A[a] and introduce the groups H'[4] = G*[4],
i =1, 2, defined by the transformations '«* = 7a‘and
x; = tx;, where 7, t € C, thefield of complex numbers.
Obviously, Hi[A] are cyclic groups and are of the
form T2 C, and ]2 C, for suitable integers r and s
where r|s. This means that the minimal equations
satisfied by an L are of the form

Plx; L) = DL+ QL4 -+ + Q) =0
and the degree of each variable x; in the SHP
Q.lx1, - -, x,] is divisible by r. For example, if g is
divisible by r and r > 3, then the terms (x,)?2(x;)?
and (x,)*%x,x;, will not occur in the coefficients
Xp,*"*, %, of the polynomial expression P[x; L].
Hence, for the PA with polynomial equations in which
at,; # 0in (2.5),

GP4l =] C. ® 5,

and is given by

Xy = w*x (i),
where j(i) is any permutation of (1,2, -, m) and w
is a primitive sth root of unity.

Now since G [4] < G2 [4], for simplicial algebras
A there are two exclusive possibilities. The generating
relations of A4 are either order dependent or order
independent. In the first case, the symmetry groups
are G [4] -=- T]% C, and in the second

GLl4]-=-T[C, ®S,,.
@

If ¢ = 2, there are once again two extreme possi-
bilities: either G [4] = 0,,, the mth-order orthog-
onal group over F, or

GiiA]'=T[C; ®S,,.
®

In the first case A[«] is necessarily a set of poly-
nomial algebras associated with the symmetric
function £ = x2 + x2 + - - - . In the second case the
function £ of even degree 2s (say) is such that

E;éa(x§+---+xfn)-‘.
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We summarize the above discussion in the following:

Theorem: Let A[«] be simplicial algebras satisfying
the polynomial condition. If the group H2[4]-=-
IIz C,, then all the coefficients P, of P[x; L] vanish
unless s|r and the terms that are present in P, are
symmetric polynomials wherein each term contains
x; with a degree divisible by s. Further, if one af,; # 0
in (2.5) for sfr, r < m, and 5 > 2, then the group
G2[A]-=-T]3 C.® S,, with the transformations
(5.12). In the case when s = 2 and r = 2j, if, for one
r, P, # a{x+ -+ + x2}, then

G2 4] =TI C; ® S,;
®

and, if every P, = a,{x? + - -+ + x2}, then
GL14] = 0,

the group of all orthogonal transformations over F,
and A[«] belongs to £ where £ = (x2 + x2 + - - ).
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A new symmetry of the Racah coefficients is derived using a property of a generalized hypergeometric
function of unit argument. The symmetry is similar in appearance, though not derivation, to that given
by Regge.

One representation of Racah’s coefficient W{(abcd; ef ) is given by the series!
W(abcd; ef ) = Aabe)A(cde)A(acf)A(bdS)

d -
XE{(—I)”I‘[ a+b+c+d+2—p :|
v a+b+l1—-—e—pec+d+l—e—patc+l1—f—pb+d+1—f—p

1
r } 1
where
x+y+1—z,x+z+1—y,y+z+1—x}}%
=T
AGyz) { [ IR @

and where we have used the notation

T@I@®)-- - 3 I":a’ b, }

INCINCI R p,qd
The coefficient is defined with the restriction that the triads (abe), (cde), (acf), and (bdf) have integer sum and
a,b, ¢, d, e, and f are integral or half-integral. The series in Eq. (1) terminates when one of the I" functions in
the denominator has a pole, i.e., aftera + b —e,c +d —e,a + ¢ — f, or b + d — fterms, whichever is the
smaller. We shall subsequently assume, for convenience, that the series terminates after either a + ¢ — f or
b + d — fterms.

We may rewrite Eq. (1) in terms of the ,F; generalized hypergeometric function of unit argument. Then

W(abed; ef) = A(abe)A(cde)A(acf)A(bdf)

xI‘l: a+b+c+d+2 :I
a+b+1l—ec+d+l—ea+c+1—-fib+d+1—-fet+f+1—a—de+f+1—-b—c

x F3[W; 1], (3a)
with

JelWi 1l = Fale—a—be—c—d f—c—af—b—d;
—a—b—c—d—-l,e+f+1—a—-de+f+1—-—>b—c;1]. (3b)

The ,F, function is defined in the usual manner? and terminates after the same number of terms as the series
of Eq. (1).
It is well known that W(abcd; ef) is unchanged by certain permutations of its parameters. For example,

W(abcd; ef) = Wi(badc; ef). 4
In addition, using a different series representation, Regge® has given further symmetries of the form
Wiabcd; ef) = W(a,3b+c+e—fl.3b+c+f—el d;tlb+e+f—clilc +e+f—b). (5

Equations (4) and (5) may be verified by direct substitution into Eq. (1) or Eq. (3) since they leave either the
series or hypergeometric function unchanged.
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We shall give a further set of symmetries for W(abcd; ef) which are similar in form to those of Eq. (5).
They differ, however, in that the definitions of W(abcd; ef) afforded by Eq. (1) or Eq. (3) are not obviously
invariant under these new symmetries, and we shall need to use a transformation property of the hypergeometric
function in order to verify them.

We note first that the hypergeometric function ,F3[W; 1] is of the terminating Saalschutzian variety, i.e.,
the sum of the lower parameters exceeds the sum of the upper parameters by one. For this type of function,
we know that?

E+F—-A—-B—-DE+F—-A-B—-C,F-C—-D,F
F3[4,B,C, D E,F,G; 1 =I‘[ ’ ’ ’ :'
il ] E+F-A-BE+F—-A4—-B—-C—D,F—CF-D
X JJRlE—A,E—B,C,D;E,E+ F—A—-B,E+4+ G—A4—B;1}], (6)
where A + B+ C+ D 4+ 1 = E 4+ F + G and either C or D is a negative integer, so that both functions
terminate. We see then that, from Egs. (3b) and (6), we may write
b+f+d+2,a+c+f+2,a+d+e—f+1,e+f—b—-c+1:|
+2,a+b+c+d+2,ate—b+1l,e+d—c+1
XFsb+f—d+l,c+f—a+1,f—a—c,f—b—-die+f—a—d+1,2f+2,f—e—a—d;l]
™
We have assumed that the series in Eqs. (1) or (3) terminates after a + ¢ — for b + d — fterms in making this
transformation. We may clearly write a similar transformation if there are a + b — e or ¢ + d — e terms.
We may now return to Eq. (3). We then have, for example, that
Whla+c+d—bltle—f—a+d—1Lte—f+a—-d—1]4a+b+d—c];
He+f+b+c+lilile+f—b—c—1)
_{Fl:d—f—b,a+c+f+2,b+e—a+l,a—c—f,l+c+e——d,b+d+f+2]
- c+d+e+2,a+b+e+2
I‘|i1+a+c—f,l+d+f—-b,e—c——d,b+d—f+1,e——a—b,a+f——(:+l:l}i’
X a+e—b+l,e+d—c+1

Fi[W; 1]l = I‘|:

F|: at+d+e—f+1 ]

% d—f—ba—c—fiat+c—f+1L,b+d+1~fie+f—a—d+1,2f+2

X Fb+f—d+1l,c+f—a+l,f—a—c,f—b—d;f—a—d—el+e+f—a—d,
2f+2;1] ()

_ }ﬂ“[ a+b+c+d+2,e+d—c+1l,e+a—->b+1 :|
= d—f—ba—c—fil+a+c—fil+b+d—fil+e+f—a—db+d+f+2
1
F.{w; 1], 9
Ijl:a+c+f+2,e+f—b—c+l}“3[ ] ®)

where { }? represents the similarly bracketed term in Eq. (8) and we have substituted from Eq. (7) into Eq. (8)
to get Eq. (9). After some simplification, we finally obtain, using Eq. (3), that

Wila+c+d—blile—f—a+d—1L4e—f+a—d—1]4a+b+d—cl;
e+ f+b+c+ 1L, 4le+f—b—c— 1)) = W(abcd; ef). (10)

This symmetry is similar in appearance to the Regge symmetry [Eq. (5)] apart from the +1 terms, although
it is essentially different in origin. Other symmetries may be obtained by combining Eq. (10) with Eqgs. (4) and (5).

1 See, for example, L. C. Biedenharn, J. Math. & Phys. 31, 287 (1953).

2 L. J. Slater, Generalized Hypergeometric Functions (Cambridge U.P., Cambridge, 1966), Chap. 2.
3 T. Regge, Nuovo Cimento 11, 116 (1959).

4 Reference 2, p- 64, Eq. (2.4.1.7).
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The steady-state kinematic dynamo problem in a homogeneous 3-dimensional core is studied. The
existence of a class of smooth solenoidal dynamos, satisfying a no-slip condition on the core boundary,
is proved using perturbation theory. The dynamos are of the form q = q'¥’ 4 q'» + ¢'®, where ¢V is
spatially periodic on a sufficiently small scale of length, q'® is zero except near the core boundary, and
q'* is an arbitrary sufficiently small motion. The term q’ is also a spatially periodic dynamo in an
appropriate sense for an infinite core. The last property allows a simple characterization of the bounded

dynamos in terms of the admissible q'V).

1. INTRODUCTION

In this paper, we study the steady-state induction
of an electromagnetic field by a motion within a
spherical fluid conductor of unit radius. The principal
result of the investigation is an explicit construction
of a class of bounded kinematic dynamos, i.e.,
suitably regular motions of the fluid capable of
maintaining indefinitely a magnetic field of bounded
nonzero energy.! These solutions of the kinematic
dynamo problem have a number of features which are
consistent with the physical aspects of the theory of
the earth’s magnetic field; they are related, in partic-
ular, to a certain class of laminar and turbulent
motions of a perfect fluid which might be expected to
appear in a rotating mass of fluid.

These dynamos have the structure

q(r; €) = —eV x [o(r; )v(r/e)] + ¢ Hw(r),

0<r1, (1Y)

where q = velocity, r = (x, y,2) = (x;, X3, X3), r =
Irl, and B is any positive number. The function w
may be any continuously differentiable solenoidal
field satisfying the no-slip condition w = 0 on the core
boundary r = 1. The function v(r) is of the form

V() = I}{: (k) exp (ik - r). (1.2)
In (1.2), K is the set of vectors k = mk, + m)k, +
mgkg, where (k;,k,, k;) is an orthogonal basis in
3-space and m, , m,, m, are nonzero integers. Further
conditions to be imposed on v are described in Sec. 4.
The scalar function w in (1.1) is an infinitely differen-
tiable ‘““cutoff”” which vanishes on » = 1 and is unity
for 0 < r < 1 — e. A suitable choice is

3 p(r)
o(r;e) = a7~ f e’ ds, (1.3a)

where
P =10 —3e—rjr—14+e&1 —r). (1.3b)

Finally, € is an arbitrary positive parameter. We
prove that, with suitable additional conditions on v,
motions of the form (1.1)-(1.3) are steady-state
kinematic dynamos in the unit sphere provided that ¢
is sufficiently small.

The field v is studied in a separate analysis, by
considering a related kinematic dynamo problem in
an infinite conductor. This yields, in a natural manner,
additional necessary conditions on v, which fully
characterize this class of bounded dynamos. An
example of an admissible v is, in component form,

¥(r) = (sin y + cos z, sin z 4 cos x, sin x + cos y),
(1.4)

as is shown in Sec. 4.

The dynamo theory required to study (1.1) is not,
however, easily related to that of (1.4), since there is
no natural algebra comparable to that of the periodic
functions upon which to base the analysis. Instead, we
use perturbation theory in an operator formalism, the
unperturbed operator corresponding to a certain
comparison dynamo problem which, for the case of the
spherical conductor, is easily solved. In either case,
the operator equation has the well-known eigenvalue
character.! The spectrum of the (self-adjoint) com-
parison operator is discrete, real, and symmetric
about the origin. In the examples to be treated, the
exact eigenvalues are obtained by perturbing a positive
comparison eigenvalue. A second family of dynamos
and electromagnetic eigensolutions, associated with
the negative comparison eigenvalues, may be obtained
by reflection since, if q(r; €) is a steady dynamo in a
sphere, then the same is true of —q(—r;e€) [cf.
(2.10)-(2.4) below]. For simplicity and without loss of
generality, we may, therefore, restrict attention to
dynamos of like parity, as determined by the positivity
of the unperturbed eigenvalue. As in other formula-
tions of the kinematic dynamo problem, the primary
goal is the existence of a real perturbed eigenvalue.
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The method we use may be described schematically
in the following way: The effect of a motion q(r; €)
on a magnetic field h defined in the core is to induce a
second field Lh defined in all space (see Sec. 5). This
definition determines the operator L in the form

L=HQ, Qh=gqxh, (L.5)

where H is the integral operator whose kernel is the
Green’s tensor for Maxwell’s equations without
displacement current. The exact problem is therefore
obtained on a suitable Banach space of functions h
defined in the core, and the form is

Lh = Jh. (1.6)

For the dynamos studied here, the comparison
problem has the elementary form

Hh=yph, >0 (1.7)

The connection between (1.6) and (1.7) can be clarified
by exhibiting the eigenvalue problem

Hh=+$h—-Vh, V=1L*—H, (1.8)

in which ¥ occurs as the perturbing operator and
L? ~ H and v ~ g in the proposed scheme.

Thus, the method may be characterized by the fact
that it is the second iterate of L, rather than L itself,
which is compared with a self-adjoint operator.
Smallness of ¥ is achieved by an appropriate choice of
linear space. The perturbation is ultimately carried
out in Banach space, using a maximum norm con-
taining a fractional power of ¢ as a factor of the
estimate on first derivatives of h (see Sec. 5). We
emphasize this point, not only because the choice of
appropriate space proved to be a central issue in the
analysis, but also because some of the original pro-
posals dealing with the kinematic dynamo theory, in
effect, utilized almost exclusively the Hilbert-space
norm associated with magnetic fields of finite total
energy.®?® For motions of the form (1.1) (and these are
believed to be among the simplest fluid motions for
which an analytic dynamo theory can be developed)
such spaces appear to be “wide.”” A magnetic field
which is bounded in the inner-product norm, uni-
formly as € — 0, may interact with a motion of this
type to induce a field which becomes unbounded with
respect to the same norm as € — 0. This leads to very
essential difficulties in formulating a rational theory
of the perturbed spectrum. However, on Banach
spaces of the kind mentioned above, it becomes
possible to render L uniformly bounded as e — 0.
Thus, in this respect, boundedness of the exact
operator is here regarded as determining on the class
of norms that are useful.

STEPHEN CHILDRESS

The above reasoning and, indeed, all essential parts
of the subsequent analysis can be illustrated quite
simply with the aid of a complex-valued 1-dimensional
analog of Maxwell’s equations for a moving medium.
Therefore, we present this parallel analysis in one
space dimension in Sec. 3, even though the fields are
there complex and cannot be related, by Cowling’s
theorem,! to a real version of the dynamo prob-
lem.

The physical basis for the regenerative cycle which
emerges from the dynamos studied in this paper is
very similar to that underlying the model proposed by
Parker.* Although Parker considers a time-dependent
dynamo cycle, the idea of using a (time) rapid smali-
scale motion capable of inducing a predominantly large-
scale current in the conductor is clearly contained in
his model. As is clear from (1.1), the present examples
are predominantly small scale with respect to spatial
variation in the velocity, and, since H is independent
of ¢ in (1.8), the induced magnetic field is predomi-
nantly large scale (i.e., on the scale of the core). The
parameter € may therefore be regarded as a ratio of
length scales determined from the dominant com-
ponents of the fields. The notion of a “scale separa-
tion” of this kind is, in fact, rather common in
dynamo theory. In the model of Backus, it occurs as a
separation of the cycle into well-defined periods of
motion and (sufficiently long) periods of free decay.’
In Herzenberg’s 2-sphere model, the small parameter
is the ratio of sphere radius to conductor radius.®®
Compared with these examples, our results may be
viewed as extensions of known existence theory to a
class of essentially fluid motions which cannot be built
up from a finite collection of rigid rotators or which
do not require an implausible distribution of body
forces for their operation.

The results given in the present paper were originally
announced in April, 1967.7% In the intervening time,
the analysis has been further clarified with the aid of
1-dimensional analogs, and a few errors have been
corrected, although the proof given here remains
essentially unchanged. Our original discussion of the
self-adjointness of H contained an error in the
treatment of boundary terms. Examination of this
point led to a simplification in geometry and a new
definition of the Hilbert space appropriate to H.
The convexity condition on periodic dynamos and
the argument employing modified operators in the
existence proof for the bounded conductor (see
Sec. 7) also required revision. In order to make the
present paper self-contained, portions of the con-
struction of spatially periodic dynamos, described
elsewhere, are repeated in Sec. 4.8
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2. FORMULATION

Let D denote the interior of the unit sphere centered
at the origin, S the boundary r =1, and V the
exterior region r > 1. We also set D = D + § and
& = D + V. We refer to D as the conductor, or core,
and endow it with a constant scalar electrical con-
ductivity o and magnetic permeability u. The magnetic
field h and the electric field e generated by the motion
q of D are assumed to satisfy Maxwell’s equations for
a moving medium in the magnetohydromagnetic
limit. In dimensionless notation, these are

J=Vxh=e+ Rqgxh, (2.1a)
V:-h=0, (2.1b)
oh
Vxe=—R—, 2.1c
e Py (2.10)

when r € D; since V is regarded as empty space,
Vxh=V:h=V.e=0, (2.2a)

ch
Vxe=—R=,
X e Py

(2.2b)
when r € V. Here R is a real dimensionless parameter
usually called the magnetic Reynolds number.® In the
kinematic dynamo theory, q is a prescribed function
of r and ¢. Given g, we then seek solutions of (2.1) and
(2.2) which satisfy

2.3)
2.4

r x e, hcontinuous on S,

r3h, r2%e bounded in V.

A subsidiary condition,

Jer—-0 as r—1 inD, 2.5)

which follows from (2.2) and (2.3), is also used. If
q, h, and e are independent of time, we refer to the
problem and its solutions as steady. The steady
kinematic dynamo problem, which is the principal
problem studied in this paper, can then be defined as
follows: To determine a class Q of reasonable motions
q(r) such that q € @ implies the existence of a real
value of R for which (2.1)-(2.4) has a nontrivial
steady solution. Here, ‘“‘reasonable’ is understood to
imply that q is solenoidal in D and zero on S, and it is
at least continuously differentiable in D. These
conditions imply that such q represents a possible
smooth source-free flow of an incompressible fluid
which adheres to the boundary.

It is readily observed from (2.1) that the mathe-
matical problem posed here reduces to an eigenvalue
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problem for the linear elliptic system
VZh+ RVx (gxh)y=0, V-h=0, (2.6)

with variable coefficients determined by q and the
eigenparameter R. Stated in another way, the dimen-
sional speed of the dynamo is the eigenvalue. The basic
linearity of the problem as indicated by (2.6) is,
however, misleading since, as formulated above, the
kinematic problem requires an analysis of the (non-
linear) functional connection between the real point
spectrum of the differential operator in (2.6) and the
motion (coefficient) q by which this operator is
determined. The class Q studied here is of the form
(L1).

Our analysis of the steady problem is based on a
reformulation of (2.1)-(2.4) as an integral equation.
Let K(r, r’) and E(r, r’) be the magnetic and electric
fields obtained by solving (2.1)-(2.4) when the term
R(q x h) in (2.1a) is replaced by Id(r — r’), where
I = idemfactor and r € §, r’ € D. Applying the super-
position principle, we obtain the integral eigenvalue
problem for h in the form (1.6):

Lh = e"}f K(r,r') - [q(r) x h(r')] dr' = h(x),
D
reD, A=Ry', (27

where we have set R(e) = Ry(e)e? in (2.1a). With
E = V®, the corresponding electric potential is given
by

() = l‘le"}fD(P(r, r')-[q() x k()] dr' = A" Mh.
(2.8)

For the spherical core, an explicit construction of K
and E can be given (see the Appendix).

3. AN ANALOGOUS PROBLEM IN ONE
DIMENSION

A. Equations

In this section, the steady eigenvalue problem (2.7),
with q given by (1.1), is studied in a complex-valued
1-dimensional analog defined on one space dimension.
Here extension to the complex plane is necessary in
order to avoid the implications of Cowling’s theorem.!
Notation, terminology, and the steps in the derivation
of the existence theorem (Theorem 2 below) parallel
the study of (2.7) in Secs. 5-7.

In this analog, A(x,t) (magnetic field), e(x,?)
(electric field), and g(x, t) (velocity field) are complex
functions of the real variables x and ¢. The infinite
conductor becomes the real x line, while the analogous
core is taken to be the segment |x| < 1. The analog of
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the Maxwell equations is taken to be

ia—h = e + Rq*h* (3.1a)
0x
and
de oh
i—=—R— 3.1b
Ox ot (3.10)
in the conductor. In (3.1a), the star denotes complex
conjugate.

If all variables are independent of time and ¢ =
exp (ix/e) in (3.1), then there exists a family of x-
periodic solutions defined when |eR| < }. These are
found by noting that, in this case, e = constant and
that, from (3.1),

d dh

dx " dx
The solution of (3.2) is straightforward, and we
obtain

= R%h + Rq*e — ¢ e. 3.2)

h = Clexp (iA,x) — RA;" exp (i4,x)]
— Rlg*e* + ¢ 'R %,
ha=—Qo71 £ (1 —4SRHY,  (33)
where C is an arbitrary real constant. For the same g,
(3.2) becomes an eigenvalue problem for R(e¢) provided
that we add a periodicity condition. We treat only the
case ¢ = 0 and require that

h(—1) = h(+1). (3.9
With (3.4), the equation for R is
R = ll(sin }bz/Sin ll)’ (3.5)

which, for sufficiently small ¢, has solutions R =
R(()"’(e)s‘*, where

R = nar — etsin 1/e cos nmRYY + O(e) (3.6)

ase—0withn=0,1,2,---.If g* replaces ¢ in the
above, similar equations are obtained with —R
replacing +R in (3.5). This property of the model
problem is analogous to the invariance of the steady
dynamo effect under reflection, as noted in Sec. 1.

B. Integral Formulation

The model dynamo problem for a 1-dimensional
core may now be defined as before, for g in the form

g = —ie di [o(Ix]; Iu(x; O] + #Hw(x), (3.7)
X

where w is given by (1.3) and w is continuously
differentiable for |x| < 1. We add to (3.1a) and (3.1b)
the boundary condition

B(—1) = h(+1) = 0 (3.1¢)
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and introduce the model version of (2.7):

+1
Lh= et f K(x, X)q*(<Yh*(x) dx’ = Ah(x),
-1

x| <1, A=RyY, (3.7)

K(x,x') = —%}isgn(x — x') + 3ix. (3.7)

Now, adopting the choice v(x, €) = exp (ix/e) in
(3.7), we define the comparison eigenvalue problem

+1
Hh EJ K(x, x)h(x') dx’ = uh(x)  (3.8)
-1
and the quantities ¥ and » as in (1.8).

C. Estimates

The operators H, L, and V are characterized by
their action on two principal linear spaces. Let C;
denote the complex space of functions A(x) which are
continuously differentiable on |x| <1 and satisfy
(3.1¢). A Hilbert space X is then obtained by complet-
ing C, in the norm

1) = (b WY, (fg) = f

-1

- dx) dx. (3.9)

* (5’1_’ dg”
In addition, admitting now a parametric dependence
on €, we introduce the 2-parameter family of Banach
spaces C](e), defined for each positive ¢ and y by
adding to C, the norm

dh

Iall% = llhlle + € A ], Bl =sup|h], B = —
|x]<1 dx

(3.10)

If, for fixed y, |A]2, = O(1) or o(1) as e — 0, we say
that 2(x; €) is uniformly bounded or uniformly small,
respectively, in CJ(e). Similar definitions will be
implicit in our discussion of other properties of
functions or operators when uniformity with respect
to ¢ is required. In particular, an operator will be
uniformly compact on C] if it maps a uniformly
bounded sequence in C} into a uniformly equi-
continuous sequence in C].
The following lemmas are then elementary:

Lemma I: H is a self-adjoint on J€ and is uniformly
compact on Cl(e);

Lemma 2: Lis uniformly bounded on C}(¢)if y = 3.

Lemma 3:
VRl = o(fiAl%) as
if y<minl[l,$}+ 8]

e—>0
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Proof of Lemma 1: This is straightforward; we
note that the uniform compactness follows from the
inequality
|Hh(x;) — Hh(x))| + € |[Hh(x;) — Hh(x))]'l

<X = x| [1RI%
for |x,|, |xs| < 1, which s easily proved using the mean
value theorem. The eigenvalues of H acting on X are
simple. with u = y, = I/nm, n = +1, £2,- -, and
the associated eigenfunctions are complete in .

Proof of Lemma 2: We use (3.7), (3.9), and an
integration by parts to obtain

1Lkl < (e + & Iwlo) 1, + ¢ 1], (3.10%)

LAYl < 267 gl Nl (3.10°b)

By our construction, |g, = O(1) as € -0, so that
the result follows if § > 0.

Proof of Lemma 3: We can derive the similar
estimates

VAl < (66 + 32 wll) Hhllo + € 17l
+ (e + ¢ wll) LA, , (3.11a)
VAl < 200 + Nlew'lo + €2 W]l
(Il + € |Lhl) + € I(LhY]l,. (3.11b)

Combining (3.10) and (3.11) and using the fact that
lew'||, is O(1) as e — 0, we then obtain

Whllw = O(e Ihllo) + O h]l) + O IRl
+ O(e |1]) + O("E '), (3.12a)

VAl = O(lhllL) + O~ E 1kl ) + OCIR | ).
(3.12b)
Now (3.12a) implies Lemma 3, while (3.12b) proves,
in addition, that V is uniformly bounded on Cj(e) if
max [0, 3 — f1 <y < min [1, { + f]. However, V
is not uniformly small for any y > 0, since (3.12b)
contains an estimate of order ||A'||,,. A device which

enables us to overcome this difficulty is described in
the next section.

D. The Modified Operators
The family of modified operators ¥(c) is now defined
by

41
Vh =f K(x, x'Y(wv*q — 1)h dx’
1

- (J:IK(x, xWw¥*wh dx’) (fj:qh dx’)

+ o*oc (R, (3.13)

where ¢ is a new real nonzero parameter. Inspection
of (3.13) shows that & has been replaced by ¢'L%h
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in the term of ¥ which contributed the estimate of
order ||#'|, in (3.12b). Thus, if 4 satisfies L2k = vk
with » = ¢, then Vh = Vh. Conversely, it is not
difficult to see from (3.13) that, if

[H + V(0)]h(c) = v(c)h(c) (3.14)

for some »(c) and A(c) uniformly on a positive closed
interval in which »(c) = ¢ has a solution v, = A2(¢),
then h(4%) and »(4%) provide an eigenfunction of L2
with positive eigenvalue. In this case, at least one of the
two numbers +1 is a real eigenvalue of L. Therefore,
it is sufficient, under these conditions, to study the
modified problem (3.14).

The importance of the above modification is
reflected in an improved estimate on CJ(¢).

Theorem 1: For each fixed positive ¢, P(c) is
uniformly small on C}(¢) provided that

max [0,4 — ] < y < min [1, } + f£].

Proof: This result is an immediate consequence of
(3.10), (3.11), and (3.13), which together imply

17115, = O(e*) + O(") + O(™)
+ 011 + O(fHE). (3.15)
E. Perturbation of H

Let f be any solution of (3.8) with positive eigen-
value p,. We write (3.14) in the form

h=—(H—»'Wh=Th= (T — PD)h

+ PTh = Th + PTh, (3.16)

where P is the projection in J€ onto scalar multiples of
f. If (I — TYyfe X, then a solution of (3.16) is ob-
tained in the form h = (I — T)~If provided that

f=PT( - T)Y. (3.17)

(This argument is given in detail in Sec. 4B.) Now,
(3.17) is equivalent to

v =y + (f, VU — DS

= + RO, ¢, €), (3.18)

the inner product being that appropriate to X. From
the manner in which ¢ and » occur in ¥ and T,
respectively [cf. (3.13) and (3.16)], it is seen (by
partial differential with respect to either parameter)
that R is continuous in both parameters provided that
V and (I — T)™ exist as operators on C] for all
nonzero ¢. Now, suppose that this is the case whenever
» lies in some closed subset A of the real line and that
|R| = o(1) as ¢ — 0 uniformly for » and c in A. 1t then
follows from the implicit function theorem that (3.18)
has a real solution »(c, €) for e sufficiently small.



3068

Moreover, by a similar argument, v(c, €) = ¢ has a
solution ¢(e) provided that « is sufficiently small. Then
v(€) = #(c(e), €) is the desired positive eigenvalue of
L2, and existence is proved.

Therefore, it follows, from (3.15) and (3.18), that
it is sufficient to show that A can be chosen so that
I 72, = o(1) uniformly for nonzero » and ¢ in A. We
first observe that, if A is chosen to be positive, of
finite length, and to contain among the eigenvalues
of H only m;, then (H — v»)7}(I — P) is a bounded
operator on C}. (Here P is regarded as an operator on
C}.) Indeed, if this were not the case, then, by Lemmal,
H would have an eigenvalue in A with eigenfunction
of the form (I — P)h, h being some element of C7.
But then the eigenfunction would belong to ¥, and
this is impossible by the above choice of A. Combining
this result with (3.15), we see that

1712 = o(1),

if >0 and % <y <3} + f. Therefore, we have
proved

Theorem 2: If § > 0, the functions ¢ of the form
(3.7) with v = exp (ix/e) are ‘“dynamos” if € is
sufficiently small. This is the existence theorem in the
1-dimensional analog.

F. Remarks

The difficulty mentioned in Sec. 1, concerning the
exclusive use of Hilbert-space norms, can be clarified
in the present model. The relation between Lemma 2
and Theorem 1 suggests that boundedness of L
should be obtainable in a family of norms which
provide useful estimates on the operator V. The
obvious family of Hilbert spaces is determined by the
norms

[R]lZ =

= (h, )} + e, L. (3.19)

We now show that, withg = exp (ix/e) replacing (3.7),
IL|12 cannot be O(1) as € — O for any choice of y > 0.
Consider the function

g=0, [x] > €,
=g*h x <

with « > 0. Then ||gll} = 2¥(1 + ¢2) and | Lg|l} >
et Thus, |Lg|3/Igll} - o for a>2y —1 if
y>landfora>1ify <1,as e—0.

Theorem 2 admits a number of generalizations, the
simplest and most useful of which allows v(x; €) to be
an arbitrary trigonometric function of x,

+o0
> a, exp (ikx/e),

k=—o

v(x) =
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where only a finite number of the complex amplitudes
a, are nonzero. In this case, the only essential change
in the previous results is that 4 must be redefined and
is given by
2
Hh = Z lail” f K(x, x)h(x') dx'.  (3.20)
k=—oc

It is not difficult to see how (3.21) arises from the
manner in which Lemma 3 and Theorem 1 were
obtained. The same conclusions hold for arbitrary
periodic functions » with period 27¢ provided that the
infinite sum in (3.20) converges and is nonzero.

4. SPATIALLY PERIODIC DYNAMOS IN
THREE DIMENSIONS

A. Admissible v

We now consider, in detail, the periodic functions
v [cf. (1.2)] which determine the set Q of 3-dimensional
dynamos q having the form (1.1). For simplicity, we
impose the further condition that v be trigonometric,
i.e., (as in the extension of the analog mentioned in
Sec. 3E) only a finite number of complex amplitudes
attached to K will be nonzero. It is also understood
that v is real, so that necessarily w(—k) = p*(k) in
(1.2). For a given field of this form, we may attempt
to solve (2.1) with ¢ = v in (2.1a) for the steady-state
fields in an infinite conductor. The analogous problem
in Sec. 3 yielded the periodic solutions (3.3). In the
actual 3-dimensional problem, explicit solutions for
arbitrary e are not available, and, instead, we seek a
convergent expansion for small e.

The expansion is carried in the complex linear space
S(n) spanned by the basis $ = {B}, where § =i, X
exp[m.r+ e'm-r]=ifm), a=1,2,3 mek,;
{i,, iy, iy} is orthonormal and K, is K plus the zbro
vector; n is some real nonzero 3-vector. The norm on
S(n) is defined by

I, = > IT(m)| if h=3 F(m)B(m). (4.1)
Ko Ko

The dynamo equations (2.1) may be written, in S(n),
in the form

h=T,h= —RV2V x (vxh), (42

where V-28(m) = —|me™! 4 n|~28(m), and the sub-
script oo refers to the fact that the conductor is now
infinite. We propose to solve (4.2) with a series in € of
the form

o0

=> €7h(r; €), 4.3)
where J is a positive integer, and
h, =T(@m;e)exp (in-r), heSh),
Iblls = O(1), as e—0, (4.4)
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forj=1,2,--. We also require
lim ||h — holl, = 0, R(¢) = Ree"’™,

€0

for R, some positive constant, for some J > 2.

4.5)

B. Analysis

We first seek to estimate the effect of T,, when the
mean or average effect taken over the small [O(¢)]
length scale is removed. Let the projection P be
defined for @ € B by

PB=0, m#0,
=B, m=0.

If T, =T, — PT,, then it follows from (4.1), (4.2),
and (4.5) that

I1Talls < Ro Ivll,€7(1 — eny™ (4.6)

and hence that (I — T',)! exists on PS if € < ¢,
where
€ = min {(2n)7%, (2 |Iv], Ro) ™’} 4.7

The proof of (4.6) is straightforward and is omitted.

Suppose now that € < ¢, where ¢, is defined by
(4.7). Let f be some element of PS, and set g =
(I — T,)f. Then

g Toog= f_PToo(I— Too)_lf’
so that g will solve (4.2)-(4.5) if and only if f solves
f=Pr (- T, 4.8)

in which case f = Pg. In this way, solutions of the
periodic dynamo problem may be generated (for e
sufficiently small) by solutions of the compatibility
Eq. (4.8). A solution of (4.8) corresponding to a given
n represents, moreover, a Fourier mode having n as
its wavenumber vector. For small e, it follows from
(4.6) that this wave is the dominant part of g. This
separation of scales, wherein the dominant small-scale
velocity field gives rise to a magnetic field with a
dominant part varying on a scale of order unity, also
occurred in the analog of Sec. 3, as is clear from (3.3)
and (3.16).

To solve the compatibility equation, we write it
in wavenumber vector form, assuming that f=
Texp(in-1),

mxIT'=in®+A-T, mn-I' =0, (4.9

where ® = in"n- A+ I" and A is the 3 X 3 complex
matrix defined by

AT = SRi() eV [*"’ Xy X7 X
2:2 oy e 2

2 2
9 m;_, - mj

[*0]
= Ze:l/J-—lR(j)A(()i) .T\

i=2

(4.10)
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In (4.10), m; = k; + k, + - - - + k; + en, where k; is
an arbitrary vector from the jth copy of K and ‘-
summation” is defined to be summation over all
clements m; satisfying k, + -+ k; #0, i=1,
2,+-,j—1, ky++--+k;=0. We have also
writtena X b x ¢ fora x (b x ¢). Note that in A (),
as defined by (4.10), € and n occur only in the combina-
tion en. Now, if A is to have a bounded nonzero limit
as e — 0, then it is necessary and sufficient that J equal
the index of the first nonzero matrix in the series
(A®(0), A®(0), - - *). At this point, we adopt this
particular value of J and assume that it is finite.

Elsewhere, we have shown that A? is Hermitian
(anti-Hermitian) if j is even (odd) and that A”(0) is
real.! Moreover, the dispersion relation for n following
from (4.9) is given by

3
nt = > agnng — in® Y ep,a,n,, (4.11)
a,B af,y=1

where A = {a,;} and A’ = {a,;} is the matrix of
cofactors of A. The reality of n when e is small will
therefore depend on J and the choice of the (k) in
(1.2).

C. Construction of Periodic Dynamos

Let A, and A denote the values of A and A,
respectively, when € = 0. The field v will be said to be
a spatially periodic dynamo if A is Hermitian and A;
positive definite, the former uniformly for ¢ in an
interval of the form 0 < € < ¢ < ¢, ¢ > 0. Clearly,
then, v is a spatially periodic dynamo if J is even, A;
positive definite, and A = 0 for all odd j > 3.

If v is a dynamo in this sense, it also has properties
of physical interest. From (4.6) and (4.14) it can be
shown that there will exist, for e sufficiently small, a
closed surface B swept out by real wavenumber
vectors n satisfying (4.14). This surface has the
property that

BB, as ¢—0, 4.12)
where B, is defined by nonzero solutions of
nt—n-Aj-n=0. (4.13)

Superposition of these plane-wave solutions gives the
magnetic field

h =L(I — T, 'T(n; ¢ exp(in-r)ds, (4.14)

which solves (2.1) and tends to zero as r — 00.1° Such
fields are the natural eigensolutions for steady
dynamos in an infinite conductor, in spite of the fact
that the total magnetic energy of such a solution will
not, in general, be finite (see Sec. 8). The above
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conditions, isolating the spatially periodic dynamos
from other admissible fields v, have been interpreted
physically elsewhere.®®

D. The Motions Q

The class Q of velocity fields covered by the exist-
ence theory of Secs.5-7 can now be characterized by
the admissible v in the following way: In (1.1), v is to
be admissible in the sense of Sec. 4a; it is also to be a
periodic dynamo in the sense of Sec. 4C, with J = 2
and Aq = L Finally, v is required to have the Beltrami
property v x (V x v) = 0. Without loss of generality,
we may impose this last condition in the form!!

(4.15)

This family of v can be studied explicitly by noting
from (4.10) that, if (4.15) is satisfied,

AP = i 3k (* x @) okl
K

However, in view of (4.15), we see that J(k)| # 0
implies k£ = 1 and that

Vxv=—v

(4.16)

pk) =alik x c —¢],

where a is a complex number and c is a real unit
vector normal to k. Substituting (4.17) into (4.16), we
obtain

AP =2 ; la(k)|® k ° k. (4.¥8)
The remaining condition on v is, thus, that the
mapping onto A{, as given by (4.18), yields the
identity matrix.

5. PERTURBATION OF H

The comparison eigenvalue problem (1.7) is defined

for (2.1)-(2.4) as in (3.8), by setting

Hh Ef K(r,r') - h(r') dr'. (5.1)
D

A suitable linear space X for the operator H may be
defined as follows: Let h be irrotational and r%h
bounded in ¥, solenoidal in &, continuously differen-
tiable in D and V separately, and continuous in &.
These functions constitute a space C;, on which the
inner product

, g) = L(v x f)-(V x g*) dr (5.2)

may be defined. Completion of C; in the norm
(hly = (b, W)} = [V x h] (5-3)

provides the Hilbert space J€.1% It can be shown® that

(4.17)
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an orthonormal basis in J¢ is given by the set (h® , k =

ﬂ:l,:}:2,---;n=1,2,-..;m=—-n,—n+1,...’
n — 1, n}, where

W =V xV x rP® + V x rT® (5.4a)
Ty = Cjo¥'nY,,, 0<r<1,
=0, r>1, (5.4b)
PE = @y (T — o), 0<r<1, (540
= —CPn + )Y@ "y, r>1,
po = CPn + Y W) (cENr"y,,,,. (5.4d)
Also,
(CB) = [n(n + DIF®), (0¥,  (5.4e)

where 6{*) is a zero of the Bessel function j,(r) defined
by

julr) = (%)*J"J&(r) ~ (—1y (1 4 ) sin 7

—, (5.4f
rdr r (5.40)

and Y, is the surface harmonic
@n + 1))* ((n — m)!)é
4 (n + m)!
X Py(cos 0) exp (im¢). (5.4g)

Yy = (—1)'"(

We also want to regard H as an operator on the
Banach spaces C](¢), €, y > 0, obtained by equipping
C, with a norm analogous to (3.10): If T = {T,..,} is
any tensor, we define

ITI% = ITle + € VT, (5.52)
IT|,, = max {sup |T,.,...k|>. (5.5b)
1,4,k D

We now prove the next lemma.
Lemma 1*: H is bounded and self-adjoint on ¥
and is uniformly compact on C}.

Proof.: To prove self-adjointness, we note that, if
f, g € C, there will exist scalar functions ¢ and y so
that [cf. (5.2)]

(f, Hg) — (Hf, g)

=f(V xf-Vé —VUxg.-Vy+V-.-fx g)dr. (56)
D

Since (2.5) is satisfied for all functions in C,, the
right-hand side of (5.6) reduces to a surface integral of

the normal component of f x g. But f and g are
continuous on S and are irrotational in V, so that

(f, Hg) — (HI, g) = fyv (g x ) =0,
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Boundedness follows from the inequality

HEE = L(w + ). (V x HE)dr

< Il 1 H1,
< o7t il I HEl, -

In particular, |H|,; < #~. The uniform compactness
follows from the representation of the kernel K given
in the Appendix [see (A10), (A13), and (A19)]. Thus,
we have

K(r, ') =V x A(r, 1), (5.7a)

where A is a tensor which is regular forr, r’ € D except
atr=1r', and

|4l < ag; e — 7Y (5.70)
04y < b lr — 1|7 (5.7¢)
0x,,

for some constants a,;, b;;k. Using (5.7) and Gauss’
theorem in (5.1), we may represent Hh, he C,, as a
surface integral similar to a single layer potential, the
distribution being continuously differentiable, to-
gether with a volume integral similar to a continuous
volume distribution in potential theory. Known
results in potential theory carry over, and it is found
that a uniformly bounded sequence in C is mapped
under H into a sequence which is uniformly equi-
continuous with respect to the same norm. Thus, H is
uniformly compact on C7.

We can also establish the following versions of
Lemmas 2 and 3 and Theorem 1 of Sec. 3.

Lemma 2*: The operator L, defined by (2.7), is
utiformly bounded on C}(e).

Lemma 3*: If he C; and if « is any number
between § and 1, then

IVhi, = O™ |h,) + O(*=" |Vh|,,)
+ O(** |w|,, IVh],), (5.8)

as e — 0, where V' = L* — H and q s of the form (1.1)
with # > 0. As in the model problem, ¥ fails to be
uniformly small on C} but, again using modified
operators, we can obtain:

Theorem I*: There is a family of operators H(c)
on C; with the following properties: (i) If ¢ # 0, then
H(c) — H(c) is uniformly small on C? for some y
between } and 1; (ii) if A(»)h = vh for some h(r; ¢) €
C,; and »(¢) > const > 0, uniformly for 0 < € < ¢,
€; > 0, then L%h = vh for e sufficiently small.

We give the proofs of these results in the next two
sections.
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Using Theorem 1*, we now solve the eigenvalue
problem (1.6). Let ¥(c) = H — H and formally set

T = (H - »?V, 5.9

so that the modified eigenvalue problem becomes h =
Th. Let u, be any positive eigenvalue of H with an
associated finite set {f;,i=1,2,...,m} of eigen-
functions belonging to C,; and orthonormal in . We
define the projections P; and P by

Ph =1, f (V x f) - hdr, (5.10a)
D
P=3P, (5.10b)
i=1

and set T = T — PT. Suppose that f is of the form

f=73 afe of; (5.11)
i=1

then g(e, ¢) = (I — T)f solves the modified problem

provided that

of, =PTUI— T, i=1,2,-,m, (512

is satisfied by f. This system is the compatibility
equation for the bounded conductor [cf. (4.8)]. We
rewrite (5.12) in the equivalent form

(U — ), = > Ry, i=1,2,--+,m, (513a)
a1

R =f f,- [P(I — T)'f,] dr. (5.13b)
D

Then we see that (5.12) has a nontrivial solution if

and only if

det {(v — u)dy; + Ry} = (v — u)™ + R(v,¢6,0) =0.
(5.14)

If R = o(1) as € — 0 and is continuous with respect
to € and c in some interval of the form

—0<v—u<+6, 6>0, 0<e<L ¢, <0,
<<, < My, C> U

and if m is odd, then (5.14), with R(», ¢, ») replacing
R(r, €, ¢), has at least one solution v(e) for e suffi-
ciently small.

In order to solve the equation h = Th for ¢ = v,
it is therefore sufficient to show that (I — 7)1
exists and that the required conditions on R are
satisfied. We first choose 4, in the above interval, to
be positive and less than gy, so that, among the
eigenvalues of H, A = [y, — d, s + 6] contains
only g, . Thus, if » € A, then (H — »)? is bounded on
the subspace (I — P)C,. Indeed, if this were not the
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case, then, from Lemma 1%, this subspace would
contain an -eigenfunction of H belonging to C; and
hence to J€, which is impossible because of the choice
of A and the definition'® of P. Thus, for v 5 u,, we
have an estimate of the form

171, < CIvi, (5.15)

where C.is a constant independent of » and e. Letting
vy — 1, in (5.15), we obtain a uniform estimate on T
for all » € A. By Theorem 1%, it then follows that T
is uniformly small on C}. Finally, it is apparent from
the definition of T that R is actually a differentiable
function of » and ¢ on an interval of the above form.
By Theorem 1* again, it then follows that g(e, A%)
satisfies L?h = A%h for e sufficiently small, so that one
of the two functions (L 4 A)g(e, A2) is an eigenfunc-
tion of L corresponding to the real eigenvalue +A.
It remains to be checked that H has an eigenvalue g,
with the requisite properties. However, from (5.4), we
see that the eigenvalues {(¢¥)~!} have multiplicity
2n + 1, with associated eigenfunctions {Al¥) m =

mn?

—n, * -+, +n} belonging to C, . Thus, we have proved

Theorem 2*: If f > 0 and e is sufficiently small,
then the motions (1.1) with q € Q are steady-state
kinematic dynamos. This is the desired existence
theorem and the main result of this paper.

6. PRELIMINARY ESTIMATES

In this section, we shall prove Lemmas 2* and 3*.
The first of these is a consequence of estimates on L
obtained by dividing the domain of integration into
two parts, so that global and local estimates (the
latter associated with the singularity for r = r’) may
be treated separately. Let D, be the intersection of the
interior of a sphere of radius «* and center at r with D.
Here r is any point in D, and 0 < o < 1. Also, let
D.=D— D, and 9D, = D, — D,. Then we write

Lh=e—%f K-(qxh)dr'+e—%f K-(qxh)dr
D1 Dy’

=1, + 1, (6.1)

where here and below the I, are defined, in order,
by the terms on the right. In treating I;, we use the
decomposition (A10) derived in the Appendix and
note from (A13) and (A19) that

K3 < oy(1 — rr)7% (6.2a)
*

’a—& < Bl — rr')7? (6.2b)
0x;,
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for positive constants o;; and f,;,. With

-4
Il=€—fV|r—r’|‘1x(qxh)dr'
47T Dy

+ ﬁf K*-(q x h) dr’
Dy
= Ill + 112 ’
we then obtain, using (6.2) and (1.1),

111l = OC(e? Il ), el = OCet [N ,),
IVl = O(e % ||h]l,,), (6.4)

as € — 0.1 To obtain an estimate on VI;;, we con-
sider the identity

f Vie—r|™ x (q x h)dr
Dy

(6.3)

=| r—r'V' x (q x h)dr’ +f (q x h) x ds’.
oDy

Dy
(6.5)
Using (6.5) in (6.3), we obtain

VL], = O(< ¥ b)) = O(et |Vhi,). (6.6)
To treat 1, in (6.1), we use (1.1) and integrate by
parts to obtain
e—%f K-(qxh)dr
Dy’
=e*f o[h-vK — K- vh — K - hv] - ds’
Dy

+ | wl(v-VK)-h
D'

+(h-VK)-v—h-vW.K]dr

— ¢t K- wv x (V' x h)d'

Dy

+e*f K-h(v-V'w)dr'+e”f K- (w x h) dr’
D Dy

’
1

1]
o

L. (6.7)

i=1

If (5.7) is used to estimate K and VK, we have
Izl = OCe I1l,),
VI, = O(e* Tog € hl,,),
Izl = O(e* log € 1]l ),
VIl = O ],
asll oo = OCe! 1VRY,),
IVIo0,, = O(et log € [Vh],,),
zallo = OCe IhIl,,),

Vsl = Ot log € [I]],,),
Iasll o = OCe® Wl I,
V1o = O(e* log € Wi, IIBll..).

(6.8)
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Combining (6.4), (6.6), and (6.8), we then obtain

ILh],, = O(e* log < [h]) + O(e* |Vh])
+ O [l [Ibf].,), (6.9)
IVLR| = 0(c? |n)) + O(et log « [Vh])), (6.10)

which imply, in view of (5.5), Lemma 2*.

To obtain Lemma 3*, we replace D, by D, in (6.1)
and retain « as a parameter. This change is indicated
by adding the superscript (x) to the I,. It is not
difficult to see that this does not change the estimates
(68)onl,,i=1,---,5, except for the estimate on
V1,,. This must be replaced by

VIRl = O [h]).
Using (6.8), (6.9), and (6.11), we then have

(6.11)

ILIy),, = O(e"* |hll,) + O(elog € | Vh],,)
+ O(*+} |w|,, |IVhl,,), (6.12)

when 8 > 0and 4 < o < 1. For the integrals over D,
we have, clearly,

11, = O(e* % [Ih],), (6.13)
111 = O Ihll,), (6.14a)
VL2, = O |Ihll,,). (6.14b)

However, (6.14b) must be strengthened in order to
obtain a suitable estimate of LI{?. Specifically, if
9D, N S =0, then K is regular over the domain of
integration in /y,, and the estimates (6.14) come from a
spherical shell of thickness 2¢* adjacent to S. More-
over, if r is constrained to lie within this shell in
obtaining the sup with respect to r, these estimates
drop to O(e3*~% |h||,,). We can therefore refine
(6.14) to obtain, when used in conjunction with (6.9),

= O(¢* log € || ,) + O(*** |wl,, [h],,).
(6.15)

In order to study LI{¥, we substitute for h(r') the
expression

ML

h(t’) = h(r) + (' — r) - Vh(r,), (6.16)

where r, is some point on the line segment between r’
and r determined (since r is fixed) by r’. The effect of
the two terms in (6.16), taken in order, is to de-
compose I{* into two parts,
g = el + g,
where, clearly,
152 = O (]l ). (6.17)

Now, consider I{¢}, with q given by (1.1). In the
computation which follows, we take v(r) to have the
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simple form
v(r) = (sin y + cos z, sin z + cos x, sin X 4+ cos y).
(6.18)

However, the final estimate [Eq. (6.27) below] is valid
for an arbitrary element of Q. We write

l(i.]). - z Qu
and study L£);, i = , 5, in turn. Here

¥
QXE—&—E—

w JD,

Vir—r|"

<[] emo s

vanishes identically if the distance between r and S
exceeds € + €. Otherwise, its components are each
O(e*t ||| ,). Thus,

ILQy o, = O™ ] ,). (6.19)

Next, we set

et

Q=—1| Vir—v|
7 JD,
x [[w(r’) - 1]v('—) x h(r)] dr
and observe that

[LQll,, = O(e” {h]l,), (6.20)

by a similar argument. Setting

4 V It — [ x [v(r'/e) x h(n)] dv' = Q3 + Q,
w
where
et
Q= — p e x [v(l-' + E) X h(r)] dp. (6.21)
4ar Jo<e® € €

We may estimate L, in the same way, giving

L], = O (k).
Lastly, we have

(6.22)

5
Q, = f— Vir—r|™ x [w(r) x h(r')] dr’

7 Jb,
and the obvious estimate

ILQ;I = O Wi, Ihll.).  (6.23)
Then, considering (6.21) with v given by (6.18), we
obtain by an explicit calculation

ey (5) x Q;=h—nleh+F, (624)
€,

where

7(e) = ¢ *sin !
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and ¥ is a finite linear combination of terms of the
form

i1p()[sin (k- r/e)], cos(k-r/e)], k, integral, k0.

Thus, the method used to derive (6.9) may be repeated
to obtain

[HoF |, = O(e log € [h]) + O(e [Vh,). (6.25)

Combining (6.24) and (6.25), we see that

ILQy — Hh|,, < [H(w — Dhl, |Homh]
+ |HoF |, + O(*~H |w],, |hl,)

= O(¢*|hll,,) + O(" 2w, [h]],,)

+ O(e |Vh| ). (6.26)

Now, using (6.19), (6.20), (6.22), and (6.23) together
with (6.26), we obtain

ILL — Hhll,, = O(¢* [Ihll,) + O(e | Vh]l.,),
(6.27)

provided that # < « < 1. Combining (6.12), (6.15),
(6.17), and (6.27), we obtain Lemma 3*.

7. ESTIMATES IN THE MODIFIED EIGEN-
VALUE PROBLEM

In this section, we establish Theorem 1* and thus
complete the proof of Theorem 2*, as outlined in
Sec. 5. The problem we treat here also arose in the 1-
dimensional model and was discussed in Secs. 2C and
2D. We first seek an estimate for | V|2, with ¥ > 0,
using those derived in the preceding section. From
(6.3) and (6.10), we can obtain

IVLI®|, = O(&loge |h]l,,) + O(e* log € [ Vh] )
+ O log e Wi, IIh]l,), (7.1)
and, from (6.8) and (6.10), we have
IVLUIE — I8
= O(log ¢ [h..) + O ¥ ||, Ihl.). (7.2)
In conjunction with Lemma 3*, (7.1) and (7.2) imply
12 — H — LIZ|?,
= O(¢"™) + O(€*"Y) + O(|lwll, #¥7) (7.3)

provided that § <« <1 and $ <y < 1. Thus, if
3<a<]l and ¥ <y <2a-—1 (|w|], =0) or if
} <y < min 2« — 1, 8 + 4] (|w|l,, 5= 0), the right-
hand side of (7.3) is o(1) as € — 0. However, (6.8) and
(6.10) can only provide the estimate

ILI|L = O(D),
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so that Lemma 3* cannot be extended to obtain uni-
form smallness of ¥ on C}.

We are therefore led to define the family of
modified operators H(c) for ¢ 5 0 by

H(c)h = I?h + ¢ 'LIZ(I’h — ch)
= (I — LIZ)h + ¢ LIZ(I%h), (7.4)

with
I;g)(h) — _ei‘f K-wvx (V' xh)dr
Dy

following from (6.7). Using (6.9) and (6.10) repeat-
edly, we then obtain

ILIS (ER)|%, = O(" " log « |h]|%,)
+ O(H |wl,, [hI2). (7.5)

Combining (7.3)-(7.5) with ¢ # 0, we obtain part (i)
of Theorem 1*.

Now, suppose that H(»)h = vh with he C, and »
positive, uniformly as € — 0. From (7.4), we then see
that h' = (L2 — »)h satisfies

LIZW) = —h. (7.6)
Now, if part (i) of Theorem 1* is used, we see that this
h has the property that |[h — f;||%, — 0 as ¢ — 0 for y
in some positive open interval chosen as described
above, where f, is a solution of (1.7) with g = . In
particular, ||h||3, = O(1) for y in this interval. We
also find, using (6.9) and (6.10), that ||L%||?, = O(1)
for these ¥. Thus, we may assume that |h'||?, = 1 for
all ¥ in this interval which exceed some value y'.
However, applying (6.8) and (6.9) to (7.6), it follows
that

v 0|, = O log e [0'|%),

for some v less than 1. Thus, we have a contradiction
unless h’ = 0. This proves part (ii) of Theorem 1*.

8. REMARKS

For periodic motions of the kind used to construct
Q (cf. Sec. 4D), the “unperturbed” (e = 0) magnetic
fields can be obtained by solving (4.9) with A = A{?.
An example is

(8.1)

where a is an arbitrary constant vector. We see from
(8.1) that, in general, the induced fields (4.12),
while vanishing at infinity, do not have a bounded
total magnetic energy. Nevertheless, (8.1) is similar
to the eigenfunctions of the comparison problem
a.7. Thegfargest positive eigenvalue y, is (20.19)%,

h, = nV x ar-'sinnr + V x V x ar~!sin nr,
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approximately, and it is associated with three
linearly independent dipolelike eigensolutions:

h, = (k® — 2)a + Va-Vy — ka x Vy,

¢, =2ka-r, TeD,

3  sinkr (8.2)

k¥sink r

s k = (‘ul)_l'

It is, therefore, of interest to attempt to apply the
present model to the geomagnetic dynamo problem.
In several respects, the motions (1.1) are physically
compatible with a rotating fluid system. Condition
(4.15) not only makes v into a force-free perfect
fluid motion, but also introduces a preferred parity,
which could be induced, in practice, by the direction
of rotation. Moreover, the second term in (1.1)
accounts for possible weak large-scale (geostrophic)
motion, which can be expected to appear in most
contained rotating fluid systems. The model can,
however, be criticized in several respects. In the first
place, there is no a priori reason to suppose that
small-scale components of the core motion should
dominate over large-scale ones, which is the case in
(1.1) when € « 1. Indeed, in most physical theories
of the geomagnetic dynamo, a typical dynamo speed is
usually associated (in a spherical core) with an
axisymmetric-toroidal shearing motion.? Such motions
actually cooperate in the achieving the dynamo effect
in models proposed by Parker* and Braginskii,!® while
they are entirely subsidiary to it in (1.1). In the second
place, Parker has also suggested that the preferred
sense of “vortices,” as determined by the sign on the
right of (4.15), should be different in northern and
southern hemispheres, so that, if this is a necessary
property of a realistic dynamo the model, (1.1) with
(4.15) can only be expected to apply to the dynamo
process within one hemisphere. Finally, the ordering
of the magnetic Reynolds number R = Rye~? utilized
in our proof implies that the magnetic Reynolds num-
ber based on the characteristic length of the small-scale
motion has been made small in order to achieve the
dynamo effect. This is by no means a necessary
property of kinematic dynamos, steady or nonsteady,
nor is it an obvious feature of the geomagnetic dynamo.
If local magnetic Reynolds numbers are taken to be
large, there are severe analytic difficulties connected
with the calculation of the small-scale magnetic field in
a steady model, and, in this case, a scale separation
based upon time appears to be more promising.
However, in order to extend the present theory in any
of these directions, it appears to be necessary to
consider a comparison eigenvalue problem which is
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more complicated than (1.7). It is, in fact, the search
for a simple self-adjoint comparison problem which
originally led to the choice of (1.1).
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APPENDIX: CONSTRUCTION OF K AND E
FOR THE UNIT SPHERE

Since the formulation (2.7) and (2.8) of the steady
kinematic problem has not, to our knowledge,
appeared before in the literature on dynamo theory,
we give here explicit formulas for the Green’s tensors
K = {Ky} and E = {E};} = {0@,/0x,}. In component
form, the equations are

0Ky _ 30

in , é;:l + 6,0 — 1), r,reD,
=0, reV, (A1)
VI, =0, reV, . (A2)
%I}”:’ =0, (A3)
P, K, continuéus onr=1, (A4
r®,, r’K;, bounded in V. (AS)

To solve these, we note first that (A1) and (A2) imply
2 a ! a 7
Vip,=—éd(r—r)=— —d(r—r) (A6)
ox, 0x;
and that (2.5) provides the condition
2,

=0 on r=1-— (AT)
or
From (A6) and (A7), we see that
2
E,=— N(r, 1), (A8)

0x,0x;

where N is a Neumann function for Laplace’s equation
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in the unit sphere,
N, t')= @dm)r —r|1 + R
~log(l1 —r-r + R) + log2],

where R = [r2r’2 — 2r-r + 1]
Now, we consider K and set

(A9)

Ky = (4m) Yepn(x,, — X3) It — P72 + Ky, (A10)
N =@ r — v + N* (A11)

Then, from (Al), (A10), and (All), we obtain, for
rebD,

oK} ON*
G —r = -~ : (A12)
0x; 0x,0x,
To solve (A12), we introduce the function
p=(@4mlog(l —r-r + R) — 1]. (Al3)

From (A9) and the definition of N, we observe that y
is harmonic with respect to r for r # r’, re D, and
that

@ = —N* + log 2.
or

Therefore, the vector field V x ry satisfies
V x (Vxry) = —VN*

in D; (A12) thus has the general solution

o,

0%y,

Y

€xmn
0x,,0x]

Ky = , reD, (Al4)

where ¥, is an arbitrary harmonic function of r.

Now, considering (A4) and (AS5), we introduce the
decomposition (into harmonic poloidal and toroidal
parts®) defined by

) 0
L= —ro= Loy T8
0x;, 0x,,
(A15)
Solving (A15) for f; and g; and using (A5), we obtain
fi= = Lie@x ) —r|”
4
X[P—=r.r +rr—r|], (A16a)
10
& 47 0x;

x riflog(r® —r-v + rir —r) — log 2r%].
(A16b)
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Both of these functions are harmonic with respect to r
in D, except at r'. Now, using (A13) and (Al6), we
obtain

0

. + g,=0 for

ox;
so that the sum of the two terms containing e, in
(A14) and (A15) vanishes on S. Therefore, we may
set ¥, = const in (A14) and

r=1, (A17)

)
Ky=2, rev, (A18)
0x,,
- 0x,y
K= — €pum(Xm — Xo) [t — 1| — € —2 |
kl 417 kl ( )l I k axmax;
reD. (A19)
We note from (A19) that K,,(r, ') = K, (', r), where
o 0%x,,
Ky = Kiy + €1mn .

0x,0x.,

is obtained from K}, by adding a gradient with respect
to r. This remark explicitly verifies the self-adjoint
property of H as proved in Sec. 5.
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A unified treatment of all three multiplicities, valid for a/! classical (compact, connected, simple Lie)
groups, is described. The general theory is given and then applied to the rank-2 groups.

I. INTRODUCTION AND SUMMARY

The three multiplicities to be considered are?

(1) the multiplicity of weights,?

(2) the multiplicity of representations occurring in
the (inner) direct product [Clebsch-Gordan (CG)
series],? ,

(3) the branching multiplicity.*

The groups for which these multiplicities are studied
are the simple, compact, and connected Lie groups.
They are referred to as classical groups or simply as
groups. Throughout this paper, by representations,
we mean irreducible represent'ations of the classical
groups. For the third multiplicity, namely, the branch-
ing multiplicity, the subgroups to which we will restrict
the groups are classical groups or direct products of
classical groups (semisimple, compact, and connected
Lie groups).

In Sec. II, a method of setting up ‘““patterns” and
“diagrams”” is described for the classical groups up to
rank 4 (but, in principle, valid for all classical groups).
In Sec. III, rules are given, valid (again, in principle)
for all classical groups, on how to apply the diagrams
on the pattern in order to obtain the various multi-
plicities.

The particular form of a pattern depends on the
group, while its size depends on the ambitions. The
pattern is nothing but a systematic way “‘of writing
down” a weight diagram. The more representations
one wants to consider, the more the size of the pattern
increases. On the other hand, the diagrams, one for
each multiplicity (counting the restrictions to different
subgroups as different multiplicities), are determined
by properties of the classical group (and its subgroups)
alone. They are related to the Weyl group of the classi-
cal group (and not representations of the group).

By setting up a pattern for a group and then apply-
ing the various diagrams according to generally valid
rules on this pattern, the various multiplicities can be
obtained from the pattern for all representations
described by it. Thus, a// multiplicities can be obtained
from one and the same pattern according to rules which

are valid for all classical groups. The number of repre-
sentations for which this is true determines the size of
the pattern.

In Sec. IV, the general methods developed in Secs.
IT and IIT are applied to the rank-2 groups, namely
SU(3), SO(5) ~ Sp(4), and G,. The group SU(3) is
trivial with respect to all multiplicities. It has, however,
been included for reasons of completeness, and also as
a convenient example due toits familiarity. [Moreover,
due to its simplicity, the patterns and diagrams
amount to a somewhat implicit tabulation of the
multiplicities of SU(3).] The groups SO(5) and G, are
already much less trivial, though for these groups also
some well-known branching multiplicities have been
included for reasons of completeness.

The following has been achieved:

SU(3): Two patterns are given which allow the
calculation of the multiplicities of weights for 113
representations as well as the branching of these 113
representations with respect to the subgroups SU(2)
and SO(3). Moreover, two subpatterns are given
which allow the calculation of the CG series of 52
representations with any representation of SU(3).

SO(5) ~ Sp(4): The multiplicity of weights for 132
representations, as well as the branching of these 132
representations with respect to the subgroups SO(4),
SO(3);, SO3);, and SO(3);, can be obtained from
two patterns. Two subpatterns give the CG series of
42 representations with any representation of SO(5).

G,: The multiplicity of weights for 36 representa-
tions, as well as their branching with respect to the
subgroups SU(3), SU(2); x SU(2),, SUQ2),, SU(2),,
SO(3),, and SO(3), of the group G,, can be obtained
from one pattern. The CG series of any representation
of G, with any of the 15 representations contained in
a subpattern can be calculated.

Should the need arise, the patterns can easily be
enlarged to include representations not contained in
them (except for obvious limitations given by the size
of the patterns).
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The method developed in the present paper is
applied in a subsequent paper to the rank-3 and rank-4
groups. It is the application to these groups which is of
real interest. So far, no simple methods of obtaining
the multiplicities for these groups exist—with a few
exceptions—while the methods developed and de-
scribed in the present paper allow a relatively easy
handling of the multiplicities of representations with
dimensionalities well in the tens of thousands. More-
over, the treatment is a *“‘unified” one. A/l multiplici-
ties are treated in the same manner for all the groups.

II. GENERAL THEORY

Three formulas are utilized to calculate the three
multiplicities—one formula for each multiplicity.
Before writing down these formulas, some definitions
have to be made.

A highest weight is denoted by M, and m denotes
an arbitrary weight. Then me D(M) is a weight
contained in the representation D(M) with highest
weight M. The symbol S denotes an element of the
Weyl group W. The signature of the element S is
denoted by dg: 6g = —1 if Se W is a reflection;
0g=1 if SeW is not a reflection. The symbol
0.4, where x and y are two (weight) vectors, is the
Kronecker symbol; ie., d, , = 1if x =y, §,, = 0if
x # y. Adding a suffix r to one of the symbols, such
as M,,m,, S,, and W,_, denotes the same quantity in
a subgroup of the group considered. Thus, M, is a
highest weight in a subgroup, etc. The mapping of a
weight m of a group onto a weight m, of a subgroup is
denoted by Lm (= m,). The three multiplicities are
denoted as follows:

yM(m) or y(m): multiplicity of the weight m of the
tepresentation D(M);

7(M): multiplicity of the representation
D(M) contained in the decomposi-
tion of a direct product D(M") ®
D(M");

7(M,): multiplicity of the representation
D(M,) (of a subgroup G,) which is
contained in a representation D(M)
of a group G under the restriction
of G to the subgroup G,.

The simple negative roots are denoted by §,, i =
1,2, .-, 1, where l is the rank of the group. The sum
over all positive roots of the group is denoted by 2R.

The first formula, for the multiplicity of weights,
is Racah’s recursion formula.’ In the notation de-
scribed above, the formula is given as

y(m) = — 3 dgy(m + R — SR).
Sew

S#1

®
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The second formula—for the multiplicity in the
(inner) direct product—is also due to Racah.® If the
direct product of two representations D(M) and
D(M’) is written as

D(M) ® D(M’) = @ 3 7(M)D(M),
then #(M) is given as "
M’ + m) =3 SgyM[m + M’ + R — S(M’ + R)],
< with me D(M). (2)

Finally, the third formula—for the branching multi-
plicity—is due to Straumann® (it has also been inde-
pendently obtained in Refs. 7). If the branching of
some representation D(M) is written as

D(M)Irestr. =@ % f(M,)D(M,),
then

7(Mr) = z 2 6SryM(m)6Lm,Mr+Rr—Ser' (3)
SreW'r meD(M)

It is easy to observe that all three multiplicities are
related to weight diagrams (systems of weight vectors
without their multiplicity). This makes it possible to
obtain all three multiplicities from one and the same
*“‘pattern.”

The Pattern

The pattern is nothing but a systematic way of
writing down a weight diagram. If D(M) is the repre-
sentation to be considered, all its weights can be
obtained from its highest weight A as

M+ kp+ -+ kB, “4)

where the k;, i = 1,2, --,/, are nonnegative inte-
gers. If the dominant weights® are found first—which
is simple due to the conditions imposed on a weight
through its dominancy—there is no problem in elimi-
nating from the set of weights M + k;f, + * -+ + k,f,,
all possible nonnegative integers k;, the weights which
do not belong to D(M). Namely, knowing the dom-
inant weights of D(M), we know all weights through
the Weyl group W.

So far, only groups up to rank 4 have been treated
by the methods described here. For them, the pattern
is most conveniently obtained in the following manner.

The weights

M4k + ks +0:-834+ 08, )]

are written down in matrix form. The position of the
weight given by Eq. (5) for some values k; and k, is at
the intersection of the (k; + 1)th line and (k; + 1th
column, lines and columns being counted from the
lower right corner of the matrix. Positions in the matrix
not corresponding to weights of the representation



MULTIPLICITIES IN THE CLASSICAL GROUPS. I

are left empty (see Sec. IV). The value k; distinguishes
different matrices—or blocks—one block being put
on the top of the other (with increasing k,). Thus, the
weights

M + kiBy + kyfy + ksfs + 0 B4,

with k, and k, arbitrary (nonnegative integer) and k&,
some fixed value (nonnegative integer), form the
(ks + Dth block (matrix) counting from the bottom.
(With &, and k, arbitrary we understand that outside
some maximal values of k; and k,—needed to describe
the weights of the diagram—all entries of the matrix
are zero anyway.) We call the set of blocks obtained in
this manner a “‘column.” The values of k, distinguish
different columns, from right to left.

The weight vectors m of the pattern are written in
the form ,(m,, m,, - - - , m;), or the form (m;, my, - - -,
my),,where m;, i =1, -+, 1, are the components of
the weight and the subscript p is the “‘dominant
weight number” (d.w. number). The number p is the
same for all members of a set of equivalent weights,
while the dominant weight of this set is singled out by
boldface p.® The suffix ¢ gives the number of weights
contained in the set of equivalent weights to which
this weight belongs.

It should be noted that a pattern describes not just
one representation but all those representations whose
highest weights are contained in this representation.

The Diagram

The next things we consider are the diagrams corre-
sponding to the different multiplicities. So far, the
pattern—the weight diagram—has been set up on
which the three equations [(1)-(3)] are based. The
diagrams, determined by these equations, provide the
tool to calculate the multiplicities from the pattern.

From Eq. (1), it follows that the multiplicity y(m) of
the weight m is related to the multiplicity of several
other weights. All these weights are entries of the
pattern, and it is the diagram which determines for a
given weight m the location (and signature dg) of the
other weights to which the multiplicity y (m) is related.
In other words, the relations

have to be re-expressed in terms of the pattern
language. This is done as follows:
In
R — SR = —(kp: + - + k),

the nonnegative integers k;,i=1,2,---,/, are
determined for every S € W and, moreover, the
value of dg is determined. The diagram is then defined
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to be the set of all elements
(ki, ks, -+, ks +1
(ki,a ;,a T, k;’)’ -1
. (6)

A graphical representation of the diagram is obtained
in the following manner: Along a horizontal line, the
nonnegative integers 0, 1, 2, - + - are written from the
left to the right. Then, for a given element

(kig’ ;"”’k‘;);éss (7)
the dg is written below the nonnegative integer k.
The remaining k§ are written to the right of the diagram
in the same line as the entry dg in the order

3 3 $
kls -1 9k2'

This is done for every element of the diagram. The
ordering adopted is that, for two elements

(kls kl—15 t '9ku9ku—1’ te 'ak2)9
ksl ys ook by s ky)

u—1?
having the same values k,,k,.,," ", k,, that ele-
ment is entered first in the graphical representation of
the diagram for which k,_; < k,_, holds.
For groups up to rank 4, the graphical representa-
tion of the diagram is of the form

1-1°

01 2 3 4 5 6
-1 132
1 133
1 211
—1 220

where the four elements (4231); (—1), (5331); 1,
(2112); 1,and (3022); (—1) have been represented
graphically. Taking care of the conventions in which
the pattern for the groups (up to rank 4) has been set
up, we interpret a particular element (k,, k,, k5, k,);
dg of the diagram in the following manner:

(1) Go horizontally k; columns to the right;

(2) from there go vertically k, lines down;

(3) from there go to the same position in the kyth
block below;

(4) from there go to the same position in the same
block in the k,th “block column™ to the right. This is
the position for dg.

Operations (1)-(4) are referred to as the “counting
process.”

Upon inspecting the two formulas Egs. (1) and
(2), it can be recognized that the diagram for the
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multiplicity in the direct product is obtained in exactly
the same way as the diagram for the multiplicity of
weights. The only difference is that the positions of
the values dg depend now on the particular direct
product which is formed. Instead of depending on

R — SR; dg,
Eq. (2) depends on

M + R — S(M' + R); dg.

This implies that the diagram depends on the repre-
sentation D(M’) but remains the same for all repre-
sentations D(M). As in the case of the multiplicity of
weights, the position of M’ + R — S(M’ + R) in the
pattern is obtained from

M +R—SM +R)=—(kfr + - + k).
The system of numbers (the diagram)
ki, kas 0 5 k)5 05 (8)

has the same interpretation as in the case of the inner
multiplicity. However, it depends not only on the
element S € W but also on M’ [for reasons of simpli-
city, this has not explicitly been indicated in Eq. (8)].

Finally, Eq. (3) is considered. For this case, the
diagram is obtained as in the other two cases. How-
ever, some care has to be taken due to the fact that the
diagram has to be applied in the subgroup. The pattern
for the group has to be projected into the subgroup
by the map L. It is after this projection that the dia-
gram is to be applied. The position of the weight
M, + R, — S,R,, in the projected pattern, is obtained
from

Mr + Rr - SrRr = _(klﬂ{ + -+ ktﬂ;)’ t S l,

where ¢ is the rank of the subgroup and 8, 8,, -,
B, are the simple roots which span the projected
pattern. Thus, 8, -+, , may or may not be the
simple negative roots of the subgroup. [The two cases
are, for instance, represented by SO(5) | SO(3) and
SO(5) | SO(4), respectively. See below, Sec. IV.]

The interpretation of the set of numbers

(klyk29 e skt);(SS,

in the projected pattern is the same as in the above two

cases.
III. RULES

In this section, the rules for obtaining the three
multiplicities by applying the diagrams to the patterns
are given. The rules can be seen to be valid for all
classical groups. For convenience, the rules are given
here for the groups up to rank 4. It is a matter of
simple generalization to obtain the rules for the
general case.

B. GRUBER

A. The Counting Process

To begin the counting process at some weight m of
the pattern means the following:

(1) Go from the weight m horizontally to the weight
k; columns to the right of it.

(2) Go from the weight reached by (1) vertically to
the weight k, lines below it.

(3) The weight reached by (1) and (2) is at some
position in the block containing it. Go vertically to the
ksth block below the block containing the weight m
and take the weight which is at the same position in
this block as the weight reached by (1) and (2).

(4) From the “block column’ containing the weight
m go horizontally k, “‘block columns” to the right. In
the block column thus reached take the weight m’
which has the same position as the weight reached by
(1), (2), and (3) in the “block column” containing m.

Ancelement (k, ks, k3, k,); 0g can lead to an empty
space in the pattern or even out of the pattern. Those
elements of the diagram can be ignored. They do not
contribute.

B. Multiplicity of Weights: y(m)

The multiplicities of the dominant weights have to
be calculated only. (Sets of equivalent weights have
the same multiplicity.) This is done successively,
beginning with the highest weight of the representa-
tion. Fach boldface d.w. number corresponds to the
highest weight of an (irreducible) representation; af/
d.w. numbers equal or smaller than a given d.w.
number correspond to weights of that representation.®
Thus, beginning with some d.w. number p, corre-
sponding to some representation D(M), the multi-
plicities of all weights corresponding to the d.w.
numbersp,p — 1,p — 2, - - -, 1 have to be calculated
successively. This is done as follows (m, as well as p
is used to denote the weights):

(B.1) Let the highest weight M of the representation
D(M) have the d.w. number p. Then all weights of the
pattern having d.w. numbers p, p — 1, -+, 1 belong
to D(M).?

(B.2) »(p) = 1 (multiplicity of highest weight).

(B.3) y — 1):

(b.1) Begin the counting process (Sec. 1IIA) at
the weight m,_,.

(b.2) Multiply the multiplicity y(m’) of the weight
m’ € D(M) reached by (b.1) by dg.

(b.3) Do this for all elements (ky, ks, k3, k,); Og
of the diagram.

(b.4) Add all multiplicities y(m") obtained in this
fashion; the resulting number is the multi-

plicity y(p — 1).
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(B.4) Perform step (B.3) successively for the weights

My g, Mp_g, """, M.

The resulting numbers are the multiplicities

The following two observations can be made:

(i) If only the multiplicity of weights is of interest,
the weights in the pattern can be substituted by their
d.w. number. No property other than the d.w. number
labeling is used. (The same is true for the calculation
of the branching multiplicity.)

(ii) If the multiplicity of dominant weights only is
calculated (which is, in fact, the simplest choice), the
pattern can be made smaller. The last weight to be
included is the weight corresponding to d.w. number 1.

C. Multiplicity in the Direct Product D(M) ® D(M')

The multiplicities 7(#7) in the direct product
D(M) ® D(M’) are obtained as follows:

(C.1) If possible, choose D(M’) to be the larger of
the two representations (it simplifies the calculation).
Then determine the diagram for the weight M’.

(C.2) A certain d.w. number corresponds to the
weight M of D(M) in the pattern. All weights with this
or a lower d.w. number are weights of D(M). The
multiplicity of these weights has to be calculated by
the procedure of Sec. ITIB.

(C.3) The multiplicity $(M’ + m), m € D(M), of
the representation D(M’ + m) (i.e., M’ + m is sup-
posed to be a dominant weight) is obtained by apply-
ing the counting process of Sec. IIIA with the diagram
obtained in (C.1) on the weight m. The calculation of
the multiplicity 7(M’ + m) is identical to the calcu-
lation of y(p — 1) by steps (b.1) to (b.4) in (B.3)
except that the diagram is different. [The resulting
number in step (b.4) is, of course, the multiplicity
P(M' + m).]

(C.4) The calculation of the $(M’ 4 m) has to
proceed successively, beginning with the weight M,
moving from the right to the left and from the bottom
to the top of the pattern.

Observation: The explicit weight diagram is needed
in order to determine the argument M’ 4 m of
D(M' 4+ m). The d.w. numbers do not distinguish
equivalent weights, and thus, in the case of this multi-
plicity, the pattern cannot be reduced to a pattern of
d.w. numbers.

D. Branching Multiplicity

The branching multiplicity 7(M,) for a representa-
tion D(M) is obtained by applying the counting
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process (by means of the diagrams for branching) on
the weights M, of the projected weight diagram
LD(M).

(D.1) To the highest weight M of the representation
D(M) corresponds some d.w. number p. All weights
of the pattern with d.w. numbers < p belongto D(M).
Determine the multiplicity of weights for the repre-
sentation D(M) by (B).

(D.2) $(M,) is obtained as follows:

(d.1) Apply the counting process (Sec ITTA) (for
an element of the diagram for branching) on
the highest weight M, in the projected
pattern. Some weight m, is reached.

(d.2) Sum the multiplicities of all weights m of
D(M) in the original pattern which are
mapped by L on the weight m,.

(d.3) Multiply the number obtained by rule (d.2)
by the dg of the corresponding element of
the diagram.

(d.4) Do this for all elements of the diagram.

(d.5) Add all numbers obtained by (d.1) to (d.4).
The resulting number is the branching
multiplicity $(M,).

(D.3) As in the previous two cases(B)and(C) the
multiplicities ¢ are calculated successively, beginning
with the highest possible M,. The succéssion is, as in
case (C), from right to left and from bottom to top of
the pattern.

IV. THE RANK-2 GROUPS

In the following patterns and diagrams are given for
the rank-2 groups SU(3), SO(5) ~ Sp(4),.and G,.

In order to keep the'size of the patterns small, two
sorts of patterns are given. Namely, patterns con-
taining d.w. numbers only and patterns in which the
weights themselves are given. The former patterns are
good for multiplicity of weights and branching
multiplicity only. They have the advantage of being
able to accommodate many more representations than
a pattern of the second kind of equal size. Patterns of
the second kind are obviously good for all three
multiplicities. That these patterns of the second
kind contain fewer representations is of no concern.
The only multiplicity which would be affected is the
multiplicity in the direct product D(M) ® D(M’) for
which fewer representations D(M) are available. This
is more than balanced by the fact that D(M’) may be
any representation.

A. SU(3)
Simple roots:
bp=(=1,1,0, B =(0,—1,1),
R=(1,0,-1).
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Weights:

m = (my, my, my), m, =1Lk, k integer,

m1+m2+m3=0.

B. GRUBER

Diagrams for branching multiplicity 7:

In order to minimize the size of the patterns, the

(p, 9) notation is used:

m =32p+q), m=3i-p+g),

m; = %(‘—P - 29),

My,

e

(1) Subgroup SU(2), L(p, q) = ip:

1 -1 | o

(2) Subgroup SO(3), L(p,q) = p + ¢:

Diagram for multiplicity 7:

I -1 0

012"'P’+1"'P1+q’+2’

1 —1
—1

where
p=m —m,, q=m,—
and
dim (p,¢) = 3(p + D@ + D(p + 9 + 2),
with
p 20, g >0((d.w. condition).
Diagram for multiplicity of weights
0 1 2
1 0
1 —1 1
-1 2

/O
e
e
=1 S
<
P

[0}

10

1

12 14 16

o \ 1\ 12\ 12\

L
SO
o
s

16 11\1

W
(<2}

15 10 ’\1\1
14 9 6\ 6\
13 8 5
14 8 4 2
15 9 5 2 /
16 10 6 3
7S
17 11 7 6
/

18 12 11 10

19/18/17/1

VR VANAN

W
W
E-N
W
O

Ut

e
-

v

YT N
SRS,
S K B ECE
s .

>
=%

LS (2P )

N\

N\

~
o

E-S

N

6 4713
yavd
257 24" 237 22 21/2
31/30 9ize 27
36/35/34/33/ 35X 36
//41 40/39/382122249
L /S S S S S
6 7 3

o 1 2 3 4 5

50(3) : j=

8

10 11 12 13 14 15 16

0
1 g +1
-1 pP+q+2

F1G. 1. Dominant-weight-
number pattern for S¥(3).
The representations corre-
sponding to the d.w. num-
bers are given in the text.
The (dominant) weights j of
the subgroups SU(2) and
S$O(3) are given on top and
on bottom of the diagram,
respectively. The straight
lines in the d.w. number pat-
tern indicate the projection
L(p, @) = j of SU(3) weights
onto the weight j of the sub-
group. All weights with d.w.
numbers lying along such a
straight line are projected
onto the subgroup weight j
which lies on the same
straight line.
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sU(2):

3083

8

-

0 6 4\5\1
AN
FIG. 2. As in Fig. 1. 10 5 2 1
11 6 3 /1 1
1 7 4 3 2
13 8/7/6/5
14/1%2/11/10
o o 1
26 25/24/23/22 21 26
31/30/29/28/27 1
//36/')?4//33 22 33 23" 26
01 2 3 4 5 6 7/8 9 10 11 12 13 14/15
S0(3) : =
Representations: holds:

For the pattern Fig. 1, the representations are

(8’ 8)41 H (6a 9)40, (4s 10)39’ (2’ 11)88 H (09 12)37 H (9’ 6)36 >
(7’ 7)35’ (5’ 8)34’ (3s 9)33’ (la 10)32, (10’ 4)313 (8’ 5)30’
(67 6)29; (4’ 7)28 H (2: 8)27’ (O’ 9)26a (11’ 2)25 ’ (95 3)24,
(73 4)23: (5’ 5)229 (3’ 6)21’ (12 7)20’ (12: 0)19’ (10! 1)18,
(8’ 2)17 H (63 3)18 4 (4’ 4)155 (2s 5)14 ’ (O’ 4)13’ (9’ 0)12:
(7’ 1)11’ (5: 2)10’ (3’ 3)93 (la 4)8: (6’ 0)7’ (4s 1)69 (2!2)5,
(0’ 3)4! (39 O)aa (la 1)2a (0, 0)1

For the pattern Fig. 2, the representations are

(8s 7)36’ (6’ 8)35: (4a 9)34’ (2’ 10)33, (09 11)32a (9’ 5)31,
(79 6)30’ (5’ 7)29’ (33 8)28’ (l’ 9)27’ (109 3)28’ (8’ 4)257
(6, 5)24’ (4’ 6)23’ (2, 7)22’ (Oa 8)21’ (11’ 1)20’ (9a 2)19’
(7a 3)18’ (5’ 4)17’ (3’ 5)16’ (la 6)15’ (10: 0)14’ (8’ 1)13,
(6’ 2)12’ (4’ 3)119 (2! 4)10’ (O’ S)M (7’ 0)8’ (5’ 1)71
(3’ 2)8’ (1’ 3)5’ (49 0)4’ (2’ 1)3, (0’ 2)2’ (1: 0)1 .

Sets of equivalent weights:
For the dominant weights given above the following

(@) o(p,g), if p#0 and ¢#0,

(®) o(p,g), if p=0 or g=0,

©1p,q), if p=g=0.
Conjugate representations:

The two representations

D(p.q) and D(g,p)
are conjugate to each other. Conjugate representations
have the same multiplicity structure. Thus, if the
multiplicities of the representation D(p, ¢) are known,
the multiplicities of the representation D(g,p) are
given by the mapping

?>9) =, p) ©)
of the weights of D(p, q) onto the weights of D(g, p).
When the direct product is formed, it should be
noted that
D(p.q) ® D(p', q')

and
D(g,p) ® D(¢', p)
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(5550550 (36036, L=T)pys (1-8)yy,

(—6 ,—3)21, ("4,"4) 15| ('2"5) 10° (0,-6) 70

(-7)"1)20, (—5'-2)14' (-33'3)9 ’ (-1,_4)6’

(8,15 » (6,005 » (=by=Dgs  (-2,-2),
9,3,y 12y, 5D, 30,
(-10,5) s (-8,4) 15 (=6,3)gy  4u2)s,
9,6 s 151 5,80

(-8,7)

11°

('6p6)79

7,8,

B. GRUBER

(3,-9)16, (5,—10)22

(2,-1) 150 (4,8) 35 5 (64-9) 5y
L5 Bu=6)g » oDy
©,-3)y (2,-8)5 , (4,=5)g,
LD, (1,m2), » (-3,
2,0, , 0,0, ., 2D,
(-3,3)3 ’ (-1,2;2 ’ (1,1)_2- R
ChS)g s 25 5 (03,
5,7 g (-3:6)g » 1,5)g,
(-6.9) g0 (-5:,8) 15 5 (-2,7) 5

(-5,10)22, (-3,9)21.

(1,-8),5,
(6,-6) 55
(5,8 »
,-2)5 s
(3,004,
@2
Way
©.6),5 »

('1;8)20’

(8,~70
(7,5) 1
©-Dy »
Dy »
(14,1)6 s
(3,3); »
‘2'5);£ '

@Dy

©.-6),,

(8,-8) 15 (10,~5) 5,
(Tam2)yg0 93=3 D yg
6,0, » (8,-1)y;
5,25 » Dy
8 s - (6,3;;;

(3,60 » 25y,

F1G. 3. Subpattern of pattern in Fig. 1. In this subpattern the weights are given, not only their d.w. numbers. From this subpattern all
three multiplicities can be obtained, in particular the multiplicity % of the direct product D(M) ® D(M’). The representations D(M) are
limited to those contained in the subpattern while the representation D(M’) can be chosen completely arbitrary.

=3,-1) g
(-4,-5) 145
(=5,-3)
(-6,-1)

16*
15’
715 »
(—8,3)16 ’
-9,5)17
(-10,7) 160

(-1,-8) )
(-2,76) 1
-3,6) 3
-4,-2) 5
(-5,0)9 ’
6,24 »
7,8 »
-8,6);, »

-9,8) 3 »

1,79
0,-Dg »
-1,-5)
(-2,-3)6.
(-3.-1)5,
615
-5,9¢ »
-6,5); »
7D
8,93

(3,-10)18

(2,-8)15 » (44-9)y,

(1,-6), » BGy=Tpy »
0,-8), » (2,=5)4 »
1,25, L=
2,00, , (0~
-3,2)5 , (LD
-4,8), » (2,95
5,60, » (3,54 >
(-6,8) 5 » 4701y s
(-7,10) g, (-5,9)47»

FiG. 4. Subpattern of pattern Fig. 2.

are related to each other by the mapping (9).

(5,-8) ¢
(6,-6) 1 »
G805
(2,-2),
1,0,
©2, .
10
(-2,6)14 »

(-3’8)16 ’

with

6:-1y5
(5,-5)g »
-3 »
G,
@1,
W,
©.5)
L7

7,6 5

(6,814 »

(8,-5) 14

(5,2 » T3y o Oumdyy

%0,
o,
(2,4)10 ,
(1,6); s

The rest as in Fig. 3.

(6)‘1)7 »

G0,
(4)3)11 »

(3,5) 16 »

(8,‘2)12, (100‘3)18
(7,005 » 9,-1)y,4
€215 B:D)gy

(5,4)—11, (7‘3)_131

B. SO(5) M, > M, > 0 (d.w. condition).
Simple roots: Diagram for multiplicity of weights y:
fr=0,~1), po=(-11), 0 1 2 3 4
R = }(3,1).
Weights: 1 0
m = (my,m), m,myg==k or m,m,=ik, 1 —1 1
k integer, —1 12
dim (M) = §QM; + 3)@M, + DMy + My +2) b=1i3
X (My — M, + 1) Diagram for multiplicity 7:
01 2 2M, + 1 2M; + 3 2(M, + M, + 2)
1 -1 0
~1 1 My~ M, + 1
1 -1 M, + M, + 2
~1 1 2M, + 3




MULTIPLICITIES IN THE CLASSICAL GROUPS. I

Diagrams for branching multiplicity 7:
(1) Subgroup SO(4), Lm = m:

01 2
1 0
-1 -1 71
1 2

For a dominant weight of SO(4) we have

m= (my,my), m 2> \m).

(2) Subgroup SO(3),, Lm = §(m; + my),
subgroup SO(3),, Lm = m,,
subgroup SO(3);, Lm = 2m; + my:

0 1 l

11| o

Representations:
The representations of the pattern Fig. 5 are

(10’ 10)88’ (10! 9)65’ (10’ 8)64’ (10’ 7)&3’ (10’ 6)62:
(10’ 5)61 L] (10’ 5)61 ’ (105 4)601 (10’ 3)59’ (10’ 2)58 ’
(10’ 1)573 (10! 0)569 (99 9)559 (93 8)54: (91 7)539 (9, 6)52:
(9’ 5)515 (9’ 4)501 (9’ 3)49 ’ (95 2)48 ’ (91 1)47 ’ (91 0)46 s
(89 8)45 ’ (8’ 7)44a (8’ 6)43’ (83 5)429 (8’ 4)41 H (8’ 3')40,
(8’ 2)39, (8’ 1)38 H (89 0)37 H (7s 7)36’ (77 6)35: (7’ 5)34 ’
(79 4)33’ (7’ 3)32’ (73 2)31 > (7s 1)301 (7’ 0)29, (6’ 6)28 ’
(6’ 5)271 (6’ 4)26 ’ (6’ 3)25 ’ (6a 2)243 (6’ 1)23 ’ (6a 0)22 >
(5,521, (5: D05 (5, N1es (5,285 (5, Dazs (5, O
(4a 4)15’ (4’ 3)]4’ (4’ 2)13’ (4’ 1)12’ (49 0)11’ (3, 3)10;
(3’ 2)99 (3’ 1)89 (3’ 0)79 (2, 2)6, (21 1)5’ (2: 0)45 (ls 1)3:
(1, 0)g, (0, 0),.

The representations of the pattern Fig. 6 are (it is
understood that each weight given below has to be
multiplied by the factor $):

(21, 21)g, (21, 19)ss, (21, 17)es, (21, 15)es, (21, 13)ga,
(219 11)8] ) (21’ 9)60! (21’ 7)599 (21’ 5)58: (21: 3)57;
@21, 1)sq, (19, 19)55, (19, 17)54, (19, 15)55, (19, 13)s,
(19; 11)51’ (19’ 9)501 (19, 7)491 (199 5)48a (19’ 3)47,
(19’ 1)46’ (17’ 17)459 (17’ 15)44’ (17, 13)439 (17’ 11)42,
(17’ 9)41’ (17, 7)40’ (17’ 5)39, (17’ 3)38: (17: 1)37: (15,
15)36, (159 13)35’ (15’ 11)34s (15’ 9)33’ (15’ 7)32’ (15,
5)31: (15’ 3)30’ (155 1)29’ (13’ 13)28’ (139 11)27! (13’ 9)26:
(13, 7)259 (13’ 5)24’ (13, 3)23’ (13’ 1)22’ (11; 11)21,
(11, 9)20’ (11’ 7)19’ (11, 5)18: (119 3)17’ (11’ 1)]6,
(9: 9)15’ (9’ 7)14’ (9a 5)139 (9’ 3)12’ (93 1)11’ (7’ 7)10;
(7’ 5)9’ (7’ 3)8: (7’ 1)7: (59 5)6’ (59 3)5’ (5’ 1)4’ (3’ 3)3,
(3, 1);, (1,1);. (Also see Figs. 7-9 for preceding
diagrams.)

3085

Sets of equivalent weights:
For the dominant weights given above there holds

(a) s(my, my), if my #my, my #0,
(b) 4(my, my), if m=m#0 or m=0,
(C) l(mla m2)9 if my = myg = 0.

C. G,
Simple roots:
/31=(Oa —19 1)9 ﬂ2=(_1329 ""'1),
R=(3,—1,-2)
Weights:
m = (my, mg, mg), my+ my+ my=0,
m; integers.

Again, as in the case of SU(3), the patterns are given
in the (p, ¢) notation,

dim (p, 9)

=P+ 9@+ Dp+q+ 92 +q+9)

XHp—q+Hp+2+6)
with
p20, ¢20, p>gq (dw. condition).

[It should be remarked that, while to every (p, 9)—p
and ¢ some nonnegative integer—there corresponds a
representation in SU(3), this is not the case for G,.
There are values p and ¢ satisfying the d.w. condition
in G, which do not correspond to a representation.]

Diagram for multiplicity of weights y:

0 123 45 678 9 10
1 0
1 -1 1
-1 1 2
1 -1 4
-1 1(5
1-1]6

Diagrams for branching multiplicity §:
(1) Subgroup SU3): L(p,q) = 4(p — q, p + 29):

01 2 3 45 6
0
— -1 1
1 1 3
-1 4

(2) Subgroup SU(2)1, L(p,q) = ¥p + 9),
subgroup SU(2),, L(p,q) = ¥(—p + 9)s
subgroup SO(3)y, L(p, ) = ¥(p — 9),
subgroup SO(3)., L(p, 9) = 3(4p + 59).

Their diagram is (j); 1, (j + 1); —1, or equivalently
0 1 ‘

1 —1 ] 0
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50(3)2: J=0 2 y, /5

57 47 38 30231712 8 5 3 2 3 5 81217 23 30 38 47 57
SIS S / /

58 48 39 31 24 18 13/9/6/5/3/_.’3/9/9/13/18/21»/31 39 48/58

59 49 40 32 25/19 14°10° 9° 8 7 8 ,9 10 14 19 25 32740 49 59

/ / /
60 50 &1/133/26/20/1!.5 1413 12/11 12/13 14/15 20/26/33 101/50 60

/ .
61751 42”3727 217 20719716717 16" 17718 19”20”2127 % 42751 61

VAV SRS R J /
62752743735 28 27 26" 25 2 27 22" 25 2 25 26”27 2873543752762

2425 2225247252621 28
63753 44 36:35C 34 33/32:31’30/ 29”30”31 32733734735 234/53 63
7 /,
64754745 44 43:42 41 /40;39//38 377187397407 41 42 4344”45”54 ‘64 29 30
7
65755”54753 7527517507497 48" 47746”4748 49’ 5075157 53 54755765

47746 47 48749 50°51 57 53 54 55
667657647637 62761760759 758" 577567 57758 5960 61" 62

N

AN
N

ANVEN
AVAN

S0(3)y'm=0 1 2 3 4 5 6 7 8 9 1011121314151617 1819 20
i=3

FiG. 5. Dominant weight number pattern for SO(5). The representations D(m, , m,), m , m, integer, are given in the text. The dominant
weights j of the three subgroups S01(3), SO(3),, and SO(3); are given on the sides of the pattern. For the subgroup SO(3), all weights
of a line are projected by L(mi, m,) onto the weight j which stands in the same line. For the subgroup SO(3), all weights of a cqlumn
are projected onto the weight j standing in that column. For the subgroup SO(3); all weights along a straight line—as drawn in the
pattern— are projected onto the weight j lying on that line.

66
55 65
45 55 64

326720115 14°13°12°11° 10 12713714 15
1\ 61751 /z.zjaa;uizl 20719718717°16716” 17718
7 T e e e

62752 43735 28 27;26:25//24/23’ 22°22°23724" 25" 26 27728735 43”52 62

22 2223 24725°26°27 28

15N\63753744736735" 34”33 32731307 297297 30” 31" 3233 34" 35”36

/ 7 -
64756745"4k" 43 42 1 50730738737 377 38" 39" 40”41 42743 4445”54”60

N
AN
N
AN

AN
N
N\

56”57 58” 59"

So(3)1:m-0 1 2 345 6 7 8 9 1011121314 1516 17 18 19 20 21
1=3,

FiG. 6. As in Fig. 5. The representations are given in the text and correspond to D(my , m,) with my, m, half-integer.



©,0),

(1.-1)3 .
2,-2),
(3.-3)10.
G-,
(R0 R
(6,-6) 50,
07y
8,-8),,
(9,-9)55.

Lo, , 4,

Q-1 2,0, , @), @2

(3.-2)9. (3.-1)8, (3,0)7, (3.1)s , (3.2)9 . (3,3)lo

(030140 (6,221 5, (6,-1) 15, (6,00 1y (8,1)150 (6,2) 150 (43)g,  (4,4))¢

(5,24 500 (5,-3) 15, (5,-2) 4. (5,71}, 1, (5,00 1, (5,201, » (5,25 » (5,34

(605070 (6,-4) 30 (6,-3) 5, (6,720, (6,-1)53, (6,005 + (6,1)y3 5 (6,2),

(12262 455 (7,-5) 30 (14=6) 43, (7,23) 35, (7,-2) 3, (7,

Dy (7,00,

(8,270, 40 (B,=6) 3, (8,=5) 5, (8,~4) ., (8,-3) 104 (8,-2) 59, (8,-1)

(91=8) 545 (9,-7) 51, (9,-6) 5, (9,-5) 1, (9,-4) 50 (9,-3)

49"

9,-2)

9+ (D)3
a0 B0y,

s (54450
s (6,3,
' (L2,
RYCRVIN

agr 95Dy 9,00,

s (5.5)y,
v (64D

. WDy
. (8,25

, 9,0,
(10,-10)((10,-9) ( (10-8) ¢, (10,~7) 1(10,-6) ., (10,-5) | (10,-4) .1, (10,-3) g, (10,-2) g, (10, 1), (10,0) 5,

s (6,5),5, (6,604
s (Ladyy, (1,5),

» (8,3

» (9,2)

s Bd)y
ap 0Ny
10,1);,,€10,2) 55 (10,3) 55, (10,800, (10,5)¢1, (10,835, (10,1, (10,8) ¢, (10,9)¢5, (10,10)¢¢

(7,6)35 N (7.7)36

(8.1, » B.6),5 4 (B, (8,84
O)gg s 35051 4 Gub)gy s (D55 s (9,8)5, , (9,90,

FiG. 7. This figure represents the mapping L(m) of Fig. 5 onto the dominant weights of the SO(4) subgroup of SO(5). The dominant weight numbers, however, refer to SO(S) [while
the weights are those of SO(4)]. The branching law corresponding to the restriction of SO(5) to its SO(4) subgroup is very simple as well as very familiar. Figure 7 has been given for
reasons of illustration and to achieve some kind of completeness. See also Fig. 11.

5,501 (=34-8)gqs (-5,=3)gq0 (3,2} 14,

4-5)g00 (~him) s (43,
35000 3,700,
2,-5),4

5,-1); 50
4=,
3=y
2,-4),5,

“1,-5),,

(-5.0) 3¢ »
4D,
3,-2), ,
(-2,-3), »
-1,-8) 5,
0,-5)36 +

5y,
40y,
-3,-1)4
-2,-2),
-1,-3g
©,-8),4,
a,-5),,

Fic

V32
C R,
NCER N
¢2,-Dg ,
(-1,-2)s ,
©-3, .
W8,
2,-5) 5 »

5,34 »
4,2), .
31y
-2,0),
-1,-1, ,
©,-2), ,
-3y
2,-8),5 .

3y-5)y4 o

=3,4) 50,

6,9,

(-3,2),
(-2,1)5
-1,0,
©,-1),
1,-2)4

2,-3),

.

=331y,
4,85
3,3,
(-2,2)
1,1,
©,0,
Qa, -1;3
(2,-2)

(-4,5)50
=3,8);,,
(-2,3)g
1,2,
©,10, ,
(x,o)Z .

@5,

Q=80 (=9 (3,-2)
(4,25) 39 o(Ramb)yg (4,-3) .

(5,-5)5,

(5,-4) 50,

3,5,
2,85
L3,
02, .
an,
.y

TERSTIAN
-2,
(5,-3)490

23y
C1,4),
0,3,
2
[ER
a0,
by
e

. 8. Subpattern of d.w. pattern given in Fig. 5. See Fig. 3.

1.3y,

(0,6, + 0,54

Wy, Wo, . (L3,
@D . @y, . @6,
G, . O, . Oy
60y, + Ghl)py .+ D)y
GimDyy (5,056 G521y,

2,94
3,4) ), 4 (39)yy
Dy s b5 (65250

5,215 5 (5959, (5u8)y0, (5.5)y

I 'SdNOYO TVIISSVID dHL NI SHILIDI'TdILTINW

L80€



C18,-10) 1 (10,590 50, €117 10 11,500 (11,33, 0 (11, =1) 4 111D (11, 3) 1, (10,50 4, €11, 1) 0, (11,900 (111D

9,710, (9,79 15 5 C90mT1y (9,087 3 2 (-9,=30gy 5 (9,115, 91y 69,301, (9,505 49,7y, (9.9),
G110, Chm9) o o (T D g 1 6Tm5)g o T Bg LT, W T, LT, W (-7,5)g 1,70,
C5,m10)) g0 -5,y 5 (=5,mT)g 4 (=550 1 (-5,=3)5 4 (-5,=1), o (=5,1), (5,35  =5,50¢ ,

(=3,m11) 170 (=3,29)5 »(=3,=T)g +(-3,-5)5 1 (=3,~3)5 1 (=3,-1), ,(-3,1),  (-3,3),

1,-11)4, (=1,-9) 1, 0 (-1,-7) 5 2 (-1,-5) ,¢-1,=3)y 4 (-1,-1); (LD, ,

(-1, (1,-9)y 2 (L,=7)y 5 (1,=5), (L,-3), QD)) ,

G115, (34-9)y, 1 GimD)g L (B3,-5)5 (3,05,

(54-11) 161 (5,-9) 13 5(5,-T)g  (5,-5)¢

(7,=11) 14, (7,=9);, (7,74

9,211 9,-9),,

(=9,11)

7,99, (7,10
5.0 65,9,
€355 .37y,
CL3, 1,5, ,
wn, @, .,
(3.—1)z .(3,1)_2_ »
5,-3) 6,71,
(,-5)y 2 (7,-9)
Gu D)0 019 5,

(5,110,
-3,9)1, 263,10,

14,7, 61,9, L1,

@3, LD, 0,9,
B3, L,B,5, ,,n,
(5,1); 26Dy 05,5
(7.-1;7 .(7.,1); ,(7,3);

W11

1(3,9)), 4 (3,11),,

1.9 405,9)13,(5,11)54

2 (15)g 4 (D140 (7,9)y, 5 (7,100,

F16. 9. Subpattern of d.w. pattern given in Fig. 6. See Fig. 3.

5U(2),:

012 34 56 7 8 9 10

6 S0(3),: § =

330292827 25 26 272825 30735 (_)2 !

3952k A e B &

33282520 19" 1817 17181920 25287330 \ % A

T27 23 19 16 13 IANI3 1 151619723276\ 8 10

SNGL 28 231813 1711 10°10 0E 118 TePee T 1 13

3226 2T 116 1T §~ BT BoSnIT AU oL 1A, 14 16
\3}2\2}}%¥ 6%}} 8\0Y13\17\22327133 15,17 19
TR EN LR TN A N R A A R N e TN

TIN15\19\24 29335

9N12\16 Y20\25

55 52k 19 I3 BB 3

SNy

32825 181107

20 22
1\23 25

30\ 36 24\ 26 28

24\29\35 73,29

T8\ 23128\ 34 N\ 3o

13317422\ 27333

TN 2\ 26132

TRAT\I8\ 2242831

13\14\1 1(&19 23327332

B\ 19\ 20\24\28 133

AN\ IZ 22512934
33~32-3032~33°303336

50();: m= 0123456738

™
1=3

9 10 11 12 13 34 15 16 17 18 19 20

9,-3)y, .(9,-‘1)“_,(9,1)1_1 ,(9,3)_1_2. '(9'5)1_3’<9'7)2i ,(9,g)E 2 (9,11) 5
(11.-11)21(1.1,-9)20(11.-7)19,(11,-5)13,(11.—3)17(11.-1)16(11.1)12,(11,3)H(11,5)L8,(11,7)19,(1.1,9)20, Qi

FiG. 10. Dominant
weight number pat-
tern for G,. The rep-
resentations D(p, q)
corresponding to the
d.w. numbers are
given in the text. The
dominant weights of
the four subgroups
SOQ3)1, 50(3),,
SUQ2); and SUQ2),
are given on the sides
of the pattern. For
SU(2); all weights
(corresponding to
d.w. numbers) of a
column are projected
by L onto the weight
Jj of SU(2), standing
in the same column.
For the other sub-
groups the projection
is as indicated by the
straight lines drawn
in the pattern. (All
weights along such a
straight line are pro-
jected by L onto the
weight j of the sub-
group under con-
sideration which lies
on that straight line.)

880¢

Jg4nNdo ‘9



©,0,

3,40, O, 3

. 5 (Z.U)bn (1.1)3. (0,1)‘ » 5

. . 8 5 (3,00, (2,15 (1,2)g, (0,3, 8

. . . 1, (4,0, (Dg (2,2 LNg (0,4), 11

. . . . 1; » (5,0)12,(10,1)11,(3,2)10,(2.3)10. .1,4)11, (0,5)12 s 15

. . . . . 19 '(6'0)16'(5'1)i5'("2’]" (3,3.)13.. <2'4)16’ (1.5)15. (0,6)16 , 19

. . . . . C a2 0,06, (.Dyg s BBy Gib) g (25)1g , (L6 ©7)5 24

. . . . R . . 29 “'0)25’ (7'1)24 R (6,2)23, (5,3)22, (6.5)21 R (3,5)22. (2.6)23 (1,7)2‘, (0.8)25, 29

. . . . . . . R 35 R (9.0)30 , (3,1)29. (7'2)28' (6,3)27 . (5,4)26, (4,5)26 (3.6)27. (2,7)28. (1,8)29. (0,9)30. 5

. . . . . . . ) . . (10,00 350 9155, (8D o+ Iy 6,05 (531500 483y (7330 2By (1935 (0210056

FiG. 11. This figure represents the mapping L of pattern Fig. 10 onto weights of the subgroup SU(3). The weights of this pattern are weights of SU(3), the d.w.
numbers, however, refer to group G, . It should be noted, that in distinction to Fig. 7, weights of G, contribute which are mapped onto nondominant weights of the
subgroup SU(3). (Namely, those weights of G, whose image in this pattern is characterized solely by the d.w. number of the mapped G, weight.)

Climb)ygy C6m2)ys (9005 (L2 (1,0
CheThyge G555, Gam3lyy oD g (B0 (9.3, e LT

(—Z.—B)‘u. =3-6)11» (-4.-‘)9,. (=5, g (-6,0)7, 72y (-8,4), , (-9,6) 30 (—10,9)“

(-10,5)

@S g CLDyge (20-Dg (3,-3g (-8-Dg . (5.5, (6,3, 1,55 8,Dg (9,95
@10 (LBl O-6);, (Lmidg (2D 3,00y, (o), 65,05 (£6.6), (1.8), (-8,10),
G-ty (3-9) 5+ @Dy 5 (=) 5 @Dy, L=y (23D (333 4S5, (5705, 6.9, 7,11,
(5010 0 (48 0 Bu-6)g o 240, LDy (0,00 LDy, C2A),, RO, 4,8, (510,
(D, (6,79))), 6,-D)g J(4y-5)5, (BB, @Dy, Wb, . 0%, , CL5)5, 2,75, 39,5, &)
(8,510, (7,-8) 100 (6,65 (ymi)g s (o2 s (03 4 @D, WA 4 0,6 » LB, 2,00,
0,913 @Dy TSy, 6D, Girlyg, Gl o (B 2,5)g o (L, (0.9,
(10.-8), 9,8)3,, B8y, (=g, (6.0); & (5,25 o (hidy o (L6)), @8,
L= U0-5)pp0 90Dy, By (W), 6,9y, (5,5)

QL-pg (10,22, 0.0, (B2, (7,85

e G705

F1G. 12. Subpattern of Fig. 10. See figure caption of Fig. 3.
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(3) Subgroup SU(2), x SU(2),:

B. GRUBER

Lip,g) = B(p + 9); 5(—p + 9)1.

The diagram is given as

where j and j’ refer to the two subgroups, respectively.

(s j' + 1); -1,

G+Lj+ 11,

Multiplicity 7:
0 g+1 p+4 p+29+6 20+q+9 2p+29+10
1 —-1 0
—1 1 ip—9q+1
1 ~1 ip+29) +2
-1 1 p+4
1 -1 pt+q+5
—1 1 ier++6
Representations: * Supported in part by the National Science Foundation, Wash-

The representations of the pattern Fig. 11 are

(10’ 10)369 (11’ 8)35’ (12’ 6)34’ (13’ 4)33, (149 2)32’
(15,0)55 (9 Nso> (10, e, (11, 5)35, (12, 3)g7,
(131 1)269 (85 8)25’ (99 6)243 (109 4)239 (11, 2)229
(12’ 0)21’ (7’ 7)209 (8’ 5)]9’ (9’ 3)18: (10, 1)17 ’ (6’ 6)163
(7’ 4)]5’ (8’ 2)14’ (9: 0)13’ (53 5)12! (6, 3)11 > (7’ 1)109
(4’ 4)99 (5’ 2)89 (6, 0)7s (3’ 3)6’ (4’ 1)5: (21 2)4, (3a 0)3’
(19 1)2’ (0: O)I

Sets of equivalent weights:
For the dominant weights given-above there holds:

if p#0,9#0, and p#gq,
if p#0,9#0, and p=g,
if p#0,9=0,

if p=g=0.

@) (P, 9
(b) o(ps

© (p,9

ington, D.C. under NSF Grant GP-9623.

T Visiting member.

1 The literature on the subject is very extensive, and it is rather
doubtful whether any kind of completeness could be achieved by the
author. We therefore prefer to quote a few publications on the sub-
ject which together cover a rather wide range of references.

?J.-P. Antoine and D. Speiser, J. Math. Phys. 5, 1226, 1560
(1965); J. McConnel, Proc. Roy. Irish Acad. 65A, No. 1 (1966).

% (a) B. Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento 34,
1101 (1964); (b) A. J. Macfarlane, L. O’Raifeartaigh, and P. S. Rao,
J. Math. Phys. 8, 536 (1967).

4 A. P. Stone, J. Math. Phys. 11, 29 (1970).

5 G. Racah, Group Theoretical Concepts and Methods in Ele-
mentary Particle Physics, F. Giirsey, Ed. (Gordon and Breach, New
York, 1962).

8 N. Straumann, Helv. Phys. Acta 38, 481 (1966).

7(a) A. U. Klymyk, Academy of Sciences, Ukrainian SSR,
Institute for Theoretical Physics, Kiev, No. 67-17, 1967; (b) R. M.
Delaney and B. Gruber, J. Math. Phys. 10, 252 (1969).

8 For technical reasons, the boldface numerals are represented in
the patterns by underlined numerals.

? Some may have multiplicity zero. The d.w. numbers greater
than p obviously do not belong to this representation and are there-
fore to be ignored. The weights corresponding to these d.w. numbers
may also be looked upon as having multiplicity zero.
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A matrix version of the classical Riemann-Hilbert problem defined on an open contour is discussed.
The problem is reduced to a quasiregular integral equation for cases where the sufficient Holder con-
tinuity condition is satisfied and the component indices are nonnegative. As an illustration of this
procedure, linear integral equations (rather than the usual nonlinear. forms), for Chandrasekhar’s
functions Hy(x) and H,(u) are established in a form amenable to solution by numerical iteration.

I. INTRODUCTION

In general, the use of the singular eigenfunction
expansion technique, introduced by Case! for treating
problems in neutron transport theory to solve bound-
ary value problems in “particle” transport analysis,
requires solutions to singular integral equations in
order to establish the various expansion coefficients.2
Once the appropriate singular equations are devel-
oped, the methods of Muskhelishvili® can be used to
convert the boundary value problem to an equivalent
Riemann-Hilbert problem, and in many cases®
closed-form solutions may be obtained.

Following Case’s original paper' on the subject of
singular eigenfunction expansions, the method has
been extended, to include many different models in
neutron transport theory and radiative transfer. For
example, the degenerate Kernel model for energy
transfer has been discussed by Mika,® the case of
anisotropic scattering in 1-speed neutron transport
theory has been thoroughly investigated by McCor-
mick and Kuscer,® and several studies in “multigroup”
theory have been reported by Siewert and Zweifel,*’
Siewert and Fraley,® Mourad and Siewert,” and
Shultis.1

The usual procedure,’? once the normal modes of
the considered equation of transfer are established, is
first to attempt the proof of a full-range expansion
theorem. In developing this proof, the singular
integral equations encountered can normally? be
reduced to a special case of the inhomogeneous Rie-
mann-Hilbert problem which can then be solved
straightforwardly even for the case of matrices.’

The considerably more interesting half-range expan-
sion theorem? cannot, in general, be established quite
so readily; in fact, no constructive proofs for the
multigroup or matrix models considered by Shultis!®

or Mourad and Siewert,® for example, have been
reported. Although for some cases the proof of the
half-range theorem applicable to matrix models has
been converted to the need to solve systems of regular
integral equations,'®1! there have been no rigorous
proofs of the existence of solutions to these equations;
in some instances, however, this approach has been
shown to be feasible computationally for non-
multiplying media.’* Another approach used for half-
range applications has been exhibited by Metcalf and
Zweifel'® and Mourad,!* who have shown it possible
to solve by numerical iteration the singular integral
equations encountered in two different matrix prob-
lems.

A more direct method for solving half-range prob-
lems with the singular eigenfunction expansion
technique is to pursue the homogeneous *Riemann-
Hilbert problem.5 However, as Leonard and Ferziger!®
and KusCer’* have illustrated, multigroup models
normally lead to a matrix form of the Riemann-
Hilbert problem, and closed-form solutions are not
generally available. We should thus like to discuss
the analysis required to reduce these analytically
formidable problems to forms computationally more
feasible.

II. GENERAL ANALYSIS

For multigroup application of Case’s method of
normal modes,! the proof of the required half-range
expansion theorem reduces to the need to solve a
homogeneous Riemann-Hilbert problem for the
normally called X matrix.’® Here a matrix X(z),
holomorphic in the complex plane cut from zero to
one along the real line, is sought such that the bound-
ary values from above (+) and below (—) the cut are
related by

X*(p) = G(wX~(u), pelo,1], 6]
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where G(u) is a given matrix. We seek here the
fundamental solution to Eq. (1), and thus X(z) and
X#(u) are required to be nonsingular in the finite
plane.®

Since, in general, there exists no analytical solution
to Eq. (1), we wish to make use of Muskhelishvili’s
theory® to convert Eq. (1) to a quasiregular linear
integral equation for X~(u), or alternatively for
Chandrasekhar’s H-matrix equivalent."

If we now stipulate that G(u) obeys the Hdlder
condition® on the interval [0, 1] and further that
G(0) = G(1) = I, I being the unit matrix, then we can
write [see Ref. 5, p. 386, Eq. (126.5)]

X() = X + = f (GHW)G() — IX-(3) 2
7Ll Jo Yy -

b o
v—p

Y
+ 167 -1 le »)

where the arbitrary arc C; has been added (with the
proviso that there be a continuously turning tangent)
to the real-line segment [0, 1] to yield a closed
contour C, as depicted in Fig. 1. Further, we have
denoted the principal part of X(z) at infinity by
X, (2).

In order to establish Eq. (2), we have also defined
G(u) & I for u € C,. A similar procedure for closing
the contour has been used by Leonard and Ferziger!
and Kugger,!¢ though in the latter case a term due to
the integral on C, appears to be missing [see Ref. 16,
p. 267, Eq. (113)].

We note that Muskhelishvili’s derivation® of the
equation equivalent to our Eq. (2) was based on the
proposition that the matrix G(u) was Holder con-
tinuous on C, and that assumption is maintained here.
Clearly, the fact that G(u) is taken to be a Holder
matrix is sufficient to ensure that Eq. (2) is quasi-
regular®; however, Leonard and Ferziger's applied
Muskhelishvili’s analysis without modification to a
multigroup problem where the G matrix is not of the
Hélder class, and the assertion that their equivalent

z plane

C

FiG. 1. The contour C in the z plane.
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to Eq. (2) is quasiregular is not immediately justified.
[Clearly, simple continuity, as opposed to Holder
continuity, is not sufficient to ensure that Eq. (2) is
quasiregular.]

Since we are seeking to develop an integral equation
for X=(u) only on the real-line segment x € [0, 1], we
rewrite Eq. (2) for the two cases 4 € [0, 1]and u € C;:

_ | R R _ dy
X) = Xol) + 5 f (G G(r) — TIX~(»)
7l JO y -
BT S
167 - 1) folx Cht
weld, 1], (a)
and
X(u) = Xo (1) + f [G0) — IX-() —2—,
277'1 0 vy — U
peC,. (3b)

Equation (3b) is clearly an explicit expression which
relates X~(w) for ¢ on C; to X (x) and values of
X~(»), where » is confined to the real-line segment
[0, 1]. This equation can thus be entered into the last
term of Eq. (3a) to yield

X0 = Xu) + 51 [ 160606 - %) 22

v—p

+ ﬁ (67w — 1] Ll (Xw(v)

1 ’
+ 2 160 - mxen 2 A,
27i Jo vV —vy—pu
nelo,1]. (4
We should now like to consider the repeated integral
in the above equation and therefore introduce the
definition
Yo Y d
1002 [ {[ 7166 - o) 2|
alJo v —vlyv—u
p€(,1). (5
Since the inner integral in Eq. (5) is nonsingular
[because G is Hélder on C and G(0) = G(1) = IJ, we
invert the order of integration to obtain

' ' —( 1 1
1) = [ (1660 - 1%6) [ -
0 v —vy—pH
#€(0,1). (6)
Performing now the integration over » in Eq. (6), we
find

() = L 1667 -1 [m (vl - 1)

—n (i—1)]x—(v')v,d——f—y, pe@©1). )

d’y) dy’,
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Equation (7) may now be substituted for the
repeated integral in Eq. (4) to yield

— _ __1__ -1 _ d')’
X () = Xl + 5= 16700 = 11| X.0) 2

v~

, wel0,1), (®
H

1 1 _ d
+ == f K(», 10X~ (v) —
27i Jo —_

v

where K(», ) is given by
1
K@, 0) = G (WG(H) — 1 + Py IG™(w) — 1]

X [G(H) — 1][1n (1 - 1) —In (1 - 1)]
v iz
&)
Finally, the integral defined on C, in Eq. (8) may be

written as
| %0 + X (),
(551 v n
(10)

so that the desired equation in terms only of variables
on the line segment [0, 1] is obtained:

X(1) = Xo() + [G7(w) — 1]

1
dy - _PJ X,() dv

14

1 1 dy
X (%X“’(’u) " 2ai P.[) Xo(0) y— ,u)
-+ —1-— flK('p, ,u)X"(v) d'V P € [09 1]
2mi Jo Ll
(11)

Equation (11) represents the basic version of the
classical result [see Ref. 5, p. 386, Eq. (126.5)]
modified for an open contour and is based on the
proposition that the given G-matrix is Holder
continuous on the interval [0, 1] and further that
GO0)=G() =1L

It is clear that once X~(u) is determined, as say from
Eq. (11), X(z) follows immediately through the
appropriate Cauchy integral; however, there remains
the task of proving the equivalence between the
original problem and Eq. (11), the ordinary integral
equation for X~(u). Furthermore, the solubility of
Eq. (11) needs to be established in order to ensure
that a solution to the original problem exists. It is
stated by Muskhelishvili (Ref. 5, p. 389) that con-
ditions sufficient for proving the required equivalence
and solubility are that neither the accompanying
problem,

Wi(p) = G ¥ (), wneC, (12)
nor the associate problem,
D' (w) = [G (W] ¥ (W), neC, (13)
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has a nontrivial solution vanishing at infinity.> Here
the transpose of G(u) is denoted by GT ().

Although there seems to be no general method for
calculating the so-called component indices® for the
original Riemann-Hilbert problem given by Eq. (1),
it appears that, for problems normally encountered in
neutron transport theory and radiative transfer, the
G matrix is such that its indices are nonnegative.1* We
thus restrict our attention to those problems for which
the G matrix leads to nonnegative component indices.
It now follows that the boundary value problems
defined by G~ and [GT]! will have nonpositive
component indices, and therefore the only solution
of the accompanying or associate problems which
vanishes at infinity must be the trivial solution. -

ITI. QUASIREGULAR FREDHOLM EQUATIONS
FOR H(x) AND H/(u)

We should like to apply the analysis of the previous
section to two special cases pertinent to the study of
polarized light in a free-electron atmosphere.®1? We
thus seek solutions X;(z) and X,(z) of the Riemann-
Hilbert problem given by Eq. (1) for the two scalar
cases:

AL ()
G(uw) =", uel0,1], a=1or2, (14)
“T A
with A% (u) being the boundary values of the function
(-] 2 ! d:u
A =(-1)+31-:z )(1 + 4z —.) (15)

Since we require here the canonical solutions, i.e.,
solutions which are nonvanishing in the finite plane
and which yield - nonvanishing boundary values
X*(u), « =1 or 2, on the cut u € [0, 1], we follow
Muskhelishvili® and first calculate the required indices
X, and X, of the two problems:

R, = “1— [arg G (W], a=1or2, (16)
2mi

where [ ]o is used to denote the increase of the
function in brackets as the contour C is traversed in
the positive direction. It is a simple matter® to show
for the functions G,(u) considered here that

R, =1 (172)

and

R, = 0. (17b)

Consequently, from the remarks of the previous
section, it follows that the integral equation for
X, (w) is equivalent to Eq. (1) and, furthermore, that
Eq. (11) is soluble, the solution being unique to within
a multiplicative constant.
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It follows from Eq. (17a) that X;(z) will have a
simple zero at infinity, and thus X;,(») =0. In a
similar manner, X, (¥) must be a constant, which we
arbitrarily choose equal to unity in order to normalize
our results in the established manner.® Since the
principal parts of the functions X,(u) have been deter-
mined, we can now write the forms of Eq. (11)
appropriate here:

_ 1 * - dy
Xiw = f K X10) 2=, wefo,1],
271 Jo y—u
(182)
and
PR <% () R | P ¢ O
=1+ [m tn (u 1)]
1
+ ‘L f Ky(v, ) X5(») dv , wel(0,1],
27 Jo y— U
(18b)
where
K, 1) = GG, — 1 + 2—711—1 G () — 1]

% [G,() — 1][111 (—i— - 1) —In (i - 1)]
(19)

Equation (18a) is clearly a homogeneous equation
for X7 (1), and thus we wish to select a normalization
consistent with that used previously, since the desired
canonical solution is fixed only to within an arbitrary
multiplicative constant. In the process of establishing
the exact form of X, (z), Siewert and Fraley® normalized
their solution such that

X,(0) = (20)

J5.

Now setting 4 = 0 in Eq. (18a), we find
1 [ N
X7(0) = X,0) = — | (Gy(») — 1}X7() —~, (21
2mi Jo v

which, when the explicit forms of G,(v) and Eq. (20)
are used, yields the identity

! Xl("’) _ﬁ
brozge=3

where we have introduced Chandrasekhar’s char-
acteristic function?’

¥,0) = 31 — %),

We thus seek a solution to the homogeneous Eq. (18a)
such that X,(0) = +/5 or, alternatively, such that it is
subject to the integral constraint given by Eq. (22).

, (22)

(23)
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Rather than pursue the analysis for X[ (u), we
prefer to write our equations in terms of Chandra-
sekhar’s function'?’ H;(u),

25 X1(u)
Hyp) = S A’ #<1[0, 1), (24)
and thus convert Eq. (18a) to the equivalent
1 [PAIG)
Hyp) = ) ATe) —— Ki(v, wH, z("’) (25)

Furthermore, the normalization H ,(0) = 1 follows
from Eqs. (15), (20), and (24), whereas the alternative
integral constraint follows from Eq. (22):

1
[worea=1 26)
0

In the process of simplifying the algebra once the
explicit form of A,(z) is used in Eq. (25), it becomes
possible to split off a term proportional to the integral
given in Eq. (26), and thus by using that identity we
are able to convert the homogeneous integral equation
for H,(¢) to an inhomogeneous form, the solution of
which necessarily is normalized in the desired manner.
We find finally that H,(u) is the solution to the
Fredholm equation

Hy(p) = 2g,(w)(2 — 3u®)
9gy(e) [ (vt — ¥)(A — A, v)
+ 4 fo ( y—u

+ 3"—(”3+—"))Hl(v) &, (27)

where
g = [Af(WA; (W], a=1or2,
Af(w) = (=1)* + 31 — p*)(1 — ptanh™ )
+ 3mip(l — %), a«=1or2, (28b)

i Rl P

For the sake of brevity, we state simply that the
expressions

(282)

and

Adp, v) = In (

ng(v) = 1’ (293)
X (0) = \/ 2, (29b)
X3 2 (‘V)
H,(®») = 2\/2 Ay ) (29¢)
and

11P',.(v)H,(v) dv=1—1%/2, (29d)

with °
‘Fr(v) = %(1 - '”2)’ (296)
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can be used in a manner analogous to that used for
the & = 1 case to find the resulting version of Eq. (18b)

for H,(x):
H () = gz(u)[st t — pyn (S22

(1 + p)
44— 30|

9ga(1) [* (vl — )1 — pA)Aw, )
+ 4 fo ( vy —u

_ 2__”(”;' ‘u))H,(v) d.

Equations (27) and (30) clearly are not so concise
as Chandrasekhar’s nonlinear equationsi’:

(30)

1
Hy(w) = 1 + uH(u) f TOH,0) ‘j:’ -,
a=1lorr. (31)

Furthermore, for the case of scalar Riemann-Hilbert
problems, exact analytical solutions are available;
however, the extension to matrices cannot be made
analytically, whereas it is felt that the method em-
ployed here may be used to advantage for certain
classes of matrix Riemann-Hilbert problems.
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R. B. McQuisTAN AND S. J. LicHTMAN*}
Physics Department and Laboratory for Surface Studies, University of
Wisconsin-Milwaukee, Milwaukee, Wisconsin

(Received 9 March 1970)

It is shown that A(g, N), the number of ways of arranging ¢ indistinguishable dumbbells ona2 x N
rectangular array of compartments, is exactly described by the recursion relation

A(g,N) = A(g, N — 1)+ 24(g — 1, N—1) + Aq — 1,N —2) — A(g — 3, N — 3.

For large values of N the normalization of the distribution generated by this recursion relation is found
to be 0.665(3.214)¥ and the maximum number of arrangements occurs when the array is approximately

619 occupied.

I. INTRODUCTION

There are important aspects of a number of physical
phenomena, e.g., magnetism, adsorption, crystalliza-
tion, which can be treated by considering the occupa-
tion statistics of a regular space lattice or array. One
of the interesting problems arising from this approach
is that of determining the number of possible arrange-
ments of dumbbells on a lattice space. Here the

lattice space is considered to be a rectangular array of
compartments and the dumbbells occupying two
adjacent compartments. A 2-dimensional form of this
problem is encountered in the theory of adsorption of
diatomic molecules.

As is generally true for problems of this nature,
exact solutions have been found for the 1-dimensional
case,?% but exact solutions for spaces of higher-order
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can be used in a manner analogous to that used for
the & = 1 case to find the resulting version of Eq. (18b)

for H,(x):
H () = gz(u)[st t — pyn (S22

(1 + p)
44— 30|

9ga(1) [* (vl — )1 — pA)Aw, )
+ 4 fo ( vy —u

_ 2__”(”;' ‘u))H,(v) d.

Equations (27) and (30) clearly are not so concise
as Chandrasekhar’s nonlinear equationsi’:

(30)

1
Hy(w) = 1 + uH(u) f TOH,0) ‘j:’ -,
a=1lorr. (31)

Furthermore, for the case of scalar Riemann-Hilbert
problems, exact analytical solutions are available;
however, the extension to matrices cannot be made
analytically, whereas it is felt that the method em-
ployed here may be used to advantage for certain
classes of matrix Riemann-Hilbert problems.
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It is shown that A(g, N), the number of ways of arranging ¢ indistinguishable dumbbells ona2 x N
rectangular array of compartments, is exactly described by the recursion relation

A(g,N) = A(g, N — 1)+ 24(g — 1, N—1) + Aq — 1,N —2) — A(g — 3, N — 3.

For large values of N the normalization of the distribution generated by this recursion relation is found
to be 0.665(3.214)¥ and the maximum number of arrangements occurs when the array is approximately

619 occupied.

I. INTRODUCTION

There are important aspects of a number of physical
phenomena, e.g., magnetism, adsorption, crystalliza-
tion, which can be treated by considering the occupa-
tion statistics of a regular space lattice or array. One
of the interesting problems arising from this approach
is that of determining the number of possible arrange-
ments of dumbbells on a lattice space. Here the

lattice space is considered to be a rectangular array of
compartments and the dumbbells occupying two
adjacent compartments. A 2-dimensional form of this
problem is encountered in the theory of adsorption of
diatomic molecules.

As is generally true for problems of this nature,
exact solutions have been found for the 1-dimensional
case,?% but exact solutions for spaces of higher-order
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dimensionality have been obtained only for very
special cases,*” i.c., a 2-dimensional array completely
covered with dumbbells. Consequently, approximation
methods have been utilized®—1° to attack this problem.

In the present paper we are concerned with the
occupation statistics for dumbbells on a pseudo-2-
dimensional rectangular array—the 2 X N array. We
wish to determine the number of ways of arranging
dumbbells on a 2 x N rectangular array of compart-
ments (see Fig. 1).

II. DERIVATION OF RECURSION RELATION

In this section we seek to determine a recursion
relation for A(g, N), the number of arrangements of ¢
indistinguishable dumbbells on a 2 X N rectangular
array of compartments. For the purposes of this
calculation we shall define the following arrays:
(i) An a(N) array (see Fig. 2a) is defined to be an
array of compartments arranged in two adjacent,
aligned rows of N compartments each; (i) a S(N)
array (see Fig. 2b) is one in which the compartments
are arranged in two adjacent, aligned rows; one row of
N compartments and one row of N + 1 compart-
ments.

A(g, N) is then the number of ways of arranging ¢
indistinguishable dumbbells on an «(N) array, and we
define B(g, N) as the number of ways g indistinguish-
able dumbbells may be arranged on a () array.

Theorem 1:

Blg, N)=A(@q, N)+ Blg—1,N—1). (1)

Proof: Let b(g, N) be the set of all possible arrange-
ments of g indistinguishable dumbbells on a S(N)

R. B. McQUISTAN AND S. J. LICHTMAN

array; c(q, N) is the subset of b(g, N) in which the
extra compartment is vacant, and d(g, N) is the subset
of b(g, N) in which the extra compartment is occupied.
Then every arrangement in ¢(g, N) differs from every
arrangement in d(q, N) by the condition of occupation
of the extra compartment, i.e., ¢(g, N) N d(g, N)= ¢,
a null set. In addition, every member of b(g, N) will be
found either in ¢(q, N) or d(q, N), ie., clg, Nyv
d(g, N) = b(g, N).

We conclude that #b(g, N), the number of members
of the set b(q, N), is given by

#blq, N) = #c(q, N) + #d(q, N) = B(g, N). ()
The extra compartment of the £ array is unoccupied
in the set c(g, N) so that by definition #c(g, N) =
A(g, N). If the extra compartment is occupied, then
the adjacent compartment in the same row is also
occupied. Hence, all other possible arrangements
must involve the remaining ¢ — | dumbbells on the
remainder of the array, which is a S(N — 1) array.
The number of elements in d(g, N) is therefore
Blg~1,N—1), ie., #d(g, N)=B(g—1,N — ).
The theorem then follows from Eq. (2).

Corollary 1:
q
B(g, N) =§)A(q — 5N =) 3

Proof: Use Theorem 1 to evaluate B(g — 1, N — 1),
ie.,
+ Blg~2,N-2).
Substitution of this into the theorem yields
+B(g~2,N~2).

4)

Repeated use of Eq. (4) gives
B(g,N) = A(g, N) + A(g —1,N = 1)

q
= %A(q — i N =) (%)
i=
N
7! % (@
a(N) - array
F1G. 2 (a) An a(N) array;
N (b) A S(N) array.
r N Y
X ] (b)
A{N)-array
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Theorem 2:

A(g, N)= A(g,N—1)+2B(g—1,N—2)
+A4(@—1,N=1)
+ Alg—2,N—2). ©6)

Proof:. Let a(g, N) be the set of all possible arrange-
ments of g dumbbells on an «(N) array and let e, (g, N),
ey(g, N), - -+, e5(g, N) be subsets of a(g, N) in which
the Nth column of the array is occupied in a manner
shown in Fig. 3. In other words, the e{g, N) are
defined on the basis of the manner in which the two
compartments forming the Nth column are occupied.
Since every member of e,(g, N) differs from any and
every member of e;(g, N)(k #j), we state that
ei(g, N) Nelg, N)= ¢, k #j. In addition, these
five configurations are clearly the only possible Nth
column configurations; thus

kL=Jl ex(q, N) = a(g, N).

We conclude that

#alg, N) = #ei(q, N) + #exq, N)
+ #tes(q, N) + #ea(q, N)
+ #es(g, N) = A(g, N). (M

The set e;(g, N) contains only those arrangements
in which the Nth column is unoccupied. All ¢ dumb-
bells are then arranged on the remaining «(N — 1)
array; hence #e (g, N) = A(g, N — 1).

Both sets,ey(g, N) and ey(g, N) have one compart-
ment of the Nth column occupied and one compart-
ment empty. Necessarily, this implies that one
compartment of the (¥ — 1)th column is also occu-
pied. In each of these sets the remaining ¢ — 1 dumb-

crirrrnsiiii;m .
T T,
a (N —1)-array nih column
e
e ————
AN - 2)array
Fic. 3. The state of
occupation of the Nth €;
column defines the sub- [ ——
sets €1, €,,; €3, €1, and e;. B (N -2 )array

J
a (N —1)-array

SRRRAMIUANN-- B

a (N -2)-array
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bells are arranged on an array composed of the
original array minus the three precluded compart-
ments, i.e., on a (N — 2) array. We may then write
#eu(q, N) = #ei(q, N)= B(g — 1, N ~2)

One dumbbell covers both compartments of the
Nth column in the set ey(g, N). Thus, the remaining
g — 1 dumbbells ccn be arranged on a a(N — 1)
array, i.e., #e,(q, N)=A(g—1,N - 1).

In the set e;(q, N) two dumbbells cover the Nth
column [and also the (N — 1)th column]. The remain-
ing ¢ — 2 dumbbells are arranged on the «(N — 2)
array; thus #es(q, N)= A(g — 2, N — 2). Applica-
tion of Eq. 7 yields Theor=m 2.

Corollary 2:
+A(g—1,N—=2)— A(g—3,N-13).
)
Proof: Use Corollary 1 to evaluate B(g — 1, N — 2)
in Theorem 2, i.e.,
A(g, N) = A(g, N — 1)
g—1
+23A4(@—1—j,N=-2—))
=0
+A4(g—1L,N—1)+ 4(q—2,N-2).
&)
If Eq. (9) is used to evaluate A(g — 1, N — 1) and we
form the difference A(q, N) — A(g — I, N — 1), we
obtain Corollary 2 by noting that

q—1

a2

—gOA(q —2—-j,N=3—-j). (10

Corollary 3:

Alg,q9) = fo, (11)

where f, is the ¢gth Fibonacci number.

Proof: Since, if g > N, no arrangements are
possible, i.e., A(g, N) = 0, the special case in which
the array is completely filled has the recursion

A(q, N)=24(q—1,N—1)— A(g — 3, N - 3)

or

Alg,9) =24(q~1,9 - 1) — Alg—3,9 - 3).
(12)
The initial conditions A(0,0) = 4(1,1) =1 and
the use of Eq.(12)yield the Fibonacci sequence. Thus,
the number of arrangements possible for g = }N
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number.

Figure 4 shows the number of arrangements of ¢
indistinguishable dumbbells on a 2 x N array for ¢
and N in the range 0-10, according to Eq. (8).

I1II. NORMALIZATION
In this section we attempt to determine

N
AN = ZOA(‘I, N)a (13)

the normalization of the statistics defined by the
recursion given in Eq. (8). By Corollary 2 we find the
recursion relation for A to be

Ay=3Ay 1+ Ays— Ay (14)
with the initial conditions Ay =1 and A, = 2.

Utilizing the results of Zeitlin,!* we find the generating
function of A, to be g

1—x < /

= AyxP. 15
1 —3x —x*+x° N2=0N (13

This generating function may be rewritten as

1 -~ X . kl
1 =3x—x2+x* 1—Sx
ks ks

+ ,» (16
+1—52x 1 — Syx (16)

where the k’s are constants and the S’s are the zeros
of x3 —3x2 —x + 1, ie,

S, = 3.214320, S, = 0.460811, S; = —0.675131.

Thus, the equivalent generating function may be
expanded as

ky n ke ks
1—8Sx 1~—Sx 1-—8;x

=3 (kSN + koSy + ksSY)xY. (17)

N=0
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Since the absolute values of S, and S; are less than
unity, S and S approach zero as N — oo, Thus in
the limit we have

limAy = kY (18)
N-ow

As x — 877, only the first term on the right-hand side
of Eq. (16) is important, so that we may write

lim( Sk S — )=0. (19)
-8\l — 3x —x®*+x* 1 — §;x

Utilizing L’Hospital’s rule, we may determine &, :

— S
k1=(1—sl) i__2__3 ~ 0.665.
VAST S
(20)
Thus we may write
lim Ay = k,S¥ ~ 0.665(3.214)". (21

N-o
This normalization may be compared with that
obtained for single-particle statistics, 2%, and with
1-dimensional dumbbell statistics®

) 4T (5]
q=0( q \/ 5[( 2 2 ’
which for large N becomes 0.447y~, where y is the
golden mean (1.618).

IV. EVALUATION OF THE MEAN VALUE
(EXPECTATION) FOR LARGE N

In this section we attempt to determine 6, the
coverage [0 = ¢/N] at which the distribution is a
maximum. Here we define the mean value uy to be

N N
py = 24400 N)/ 2 4(g, ) @)
g= q=
and assume that
N-ow N=+ o
where k, is a constant.
By Corollary 2 we have
N N-1
>qA(q, N) =Y qA(g, N — 1)
q=0 q=0
N—-1
+2> @+ DA, N - 1)
=0
N2
+ Zo(q + DA@g, N — 2)
=
N-3
- Eo(q + 3)4(q -3, N — 3)
Q=
=3y + Un_2 — Hy_s
+ 28y, + Ay — 3y, (24)
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oF TN ky=1-— _SitS ~ 0.6064927. (28)
T - -~ < 387 + 25, —3
7
=° h /s \\. Thus, the distribution reaches a maximum when the
N ol / \ dumbbells occupy 61 % of the compartments. Figure 5
Al / \ shows A(g,22) as a function of ¢. In this case the
St / \ maximum occurs at ¢ = 13 or 6 = 0.59.
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F1G. 5. A graph showing the logarithm of the number arrange-
ments of ¢ dumbbells on a 2 X 22 for all possible q. There are
approximately 1.9 X 10*° ways of arranging 13 dumbbells on a
2 X 22 array.

For large values of N, Eq. (24) yiclds
koNSY = 3ky(N — 1)SF 4 ky(N — 2)SV-2

— k(N — 3)SN=3 4 28N 4 V-2 _ 383 (25)
We may divide this by S¥ and, noting that
SY =35 + % — 5, (26)
we obtain
1 1 1
S—(z — 3k,) + §(1 — 2ky) — 5(3 ~3ky) =0
1 1 1 (27)
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We show that, in the limit of large 4, integrals of the form

_ (v fldx
H®) =fa 20T

are essentially given by | g Lf(0)/u(x)] dx where the region R’is the union of all those subintervals in which
[u] > 1. The corrections to this expression are of two kinds: terms O(1/4) which depend on the details
of averaging to remove logarithmic singularities in H(4) and terms O[(In A)/4]. Some examples are given.
If || < 1, the leading term in H vanishes and H(A) is bounded by (In A)/A.

L. INTRODUCTION

It is frequently useful to be able to bound integrals
of the form

problems would be the behavior of wavepackets at
large times and the behavior of the Born approxima-
tion for scattering amplitudes at large energy.! The
mathematical tool s, of course, the Riemann-Lebesgue
lemma, which ensures that

G = L bf (x)e** dx

for large values of the parameter A. Typical physical |G(A)| < const v(f)AL
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Here v(f) denotes the total variation? of the function f number of subintervals of three different kinds:

in the interval [a, b).

The study of multiple scattering from several particles,
using separable potentials and the closure approxi-
mation,? leads to expressions of the form

f(x) _
fR —_ﬁ—u(x) T dx = H(A).

The purpose of the present paper is to show that
H(2) is “essentially” given by

A= ]:-(—x—)dx

R’ U(x)

b

where R’ is the union of all those subintervals of R in
which [u} > 1.
There are four complications which we encounter.
(1) The function H(4) may have recurring logarithmic
singularities as A grows without bound. We deal with
this by defining an averaged function of i:

A+ia .
Hy(1) = A1 f H(A)dx'.
—3A
A must be small enough so that only one singularity
appears in the integrand for any value of 1. Note that
the limit of H(A) as A— oo is independent of A,
provided that R’ is not empty.
(if) Again because u(x) may have unit modulus, the
corrections to H are not quite bounded by 1/A. The
best bound we can obtain is (for A < 1)

|Hy(A) — B < C(In /A |In A —1].

(iii) The function f must be of bounded variation,
as in the Riemann-Lebesgue lemma. Our proof re-
quires that |u| satisfy the stronger condition of piece-
wise monotonicity. This insures that the variation of
un for any n can be bounded uniformly with respect to n.

(iv) For purely technical reasons we have had to
make the following additional assumptions. We do not
know whether they are necessary.

For every x,, such that |u(xp)| = I, there is a
neighborhood N of x, contained in [a, b] in which

(a) u is differentiable,
w(x) — u'(xo)
u(x) + ez’lm
[l — |u(xo)l
X — Xg
fG) — f(xo)
u(x) + ez‘l.ac

Using condition (iii), we can divide [a, b] into a finite

(b) 3B, 5 < B,

(© 3D>03 > D,

(d 3B,> < B,.

(A) u <R <,

(B) [ul =2 S>1,

(O R<L|ul < S and |u(x)] =1 has exactly one
root.

In Sec. II we find the limiting form of H(A) for each
of these cases. In Sec. III we combine these results.
Finally, in Sec. IV we discuss examples and possible
extensions of this technique.

Before presenting the proof we remark that the
complex nature of e*® is essential for the simple form of
H. For example, with the real function sin Ax, in case
(B) one may show that

J‘u(x) +1sin Ax ax =f[u(x)21_ 1t dx + OG) )]

II. DISCUSSION OF THREE CASES

Case A: We have the uniformly convergent ex-
pansion

[u(x-) + ei}.m]—l — e—i}.xéo[u(x)e—i).x]n(_l)n.

Let v(u) be the variation of [u]. Since [u| is piecewise
monotonic (we denote the number of ““pieces” by N),

v(u) < 2NR
and, because of the monotonicity,
v(u) < 2NR"
and
sup |u"] < R™.
Hence, the function u”fis of bounded variation, and
there is a constant K such that?
o(f-u*) < 2NR" max f + R™(f)
< KR™,
We now use the expansion of the denominator in the

integral defining H(A) and apply the Riemann-
Lebesgue lemma to every term in the sum:

fu(x)nf(x)e—lz(n+1) dx

4
AMn+1)
4 R"
P [(f) + @N + Dsup |f]]
4_R
An41

[o(fu") + sup [u"f]]

<

D(f, N).

Thus

FOu(x) + €27 dx <

iI%N—)lun 1 — R)|.

R



EXTENSION OF THE RIEMANN-LEBESGUE LEMMA

This completes the discussion of intervals of type A.
They do not contribute to the limiting value at large 4.

Case B: Suppose |u(x)] > S > 1. Then we may
write

AT — 1/u(x
feolu) + ¢y =Ly ),
u(x) [u(x)] + e
The first term in brackets is independent of 4. The
second satisfies all the hypotheses of Case A with R

replaced by 1/S. Thus

[

) + o x = L@dx + 0(l)

u(x) A

Case C: We now consider the case where |u| assumes
the value 1 exactly once in the interval of interest. The
phase is unimportant in our argument; so we assume
u(x,) = 1. Now we choose an € > 0 such that, when

lx - xll <
x lies in the neighborhood N specified in condition (iv)
of Sec. [. We have
) = f(x1)

u(x) + <5

and

u'(x) — u'(xy)
u(x) + &+

Since the integral exhibits logarithmic singularities

at A = (7/x)(2n + 1), we extract them with the aid
of the following two relations:

< B,.

S ) = f(x) 1
u(x) + oAz - u(x) + gi® + f(x1) u(x) + euz’
1 = 1 i iz
u(x) + e u'(x) — il(dx I [u(x) + €]
v —ux) o 14 e )
- u(x) + ei,lz u(x) + ei}.z ’

Now choose ¢ < min {e, 1/A}. Note that the definition
of € does not depend on 4 so that, as 4 — oo, § will
eventually be 1/2. We will show that, with suitable
averaging over 4,

Lf:i?(x)[u(x) # ¢ ds =),

Using the first relation above, we have

J‘ f(x) _ oy < |f(x) —f(_xx)l dx
u(x) + 4 lu(x) + €|

+ 1f(x0)]

x1+36 1
[,
35 u(x) + €**
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The first term on the right-hand side is bounded by
B,/A. By elementary geometry we have

iAx
l+em 2 )
u(x) + e = 1+ u(x)
Thus

21+36
[
w-bs u(x) + e4*

B, 1(By
< P +Z(A +2) [f(xDI
1 .£l__ iz
+ llf(xl)l fdx In [u(x) 4 €*]dx|.

This last integral exhibits the logarithmic singularity.
Since the product A4 is less than 1, the imaginary part
of the integral is bounded by 1. To eliminate the diver-
gence, we average over A — 3A < A" < 1 + $A:

avfi In [u(x) + %] dx < C(|In A] + 1).
dx

Hence the integral in these dangerous regions is
bounded by 1/, multiplied by a factor which depends
in a well-defined way on the averaging over A.

III. PROOF OF THE THEOREM

Since u has only a finite number of oscillations, we
can cover the range of integration with a finite number
of intervals of type A, B, or C. Since the intervals of
type C are of length 1/A, the values of R and S for the
intervals of type A and B will be quite close to 1. How-
ever, for sufficiently large 4, we can be sure that1 — R
and S — 1 are at least as large as DfA, where D is
defined by condition (c). Inserting this in the bounds
for case A, we find

104y g 02, g Lt I0A|

type B U(X) A A

The first correction term is due to intervals of type A
and B, while the second is due to intervals of type C.

Hy(4) =

IV. EXAMPLES

Integrals of the form discussed here do not arise
frequently in the mathematical literature, where ex-
pressions of the form e usually arise from contour
integration. An example arising in the physical situa-
tion discussed in Sec. 1 will be presented elsewhere.3

Examples for which the limiting form of the integral
is known by other means can be found by considering
Fermi-Dirac integrals.

Let

H(p) = fo LG R

efle 4
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Of course, this is not yet the form in which we are
interested.

However, the integrand is regular except at the
singularities of fand at (e — u) = (2n 4 1)mi. Since
the integrand falls as e~ ®¢< at infinity, we can almost
deform the contour of integration to the axis x4 + iy.
We can apply our technique as follows: Let the con-
tour I be as shown in Fig. 1. Assume that f has no
singularities in the first quadrant. Then

® fle)de f(e) de
o el MF 4 1 T e 4

[
o etemP g )

© fliy)dy
oOtivI8 +1 ’

Assuming f'to be of bounded variation on I, we can
apply our lemma, using u(y) = e#® < 1. We can
maintain this condition with é — 0; for example, let

4 = 1/8. Thus
1
+ o(—),
B
which is the familiar result.

© f(e)de
o P11 b

Further examples can be constructed by considering

the integral of the exact derivative

4 f(e) de
AR |

4 (g In [u(x) + 1),
dx

which is easily seen to be equal to

—idg(u(x) | . » o
u(x) + Pty + iAg(x) + ig'(x) arg [u(x) + 7]

u(x) + ei).a: + g'(x) In lu(x) + ei).ml.
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If we set g(x) = f(x)/u(x), the first term is seen to be
an integral of the desired type multiplied by A. Thus we
examine the rest of this equation for terms of order 4.
When |u(x)| > 1, there are none but iig(x), and the

integral is given by
- f 8(x).

f ______f(x) — dx
u(x) +

When u(x) < 1, there are several terms of order A,
with only the last two being negligible. For large 4
and sufficiently smooth g, we can replace

ﬁﬁ‘c{g(X) In [u(x) + €]} by idg(x)x|;

and

arg [u(x) + e**] by ilx.

A single partial integration then yields

" f )
u(x) + ezla:

= ilJ; g(x) dx

+ i).fbxgi(x) dx + 0(1) — ilg(x)x|s
— 0+ 0(1).

Of course, when u(x) can assume the value 1, the
logarithmic correction enters in several terms.

This “example’” serves as an analog to the usual
heuristic proof of the Riemann-Lebesgue lemma based
on partial integration. It would be nice to find some g
and u for which every term can be integrated in terms
of elementary functions, but I have been unable to do
$0.

V. DISCUSSION

By extending the Riemann-Lebesgue lemma to
cases where the oscillating factor appears as the argu-
ment of a rational function, we can discuss the high-
energy limit of certain very simple multiple scattering
problems. Subject to possible convergence difficulties,
the discussion can be extended to meromorphic func-
tions of e’**, Unfortunately, we have not found a
relation of these ideas to the calculus of residues and
are unable to extend the argument to holomorphic
functions of e*#s, This last extension would be partic-
ularly useful in more realistic multiple scattering
problems, where operators of the form (1 — V,G,V;)
must be inverted.®



EXTENSION OF THE RIEMANN-LEBESGUE LEMMA

ACKNOWLEDGMENTS

I have enjoyed discussions of this question with
several colleagues at Case Western Reserve Uni-
versity, particularly Professor L. Foldy and Dr. P.
Johnson, who has given a simple proof of Eq. (1).
This work arose from a consideration of the high-
energy limit of multiple scattering, stimulated by an
article by Professor L. Foldy and Professor D.
Walecka.’ I thank them for showing me their manu-
script prior to publication.

JOURNAL OF MATHEMATICAL PHYSICS

3103

* Work supported in part by the U.S. Atomic Energy Commission
AEC Contract No. AT (11-1)-1753.

1 A good reference for all these matters is M. L. Goldberger and
K. M. Watson, Collision Theory (Wiley, New York, 1965), esp.
Chaps. 3 and 6.

* E.T. Whittaker and G.N. Watson, Modern Analysis (Cambridge
U.P., Cambridge, 1952), expecially Secs. 3.64 and 9.41.

3 The results of that analysis will be published elsewhere. They
are contained in P. B. Kantor, “Scattering From A Composite
System; High Energy Limit of the Closure Approximation,” Case
Western Reserve University, Cleveland, Ohio, Preprint, 1970,

4 To see this, simply apply the inequality V,, < V,sup|f| +
V,sup|g| to each subinterval in which 4 is monotonic, and use
induction on n.

5 L. L. Foldy and J. D. Walecka, Ann. Phys. (N.Y.) 54, 447 (1969).

VOLUME 11, NUMBER 10 OCTOBER 1970

Diagrammatic Perturbation Expansion for Ensembles
of Random Matrices

J. F. McDoNALD*
Department of Mathematics, University of Windsor, Windsor, Ontario, Canada

AND
L. D. Favro
Department of Physics, Wayne State University, Detroit, Michigan

(Received 22 September 1969; Revised Manuscript Received 23 April 1970)

A method for obtaining a perturbation expansion of various eigenvalue distributions corresponding
to a certain class of perturbed ensembles of random matrices is given. The terms in the expansion can
be written down immediately as diagrams analogous to those used in other kinds of perturbation theory.
Further, part of the expansion can be summed explicitly, and the result of the summation read off the
diagrams. In addition, a new perturbing ensemble is introduced. It has the advantage that the number
of matrix elements which are perturbed simultaneously and the size of the perturbation can be varied inde-
pendently. The expansion given is an expansion in the number of perturbed matrix elements rather than
the usual expansion in the size of the elements. Finally, the conditions for convergence of the expansion

are discussed.

1. INTRODUCTION

There has been recent interest in the problem of
how a small perturbation to the Hamiltonian of a
complex system effects the statistical properties of
the energy levels.””® The primary purpose of such
work is to ascertain the possibility of determining
whether or not a particular quantity is an exact
invariant or only an approximate invariant by
measurement of these statistical properties. Of par-
ticular concern is the question of how a small time-
reversal invariant term in a Hamiltonian would
manifest itself in the statistical properties of the energy
spectrum. 4.6

The ensemble which has received the most attention
is a simple generalization of the Gaussian ensemble.
That is, the unperturbed ensemble is assumed to be
Gaussian, say of width o} and the perturbing
ensemble is also assumed to be Gaussian, say of
width y—%. Then it is assumed that the relative strength

of the perturbation is given by (a/y)t. One is, of
course, interested in the limit where a/y is small.

In studying this ensemble one encounters mathe-
matical difficulties which seem to be inherent in it. In
particular, if one considers the case where the un-
perturbed distribution is orthogonal (time-reversal
invariant) and the perturbing distribution is unitary
(not time-reversal invariant), it appears that the results
will be purely unitary or orthogonal in the lim N —
+ o (X is the dimensionality of the matrices) unless
y — +o with N in exactly the right way.2-¢ This
results from the fact that the number of nonvanishing
off-diagonal matrix elements is of order N2 The
convergence of a perturbation expansion in general
depends not only on the size of the off-diagonal
elements, but also on the number of such elements,
since each succeeding term in the expansion involves
another summation.

However, the physical interpretation of letting »
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reversal invariant term in a Hamiltonian would
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spectrum. 4.6

The ensemble which has received the most attention
is a simple generalization of the Gaussian ensemble.
That is, the unperturbed ensemble is assumed to be
Gaussian, say of width o} and the perturbing
ensemble is also assumed to be Gaussian, say of
width y—%. Then it is assumed that the relative strength

of the perturbation is given by (a/y)t. One is, of
course, interested in the limit where a/y is small.

In studying this ensemble one encounters mathe-
matical difficulties which seem to be inherent in it. In
particular, if one considers the case where the un-
perturbed distribution is orthogonal (time-reversal
invariant) and the perturbing distribution is unitary
(not time-reversal invariant), it appears that the results
will be purely unitary or orthogonal in the lim N —
+ o (X is the dimensionality of the matrices) unless
y — +o with N in exactly the right way.2-¢ This
results from the fact that the number of nonvanishing
off-diagonal matrix elements is of order N2 The
convergence of a perturbation expansion in general
depends not only on the size of the off-diagonal
elements, but also on the number of such elements,
since each succeeding term in the expansion involves
another summation.

However, the physical interpretation of letting »
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approach infinity as N goes to infinity is somewhat
obscure. Since this results in making all the matrix
elements of the perturbation go to zero, it might
appear that the result of this would be to eliminate the
effect of the perturbation entirely. This is not true
because the total number of elements increases as each
of them goes to zero. The problem with this ensemble
is that the ratio «fy is not simply a measure of the
relative strength of the perturbation. It is also, in some
sense, a measure of how many matrix elements are
simultaneously perturbed on the average. Therefore,
in the next section we introduce a 2-parameter distri-
bution function in which one can vary the size and the
number of perturbing matrix elements independently.
This distribution function (and others of the same
form) has the additional advantage that it lends itself
readily to diagrammatic summation techniques.

2. THE DISTRIBUTION

Two approaches to the problem of perturbing a
random ensemble of matrices have been used in
previous work.®=® In one case it is assumed that the
unperturbed matrix element distribution is completely
known. In the other case it is assumed that the only
thing that is known about the unperturbed matrix
element distribution is its eigenvalue distribution.”
Here we choose the latter approach because of its
simplicity.

We will denote the unperturbed joint eigenvalue
distribution by fa(A) = fy(A1, -, Ax), where A
represents the N eigenvalues. The only assumption
we make about fy(A) is that it is invariant with respect
to the labeling of the 4,, and it is normalized to unity.

The perturbed distribution for the matrix elements
will then be given by

PO = (250, M
where p(H, A) is the perturbing distribution which in
previous work was taken to be Gaussian; i.e.,

@

From the work of Porter and Rosenzweig as
corrected by Leff, it is known that this Gaussian
form of the perturbing distribution is the only one for
which the matrix elements are statistically independent
and which is representationally invariant.® There are
two simple extensions of that distribution which might
form the basis of a more rapidly converging perturba-
tion expansion. Each has a finite probability for the
vanishing of the off-diagonal matrix elements. The
first is a distribution in which the requirement of

p(H, %) oc exp [—y Tr (H — A)2).

J. F. McCDONALD AND L. D. FAVRO

statistical independence of the matrix elements has
been relaxed®:
PN = 1+ § (T o = 20) (T et
i i>j

+ ﬁziN(N-n(y / 7T);}N(Nﬂ)

X exp [—y Tr (H — 7\)2]]. 3)
This distribution function is representationally in-
variant in the sense that the product of é functions
in it may be regarded as a limit of a Gaussian distribu-
tion and hence is only a function of Tr [(H — A)?].
The second term in the distribution simply adds a
fraction g of a Gaussian perturbation to the unper-
turbed distribution.

The second distribution is one in which one main-

tains statistical independence but not representational
invariance:

p(H,A) = (1 4 gy NW+v/2
x TI (O(Hs = 2) + ply/m)*

X exp [~y(Hy — 1))}
x TLO(H) + (2y/m)! exp (27 H3p)
@

In this ensemble the distribution of each matrix
element consists of a broad Gaussian with a sharp
spike in the middle.

The parameters in these two distributions have
been chosen such that in either distribution the
probability for the vanishing of an off-diagonal ele-
ment, say H,;, is (I + §)~! and the mean square value
(HZ) is B[[4y(1 + B)1.1° The first one, however, has
the disadvantage that the vanishing of one off-
diagonal element implies the vanishing of all of them
(i.e., the probability that one element is zero is the
same as the probability that all elements are zero
simultaneously). This follows from the fact that the
integral over the product of  functions is independent
of the range of integration so long as the origin is
included. For the second distribution the average
number of diagonal matrix elements which are non-
zero is N(N — 1)g/[2(1 + B)].1* Furthermore, it has
the advantage that it leads itself readily to a perturba-
tion treatment by simply multiplying out the terms in
(4) explicitly. 1t is this second distribution which we
shall study here.

As a measure of the strength of the perturbation,
we shall take the mean square value of H,;, i > j,
divided by the parts of the H;; which are simultane-
ously nonzero. This may be interpreted as the mean
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square size of one of the nonzero elements, i.e.,

(H; 1

<H§1>¢o = = —,

B+ 4y

The number of nonzeéro elements is independent of
this and may be varied by changing f.

e

3. THE #-LEVEL CORRELATION FUNCTION
AND DIAGRAMS

In this section we illustrate some techniques which
can be used with the ensemble (4). For simplicity the
discussion will be restricted to the calculation of the
n-level correlation function (i.e., the joint distribu-
tion for n eigenvalues).

We first multiply out the product in the perturbing
distribution explicitly. This will give a sum of terms.
The general term in the sum for the perturbed matrix
element distribution will be'?

P = [o(y/m By /mHT"
X f VAN (N) + exp [—y(Hiys, — Al

X exp [—(Hy, — A:)*l exp(—2yH3,) -

X exp (—2yH3 ) - O'HimknH-2) (6)
where i, = (i, -, 1)), etc., and
611,1m.km(l-l—7.) —_ H (S(Hﬁ _ }'z) H 6(H]k) (7)
i#i; i>k
(F.) # Gmakm)

In this term the set H, ; through H,; of the diagonal
elements are perturbed (represented by factors like
exp [—y(H,,;, — 4;))’]) and the set H,, through
H; . of the off-diagonal matrix elements are per-
turbed (represented by factors like exp [—2yHZ, ]).
All of the other matrix elements are unperturbed
(represented by 6 functions). The perturbed distri-
bution is then given by

=SS 3 3

1=0 m=0 ¢1>43> %1 51> k1

Z Pi;,i,,.,k,,,(H),

Im>km

(8
where
Cx = (1 + ™1 + By, 9
with
Ky = N(N — 1)J2. (10)

The sum over the j’s and &’s includes only terms with
all (j,, k), 7=1,---,m, different, and further
includes distinct terms once and only once.

In order to obtain the n-level correlation function,
one must make a change of variables from the matrix
elements H,;, i > j, to the eigenvalues E;, i = 1, - -,
N, and «y other variables ®. Since fy(A) has been
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assumed to be symmetric in the E;, the result will be
independent (except for labeling, of course) of which
E; remain. For definiteness, let E;, - -, E, be the
remaining eigenvalues, and let f3(E,, - - -, E,) denote
the n-level correlation function corresponding to
Sv(E).

In the following discussion it will be useful to think
of the individual unperturbed eigenvalues as ““parti-
cles” with perturbing off-diagonal matrix elements
causing interactions between them. Thus Hy,, for in-
stance, may be thought of as causing an interaction
between 4, and 4,. A perturbing diagonal element
causes a “self-interaction” of the particle with itself. We
may continue this particle analogy further by drawing
diagrams in which the vertices (indicated by symbols
such as O, e, and A) are particles (eigenvalues) and
the lines connecting them are interactions (perturbing
matrix elements). This use of diagrams simplifies the
bookkeeping associated with summing terms in the
perturbation expansion.

Consider first the case n = | (i.e., single eigenvalue
distribution). If one examines (6), it is clear that the
only matrix elements which influence the functional
dependence on E, are those H;; which are perturbed
(i.e., have a Gaussian distribution) and those H;;,
i > j,which are indirectly connected to H,, by per-
turbed matrix elements. That is, if zeros are put in the
Hamiltonian matrix for the unperturbed off-diagonal
matrix elements (i.e., those with a §-function distri-
bution) and the Hamiltonian is put in reduced form,
it is only the block containing H,, which is relevant.
This is because for a particular term in the expansion
the matrix elements are statistically independent and
thus the disjoint blocks are statistically independent.

In terms of diagrams, the situation may be thought
of as a series of unconnected clusters of particles.
Each cluster represents one of the blocks. The cluster
of interest is the one which contains the particle of
interest, namely E, . The statistical independence of the
matrix elements and the nonconnected nature of the
diagrams allow the variables occurring in the clusters
not containing E; to be integrated out immediately.
The problem then is to find the single eigenvalue
distribution in the usual way for the remaining
submatrix (cluster). Let us denote the dimensionality
of this submatrix by s.

Consider first those p; ;  such that s =1 (e,
those terms corresponding to matrices having no
nonzero off-diagonal elements in the first row or
column). There are two classes of such terms. In the
first class Hy; is not perturbed. The contribution to
the single eigenvalue distribution from such a term is
simply ¢'8"f}(E;). The distribution f%(E,) is the



3106

2 g e ~9 e Q9
{a) (b (c) (d) (e) (f)
soe Hoo s+9s oel 0. Qo9
(g} (h) (i) (0 (k) 0]
990 000 oenve oHe ol 09

{m) (n) (0) (p) (a) (r

9 909
(s} (1)
(u) W) (w) x) (y) (2}

FiG. 1. All possible diagrams for the perturbation expansion of
the single eigenvalue distribution to order s = 3.

single eigenvalue distribution for the unperturbed
ensemble. Since this result does not depend on the
particular values of (i, j,,, k), the calculation of
the contribution from all such terms, with / and m
fixed, simply involves counting the number of ways
such a contribution will arise. It is easily seen that

this number is
e [y
1 m ’

where ky is defined by (10) and where (5) denotes
the binomial coefficient. We can now sum over / and
m to obtain the total contribution:

Cx(l + N1 + By f M(EY)
=1+ 071+ HVMED. (1D)

This summation amounts to adding the contributions
from all possible diagrams in the clusters not con-
taining E;. The diagram for f},(E,) will simply be
denoted by A.13

The calculation in the second case, i.e., the case
in which Hy, is perturbed, goes through in an analog-
ous manner. The only differences are that the above
coefficient is multiplied by ¢ and that f,(E) is replaced
by

(y/mt f dAyfy(h) exp [—(Ey — 4.

This last expression represents the ‘‘particle” E;
interacting with itself via H;;, and will be denoted by
the diagram in Fig. 1(b).

Next we consider clusters with s = 2. There are
four cases. First, we can have the case in which there
are two unperturbed diagonal elements H,, and,
say, H, which are connected by a perturbed ofi-
diagonal element (in this case H;;). The contribution
from such a term is the single eigenvalue distribution

J. F. McDONALD AND L. D. FAVRO

corresponding to the 2 X 2 matrix-element distribu-
tion
2y/ W)if M(Hu, Hy) exp (—2yH3).

This contribution will be denoted by the diagram in
Fig. 1(c). Since the result will not depend on i, the
total contribution can again be found by counting
the number of ways it occurs for fixed / and m and
then summing over / and m. This coefficient is found
to be

Cy(N = DB + o)V + ) »—
= BN — DA + o) %1 + B2, (12)

In the second case H,; is also perturbed. The contri-
bution from such a term is the single eigenvalue
distribution corresponding to

J2 /) f dAf3(Hy, 1)

x exp (—2yH}) exp [~y(Hy — A.)°].
This is indicated by Fig. 1(d). Again, since the result
does not depend on i, the necessary sums are easily

carried out, The result can be found in Table I. The

TasLE I. Coefficients and matrix-element distributions corre-
sponding to the diagrams given in Fig. 1. Note that

B, = ('}’/Tf)* exp [—y(H; — 2%
and

B;; = 2y[m)texp [-—'nyj], i>j

Coefficient Matrix-element distribution

Ay fi(Hy)

od; | dz’lfllv()'l)Bll

BA; [y (Hu, Hys)Byy
ofA; | dl!f;(Hu, Ag)B33B:y
ofd; | dllf?v(}‘l, Hy,)ByB;,
ofAL §di, dlsffv(}*l , A9)B11BysBay

B24; f?v(Hu , Hyp, Hy3)By1Byy0(Hay)
af*d;y | dllf?v(}n , Hsg, H33)B11By1Bs20(H sy)
oftd; | dlzfgv(Hu s Aa, Hyg)B2yBy1B3s0(Hy,)
oftd; | d}*sfjav(Hu s Hyy, As)BysBy1B3g6(Hayy)

o?f2A; { dA, dlzfgv(}vl s A2, Hyg)B11B33 By B3y 0(H )

024, | di, dlsf}(ll y» Has, A3)B11B33 By, Bysd(H 51)

024, [ dh, dlsfgv(Hu s Az, AQ)ByaBys By BysO(H 1)

B2 A5 [ di,dA, dlaf?v(lh Ag, Ag)B11B3s By By Bysd(Hyy)

18245 [3¥(Huy, H,, H5)B31 By, 0(H 35)

Yop2A; [ dAf3(A, Hys, Hy3)B11By1Ba10(H )

oftd; | dlnfiv(Hu s Ay, Hyg)BpoBy1B36(H 3,)

025214:1; I dh dlzf?v(ll s Aay Hgg)B11Bss By 1By, 6(H 3,)
302824, [ dAydAf3(Hys, Az, As)ByeBss By By O(H s,)
&o”ﬁ“Aé f dA, dA, dlsf?v(}n s Ay, Ag)B11BagBayBy1Bsy0(Hag)

38°4; f%(Hu, Has, Hyg)By1By1 By,

top?4; | dllf;](ll , Hyy, Hy3)B1y By By Bas

of*4; ) dlzf?v(Hu » Ay, Hyg)Byy By 1By By

oAy §di,dAf3(A, Ay, Has)B11Bey By ByiBss
30%8°4; §dAs dlaf?v(Hu s As, As)BygBasBy; By Bse
$0°8%A; [ dAydAsdAsf3(Ay, As, As)B11BayBy3By1BaiBas

N X3 er %2 IRy ~xTmxhhmaean e
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diagrams and coefficients for the other two cases (i.e.,
H,, perturbed but H; not perturbed, and finally both
H;; and H,; perturbed) are given in Fig. 1 and Table
I, respectively.

If one next considers s = 3, there are 20 distinct
cases. The procedure is the same, and the results are
given in Fig. 1 and Table I. One can continue this
procedure for any value of 5. All possible diagrams
for any value of 5 can be written down immediately.
The matrix-element distribution from which the
contribution arises then can immediately be written
down. These are given for s = 1, 2, 3 in Table I. In
addition, the coefficient corresponding to a given
diagram is given by the expression

P AW R, (13)

where

(N _ n)' —3 —3(2N—3-1)/2
o A+ . (14)

n
8

s is the number of vertices in the diagram (ie.,
dimensionality of the submatrix involved), a is the
number of self-interactions (represented by closed
loops attached to the vertices), b is the number of
interacting pairs (represented by the connecting lines
in the diagram), and p is the number of permutations
of the vertices which leave the connectivity of the
diagram unchanged.* It should be noted that factor
pUN — DY/(N — s5)! occurring in (13) is simply the
number of ways that an s-fold cluster containing E
can occur for a particular set of clusters not involving
E, . The coefficients for s = 1, 2, 3 are given in Table I.
The total expansion to order s = 3 is the sum of all
the diagrams in Fig. 1 with the corresponding coeffi-
cients given in Table I.

The problem for the 2-level correlation function
can be treated in an analogous manner. Now two
eigenvalues are not integrated out. In the diagrams
we let A correspond to E; and O to E,. The existence

a B a B

~
[+
[+
~

Fig. 2. Sample dia-

grams for single eigen- () (o)
value distribution with

s =5, illustrating the
definition of ‘‘connec-
tivity,” as defined in Y 8 a S
Footnote 14.
@ B B

Y
© 6))
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a
FiG. 3. Some sample
diagrams for the 2-level
correlation function. °
(@) (b) (c) (d)

of two unique eigenvalues produces one difference
from the single-level case. The matrix elements H;,
and Hy may be in the same cluster or different
clusters. However, the counting problem is analogous,
and the coefficient for a diagram is given by the
expression

plo"BPAL, (15)

where the symbols are defined exactly as before if
Hy, and H,, are in the same cluster while, if H,; and
H,, are in different clusters, s is the number of vertices
in both clusters (i.e., the sum of dimensions of the
two matrices), p is the product of the values of p for
each cluster, as defined above, a is the number of
self-interactions in both diagrams, and b is the total
number of interactions between pairs in both dia-
grams. Some sample diagrams are given in Fig. 3,
and the matrix-element distribution arises as well as
the coefficient are given in Table IL.

At this point the generalization of the above
results to the n-level correlation function should be
clear. One first writes down all possible diagrams,
In order to obtain the matrix-element distribution
corresponding to a particular diagram, one first
integrates out all the variables in the clusters which
do not contain A;,---,A,. The matrix-element
distribution is then

f Ay dafiy(y, s A
x (1;{ (yfm)t exp [—y(Hyy — m)

< (LT @rimt - exp (=213 (] 6Hw). 16)

>4

where s is the number of vertices, ]|, is over the self-
interacting vertices, [ [, ;is over the vertices connected

TasLE II. Coefficients and matrix-element distributions corre-
sponding to the diagrams given in Fig. 3.

Coefficient Matrix-element distribution

a A: f?v(Hu > Hy2)0(H )

b BA; fi(Hu, Hys)Es,y

c i‘ﬂa/ﬁ fjv(Hu » Hya, Hs, H“)E,lEa,E4,6(H31)(5(H41)(5(H‘3)
d o*BA; [ dA d, dAgfS(Ay, Hys, As, Hyy, Hs, Ag)

X EnEssEseEnEsiEqiEsqEes0(H51)0(H)0(Hy,)
X O(H 13)0(H 43)0(H 53)0(H o5)5(H ;4 )0(H 50)0(H 5)
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in pairs, and J],., is over those vertices which are
free (i.e., not connected to any other). The contribu-
tion from the diagram is then the n-level correlation
function corresponding to this matrix-element distri-
bution (which can be found in the usual way) times
the coefficient

p B AL, 17)
where, of course, s > n and where the symbols are
just the obvious generalizations of those given above
forn =2,

It should be noted that the above perturbation
techniques are not restricted to the ensemble given
by (4). In principle they can be used for any distribu-
tion for which the matrix elements are all statistically
independent and for which the distribution for each
matrix element can be written as a sum of an unper-
turbed distribution and a perturbing distribution.
For example, the Gaussian ensemble can be treated
analogously if one notes that (2) can be written in
the form

IT O — )
+ {)m)E exp [—p(His — 4] — 8(Hyy — 4)))
x TLOMH ) + {(@y/m) exp [—2yH%] — 8(H,0))).
(18)

Here the unperturbed distribution for each matrix
element is a ¢ function, while the perturbing distribu-
tion is the difference of an exponential and a ¢
function. The details of the calculation, as well as the
validity of the expansion (i.e., convergence in the
limit of large N), of course depend on the particular
distribution involved. In the next section we examine
the convergence of the expansion for the distribution
given by (4).

4. CONVERGENCE OF THE PERTURBATION
EXPANSION IN THE LIMIT OF LARGE N

In the limit in which the dimensionality N of the
matrices goes to infinity, the finite sums in our
perturbation expansion become infinite series. These
infinite series are partially summed series in powers
of the parameter 8 which measures the number of
matrix elements which are simultaneously perturbed.
Each term in the series contains a coefficient which
depends on 8, N, n, and s. Each also contains a
function of the eigenvalues E;, which is essentially
an average over the unperturbed distribution. In some
sense these eigenvalue-dependent functions are *‘well-
behaved” functions, since the integral of each is unity.
We will discuss the convergence of the series when
each of them is replaced by unity.'® One then only
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need consider the asymptotic behavior of the coeffi-
cient for large N.

When #» and s are small compared to N, the coeffi-
cient is given approximately by

p—lﬂa+sz—n(1 + p)—s(ZN—s+l)/2. (19)

This asymptotic coefficient has some properties
which at first sight seem to be contradictory.

First, consider the case in which § goes as N2
{(which corresponds to having only a finite number of
matrix elements perturbed simultaneously). In this
case all of the coefficients except the first one (with
s = n and a 4+ b = 0) vanish, and one is left with the
unperturbed distribution. This is reasonable, since
one does not expect a finite number of matrix elements
to, make any substantial changes in the eigenvalue
distributions for an infinite matrix.

Next consider the case in which g behaves as N1
(which corresponds to the number of perturbed
elements being of order N). In this case only those
diagrams with a + b = s — n contribute, and those
have coefficients given by

p~lﬂs—ne—ﬁs’ (20)

where 8 = NB. This will clearly converge in s pro-
vided § > 0. Thus, making the number of perturbed
elements larger has produced a finite, but converging,
correction to the unperturbed distribution. One is
then led to ask what happens when the number of
terms is made still larger, say of order N This corre-
sponds to making f# independent of N. In the limit N
going to infinity, we then find that (19) goes to zero.
This is a surprising result because the previous
discussion (and common sense) seem to indicate that
increasing the number of perturbed matrix elements
causes the series to converge more slowly. What has
happened is that infinitely many terms in the series
are contributing equally (roughly speaking) and
hence each of them individually must vanish. An
interesting sidelight is that in lim 8 — + co the series
converges again, but it is the last term in the series
[with s = N and a + b = N(N — 1)/2] which gives
the entire contribution.

The discussion above shows that the only non-
trivial large dimensionality limit of our expansion is
in the case with § proportional to N—1. The perturba-
tion expansion simplifies considerably in this case.
The only terms which contribute are those witha = 0
and b = s — n. These correspond to a particularly
simple class of diagrams. First of all, there are no
loops, i.e., self-interactions. Next there are # disjoint
diagrams with one and only one vertex corresponding
to E,,E,,- -, E, in each diagram. Finally, each
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@ n=t

a + g (a—e) + c',{-'a-(o—o—o) + (a—o——o)}+--~

B n-=2
a;i(a o) + a2 {(A—-—o o) + (a o—o)}

+ 6 {fe—oe 0 + (r—e-e 0

+ (6—e o—e) + %(A *—0—8)

+ (& o-—H)} +

FiG. 4. The perturbation expansion for n = 1, 2 to order s = 3
for the case 8 ~ 1/N in the limit of large N. Note that

a} = prref.

disjoint diagram is a simple chain; i.e., if the vertices
are arranged in a straight line, the only interactions are
only those between nearest neighbors. For a particular
value of s, all the diagrams can be obtained by taking
all possible (distinct) permutations of the vertices in
each disjoint diagram.!® The perturbation expansions
for n = 1, 2 to order s = 3 is shown in Fig. 4.

3. A SAMPLE CALCULATION

To illustrate the above results we shall calculate the
first correction to the n-level correlation function.
For simplicity we restrict our discussion to fy(A) of
the form

N
I ) = Hf w(4). 21
In addition we assume the # = $/N and consider only
lim N — 4 co.

In this case there will be a total of » diagrams in
the first correction term. In each of these, (n — 1) of
the particles (levels) have no self-interaction or
interaction with other particles. The other level
interacts with only one other. The diagrams differ
only in the fact that in each one a different one of the
/; interacts. Thus, we need only consider one such
diagram in detail. The others can be treated by
simply relabeling the 4,.

Consider the diagram where A, is the eigenvalue
with the interaction. This diagram corresponds to
the perturbed matrix-element distribution

faa (ﬁf}va») SMHINH — A)(2ym)t

X exp(—2yH%,1)), (22)
where

SMUYH — ) = ﬁ! 8(H;; — 4) jIJi;(S(ij) (23)
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with (j, k) # (n + 1, 1). It follows trivially that the
contribution to the n-level correlation function is

Py i(E) = p(Ep) l]_fgfb(m, 24)

where p(E;) is the single eigenvalue distribution
corresponding to the ensemble

P(Hll ’ Hn+1 ’ Hn+1,l)
= M H i1, )¥/m) exp (=27H,1). (25)

In the usual manner® it follows that

T + 00
(E) = ;%J d(I)J dx
0 — o0

X P(Hll’Hn+1,n+1’Hn+1,1) [Ey — x|, (26)
where
Hy = E;cos @ + xsin* @, 27)
H, 1= Eysin® @ 4 x cos® @, (28)
and
Hyp1a = (x — Ep) cos @ sin D (29)

The total contribution from all diagrams in this
correction term will be simply

ZIPN,'IL,’L'(E)’

where i denotes the perturbed level. The coefficient
for this term is, from (20), B exp [—(n + 1)A].

In general the integrals that are required to evaluate
P(E;) explicitly [i.e., (26)] are not trivial. Even in the
seemingly simple case when

F5) = (a/m)* exp (—a2),

the integrals cannot be done in closed form.® Hence,
since this calculation is just a sample to indicate the
nature of the terms in the expansion and does not
have direct physical interest, we will not carry the
calculation any further here. Calculations of physical
interest will undoubtedly require numerical compu-
tation.

(30)

APPENDIX

Here we show that for the ensemble given by (4) the
average number of off-diagonal matrix elements which
are nonzero is N(N — 1)S/[2(1 + B)].

The probability that n particular Hy, j> k, are
zero, while all the others are nonzero is defined by

lim (H fjde”> (!:—[1 :redH juka)

e-+0F \i=1 © €
x IT
ik

e o
( dH ;, + f dek)P(H),
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where the last product includes the «y — n off-
diagonal elements not included in J],. Here P(H) is
given in terms of p(H, A) by (1) and xy = N(N — 1)/2
is the total number of off-diagonal elements H,,
J > k. If one inserts the distribution given by (4) into
the above definition, the integrals are easily calculated,
and one finds the given probability to be

BIA + P

Since this result is independent of which H); are zero
and which are nonzero, the probability that any n
are zero and the remaining are nonzero is

kN (_B X7,
n=0=| ")|—— ",
ro=0= (7))
Thus, the average number which are zero is given by

KN

(n) = np(n=0).

n=0

The required sum is easily evaluated. The result is

(ny = ky/(1 + B).

Thus, the average number of off-diagonal elements
which are not zero is

ky— (n=0) = Bry/(1 + p).

J. F. McDONALD AND L. D. FAVRO
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A systematic technique is developed for the calculation of expectation values for 1-dimensional
problems by a direct use of the WKB quantization rule including the higher-order integrals without
the introduction of wavefunctions. As an example of the technique we calculate the moments (r#) for
the Coulomb potential for 2 > p > —3, for all bound states of the system. Our results are exact except
for p = —3, in which case the inclusion of the higher-order integrals substantiaily improves the accuracy

of the calculation.

I. INTRODUCTION

One of the constantly recurring calculations in
quantum mechanics is the evaluation of expectation
values and sum rules for the various states of a system
with a given Hamiltonian. When the wavefunction
of the state is known, the calculation of expectation
values is in principle straightforward, but the evalua-
tion of sums involving off-diagonal elements of some
operator, such as appear in second-order perturba-
tion theory for the energy, continues to be difficult in
practice. Furthermore, when the wavefunction is not
exactly known, it is not generally possible to calculate
directly the expectation values, although some
progress has recently been made in this area through
the development of variational principles for expecta-
tion values other than the energy.! Moreover, varia-
tional techniques have also been developed for the
calculation of sums involving off-diagonal matrix
elements.? )

In this communication we examine the application
of the WKB method to this problem. The standard
application of this technique to the calculation is well
known, ie., one merely makes use of the WKB
wavefunctions to approximately calculate expectation
values.® However, this technique does not readily lead
to a simple systematic method of improving the
calculation because the higher-order WKB contri-
butions to the wavefunction become progressively
more singular near the classical turning points, and
thus a more detailed analysis of the wavefunction in
the neighborhood of these points is required.

On the other hand, the WKB method has long been
used to calculate the approximate eigenvalues of the
I-dimensional Schrédinger equation. The accuracy
of the method has been improved by the inclusion of
the higher-order correction terms obtained by
Dunham.* The inclusion of these terms in the quanti-
zation condition has led to the calculation of eigen-
values with considerable precision even for the

ground state of the system.*~” However, little use
has been made of the WKB method as a means of
calculating expectation values, moments, and other
quantities of interest.®

In Sec. II we show that a systematic technique can
be developed for the calculation of expectation values
and sum rules for 1-dimensional problems by a direct
use of the WKB quantization rule without the intro-
duction of wavefunctions. As an example of the
technique, we calculate, in Sec. III, the moments
(r?) for the Coulomb potential for 2 > p > -3, for
all bound states of the system. Finally, in Sec. IV we
conclude with some remarks about the applicability
of the technique to other systems.

II. DERIVATION OF THE TECHNIQUE

It is well known from perturbation theory that, if a
small perturbation AV” is added to a potential, then
the energy of the perturbed state can be written as

D) = (0 + 3 epni™, 0

where "=
€n = (nl V, In>’ (2)
| V' s)¢s| V' [m) 3

€, =z/ »
24 E,—E,

and the higher-order coefficients are given in the
standard textbook accounts.? It then follows from

Eq. (1) that

=D v @
and

1 9%, n| V' |s){(s} V' |n)

it =S , 5

2 4% [a=0 zs: E,—E, ®)

with similar relations being valid for the higher-order
derivatives. It is interesting to note that Eqs. (4) and
(5) are valid even if the perturbation expansion given

3
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by Eq. (1) does not exist (either has no radius of
convergence or has a divergent higher-order coefficient)
provided only that the right-hand sides of these
equations are finite.1

Hence the expectation value of any function ¥’
can be calculated by adding AV’ to the potential and
finding the change in the energy to first order in A.
Similarly, the sum in Eq. (5) can be found by evaluat-
ing the change in the energy to second order in A.
In both cases all that is required is an independent
method of calculating the perturbed energy of the
state.

The WKB method offers just such an independent
means of calculation for potentials that are separable.
Suppose we write the quantization condition for a
1-dimensional Schrédinger equation as

§ Qe VENdx =n + 4 ®
where Q; is an expression obtained from summing
the first ¢ integrals in the quantization condition? and
the path of integration is taken to enclose the zeros
of O, and no other singularities of Q,. Then the
equation for €,(4) is

ff Ques(B. V() + V' dx =n+ 3 (D)

Expanding Eq. (7) around 4 = 0 gives

P, (A _ —@)oN)$0Le, V + V') dx
04 |0 (9/0¢) $ Qyle, V) dx
where e is determined by Eq. (6). Similarly, expres-
sions can be derived for the higher derivatives of
€,(A). Tt is of practical importance that the higher-
order WKB integrals generally decrease rapidly,®”
so that we expect the right-hand side of Eq. (8) to be
a rapidly converging expression as f, the number of
integrals included in the quantization condition, is
increased. As an example we calculate below the

moments for the Coulomb potential.

®)

’
A=0

III. MOMENTS FOR COULOMB POTENTIAL

The WKB quantization condition for spherically
symmetric potentials has been found by Langer!! and
the first two higher-order integrals have been correctly
derived.? The quantization condition, correct to the
third order in A2, isi2

2n(N, + Ph _ [ dr B [ (Dg’)’dr
(2m)1} B §q r 64m§ q r
_ K fﬁ (49(D42)4 _ 16(D¢12)(D3112))d_" )
8192m* g q r’
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Imr
F1G. 1. The contour

C, in the complex r

plane encloses the

branch points corre-

sponding to the zeros

b of g. The contour C,

k consists of two parts

and is equivalent to
1

C2

where
2ﬁ2 ‘}
q= (r2E - V() — Q--Ii) s
2m
d n
Dn 2 = . 2’
q (" dr) q

N, is an integer > 0, and E < 0 is the energy of a
bound state. The integrals are all taken about a con-
tour enclosing the zeros of ¢ and no other singularities.

For the Coulomb potential, V(r) = —ze?[r, the
only zeros of g are on the positive real axis. We
integrate around the contour C, as shown in Fig. 1,
where the integrands have been made single valued
by a cut connecting the zeros of ¢ and with phases
chosen so that g > 0 just above the cut. Since the only
singularities of the integrands occur at the branch
points and at r = 0 and infinity, we may deform C,
into the equivalent contour C, in which case we see
that the only possible contributions to the integrals
occur at the origin and infinity. We evaluate these
integrals by expanding the integrands about the
origin and infinity, keeping only the terms having
the 1/r dependence necessary for calculating the
residues.

A. Coulomb Eigenvalues

It is well known that the first-order integral gives
the exact eigenvalues for the Coulomb potential and
that the higher-order integrals in Eq. (9) are zero.?
Evaluation of the first-order integral gives

2m7(N, + i dr dr
3 = 4)‘ 4—=—¢q—
(2m) ° F o r

ze? K+ D
2"(2(—E)* m)t )
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Solving for the energy gives the well-known eigen-
values
22e2

—_— 10
2a,N? (10)

EN = -
where N = N, + / + 1 and a, = #*/me.

B. First-Order Calculation of (*™)

We add a term Ar” to the potential. Using Eqs. (4)
and (8) and retaining only terms from the first-order
integral, we have

(r,,>=(_—ELf§

mZe

r**%dr

q r

(11

Evaluation of the residue at the origin gives

r"t? dr 2i ayr?
i 24y
o g r (—n—2!\dr

e =

2 -3
x( (l+%) B+ zé*r +ENr2) ,
r=0
n< -2,
=0, n> =2 (12)

Evaluation of the residue at infinity gives

- (n_-iﬂ.li) ! (d(f /r))wr1 (%)_1

_ —2ari (i)n+1
(n + D!\ds

1 oar

w(qr) r

1/r=0

222 2 —4
2m 3=1/r=0
n Z _1,
=0, n<—1. (13)

The derivatives can be evaluated with the aid of the
formulal3

-1—( ) (a + bx + cx2)’|

=& LI

3113

Using the above formula, we express (r") in terms of
the physical parameters, i.c.,

ar =
N2

n+1 _Ji n + 1 — k) (1 + %)Zk
X I
kzo(n +1-— k)( k 2N

2\n+1
™ = —2N )

n>—1, (15)

=4 iOZ)N*‘ ((112;2)
D R [ [ B
n<—2.

While these moments are, in general, only approxi-
mations, the approximations are good for large N and
! and exact!* for n equal to 0, —1, and —2. Further-
more, one cannot help but notice the ease with which
all the moments for all n, N, and / have been calculated
by doing only one contour integral.

The moments generated by the first-order integral
for2 >n> —3are

b — (5N4 — 3N¥(I + g)Z)

2z*
3N? - (I 2
0 = a5 ),
=1,

e =ar(Z) e

I =a (Nsaz + 1))

) z
roy=a,;" | —m/———
(N3(l + l)*‘)
C. Second-Order Calculation of (")

The accuracy of the calculated moments can be
improved by the use of the higher-order integrals in
Eq. (9). Expansion of the second integral to the
first power in A gives, from Eq. (8), the second-order
correction to Eq. (11) as

2A—Ent
mze®  64m

Dqg* 5 Dg? - dr
X§—;5—<2(n+2)-—5 2) +2

q r

AG™ =
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Evaluation of the residue at the origin gives
D 5 Dg*

1§20 (2( n+2)— q‘j )r

2(n + 2) (Ze r’“L3 + 2Ey r"""‘)dr

n+2 _d_r
r

2@ Jy 4°
q9° r

7

5 (z ettt 4 4ze2E N+ 4E§vr“+°) dr

4mi q r
_2Ant+2) ( )‘"‘3(1_5I
(=n—=3)! \dr r=0
4(n + 2)EN( 4 )‘"“ |
(—n — 4! \dr r=0
§ 2284 (i)—.’qul
2(—n — M\dr r=0
_ 10E yze* ( d )‘"‘5 -
(—n — S)!\dr =0
B 10E3%, ( d )—"-‘q_,,l
(—n — 6)!\dr r=0

Evaluating the residue at infinity gives

5D d
__1._.. Dq (2( +2)___‘L.) ”+2_r
2mi J, q° q r
2(n +2) § (2E N+ zezr"”z)dr
= - = .
5 (4E§vr"_1 + 4Eyze'r™? + z2e‘r”—3)d_r
47i q r
4(n +2) (d )"-‘ -5
= ——En— 59) =
(n _ 1)' N ds ( ) Is 0
2n+2) (d )"‘2 5
S = zet | — s -
+ (n—2)" \ds SO

- (nlof?)!(i)ﬂ_l(sq)_q*=°

ds
2 n—2
0B 4
(n — 2)!\ds

52%" d)"“’ L
- (sq) =0 "
2n — 3)!(ds =

The use of Eq. (14) permits the derivatives to be
expressed in terms of the physical parameters. It is
found that the five terms on the right-hand side of the
above two equations all have the same functional
dependence on these parameters. The corrections to
the first-order moments are thus found to be

A{r®y = Ta3N?[222,
Ar) = ao/8z,
AG?y = ag®2%/4N(1 + 3)°.
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The moments for # equal to 1 and 2 become exact
with the addition of the second-order corrections,
while the moment for » = —3 is still inexact. In all
cases the second-order corrections provide a means
for estimating the accuracy of the calculated moments.
If further precision is required, the third-order correc-
tion term can be evaluated.

D. Third-Order Calculation of (")
The inclusion of the third-order integral in Eq. (8)
gives
symy o A=En)' A
Ay = S
mze”  8192m

X Bﬁ 49)(Dg’y’ (4(';) : 2) 21; ),m drr
_ ffl‘G(—DM
(n+2)q (M + 2D T apadr
( Dg* D% 2q2)r r]'

Since the second-order correction gave exact
results for —2 < n < +2, we expect the third-order
correction for these moments will be zero, which is
precisely true (as can be easily verified by performing
the contour integrals above). For n = —3, the last
integral in the above equation has a residue at the
origin, the other integrals being zero. Evaluating this
residue for the third-order correction yields

AR = a,°z°
16N + 3
The moment for n = -3, correct to third order, is
then
a °z* ( 1 1 )
=i\ T ary T e

While the moment is still inexact, it is the correct
series expansion for the exact moment, which can
be written as

¢ =

ay’z®

NI+ Dl +1)

a‘;s 3

TN+ DL — (12 + 1))

~373 ( 1 1
1+ +

_ a7
TN+ @I+ @+

1
+ B N
21 + 1)° + )
1t is seen that the difference between the calculated

third-order moment and the exact moment is small
even for low values of /. For / = 1 the error is 0.14%,
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and for / = 2 the error is 0.0064%. For / =0 one
could infer that the moment is infinite from the fact
that the higher-order corrections do not appear to be
converging.

IV. DISCUSSION

The above calculation demonstrates the feasibility
of obtaining expectation values from the WKB
approximation without the necessity of first obtaining
the WKB wavefunction. This is particularly conven-
ient since it is often difficult to evaluate the integrals
that represent the space dependence of the wave-
function. Furthermore, the higher-order corrections
to the wavefunction involve integrals which become
increasingly singular near the classical turning points
of the effective Schrodinger equation, and hence
would require a more exact approach to determine
the wavefunction in these regions.

The technique yields a systematic way of improving
the accuracy of the calculation by including the higher-
order integrals. Thus, for the Coulomb potential,
(r*y for —2 > n < 2 is given exactly when the first
two integrals are included, the third-order integral
then giving a zero contribution. Moreover, even
when the inclusion of the third-order integral does not
lead to the exact result as in the calculation of the
very singular term (r~%), contributions from the
higher-order integrals rapidly decrease giving not
only excellent results even for low quantum numbers,
but a means to estimate the accuracy of the calcula-
tion. Since the relative smallness of the higher-order
integrals appears to be a general property of the
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WKB expansion, we anticipate that similar results
will obtain for other potentials. Furthermore, by
performing coordinate transformations that preserve
the boundary conditions, it is possible to make the
contributions of the higher-order integrals smaller'®
and thus improve the accuracy of the calculation.

Finally, we note that, when the relevant integrals
can be analytically evaluated, this technique is capable
of yielding analytic expressions for expectation values
for all quantum states by performing only a trivial
calculation, as is evident in the case of the moments
for the Coulomb potential.
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The evaluation of the partition function of the 2-dimensional ice model is equivalent to counting the
number of ways of coloring the faces of the square lattice with three colors so that no two adjacent faces
are colored alike. In this paper we solve a generalized problem in which activities are associated with the
colors. If one of the colors is regarded as a particle and the others as forming a background, then the
model is reminiscent of the hard-square lattice gas. It is found to undergo a phase transition with infinite

compressibility at the density p = 1/3.

1. INTRODUCTION

The 2-dimensional ice model was solved by Lieb?2
in 1967. Lenard (see Ref. 2) has pointed out that the
model is equivalent to counting the number of ways
of coloring the faces of the square lattice with three
colors, so that no two adjacent faces are colored alike.
Calling these colors 1, 2, and 3, it follows that the
partition function for a lattice with N, faces can be
written as

Z =Y G(Ny, Ny, Ny), (1.1)

where the summation is over all nonnegative integers
N;, N;, and N, such that N; + N, + N3 = N, and
G(N,, N;, N,) is the number of allowed ways of
coloring the faces so that N; are colored 1, N, are
colored 2, and N, are colored 3.

Clearly, these colors can be regarded as three types
of particles, with an infinitely repulsive force between
nearest neighbors of the same type. This suggests
associating activities z,, z,, z; with the three colors
and generalizing (1.1) to

Z =Y z¥'z)*2)G(N,, N, Ny), 1.2)

where the summation is as before. Z is then the
grand canonical partition function of the particle
system, evaluated at close packing of the lattice.

In this paper we solve this problem exactly in the
thermodynamic limit when N, becomes large. We
find that

Z ~ Wh (1.3)

W = (2,22 W (1.4)

and Wy is a function only of the dimensionless
parameter

B = (2,25 + 2471 + 222)[[B(zz2z0)' ] (L5)

In fact, we find that Wy is simply an algebraic
function of B. If ¢ is the root of the equation

B® = (1 — 32)%/(1 — 9¢2)

where

(1.6)

such that 0 < ¢ < } (since from its definition B > 1
there is always one and only one such root), then W7y,
is given by

wE = 64(1 — 912701 + %L — 30)].  (1.7)

From (1.6) and (1.7) we can see that Wy, is an
analytic function of B in the interval 1 < B < oo,
while at B = 1 it has a branch point. Since, for real
positive activities, B = 1 only when z; = z, = z;, it
follows that W is an analytic function of z;, z,, and z,,
except when they are all equal.

When z; = z, = z; = 1, the partition function (1.2)
reduces to (1.1), and we regain the ice model. In this
case, B =1 and r = 0, so that (1.4) and (1.7) give

W= ®k (1.8)

which is Lieb’s result.
Another special case that is particularly interesting
is when

(1.9)

Colors 1 can then be regarded as particles and colors
2 and 3 as forming a background. Since no two such
particles can occupy adjacent faces of the lattice, the
model is reminiscent of the hard-square lattice gas.?
In fact, any allowed coloring of the lattice corresponds
to a unique hard square configuration, and any hard
square configuration corresponds to at least two
colorings, since the empty squares can always be
colored 2 and 3 in one of two possible checkerboard
fashions.

Unfortunately, the correspondence is not simply
2-to-1, since the hard squares may enclose “lagoons”
of empty squares such that no empty square inside the
lagoon borders one outside. Such a lagoon can be
colored in a checkerboard fashion independently of
that used for the other empty squares. For instance,
the empty squares in the hard square configuration
shown in Fig. 1 can be colored 2 and 3 in four ways.

Nevertheless, this case of the coloring problem
resembles the hard squares gas in that it has only.

Zy =2, Zz=12z3=1.
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FiG. 1. A hard square configura-
tion that corresponds to four
possible 3-colorings of the lattice
(the hard squares being colored 1).

infinitely repulsive nearest-neighbor forces. Further,
since the probability of occurrence of lagoons such as
that of Fig. 1 is quite small at low densities, the two
models should agree fairly closely in this regime. In
particular, as four particles are needed to form a
lagoon, the first three virial coefficients of both
models should be the same.

Making the substitutions (1.9) into the previous
equations, we see that the density p of particles is
given by

dlog W
dz

p=2z (1.10)
and lies between 0 and the close-packed value . It is
found that W is a continuous function of p, monotonic
increasing except at p = 4, where its derivative
vanishes and z = 1. Neglecting the density-inde-
pendent Boltzmann factor, we see that the compres-
sibility Ky is given by

l
Kt = p e (1.11)
dp
and near p = } is found to behave as
Ky ~2{91p — &1 (1.12)

Thus the system undergoes a phase transition with
continuous density and infinite compressibility, the
values of p, z, and W at the critical point being

po =1, W, = (Hi. (1.13)

Despite the simplicity of the result (1.7), its deriva-
tion is quite lengthy, involving the theory of elliptic
functions, and is given in Secs. 2~7. In Sec. 8 the
pseudo hard-squares model mentioned above is
discussed in more detail and graphs of log W and
d(log W)|dp given. It is found that the results do
approximately agree with those of the true hard-
square lattice gas at low densities (say p < 0.2), but
there are considerable differences in the transition
region and above.

zc= 19

2. THE TRANSFER MATRIX

Consider a square lattice of M rows and N columns,
and suppose it to be wound on a torus so that column
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N is followed by column 1 and row M by row 1. Then
the total number of faces of the lattice is

@.1)

Suppose all the faces are colored 1, 2, or 3 so that no
two adjacent faces are colored alike. It is convenient,
though not essential, to describe such a coloring in
ice model terms. To do this, we order the colors
cyclically (so that 2 follows 1, 3 follows 2, and 1
follows 3) and place arrows on all the bonds of the
lattice so that an observer facing along an arrow sees
the color on his right as following the one on his Jeft.
Then the four arrows at a vertex are found to satisfy
the ice condition, namely that there are two pointing
in and two pointing out.

It can then be seen that the number of down (or up)
arrows in each row of vertical bonds is the same.
Suppose there are n down arrows in each row. Then
the coloring of the faces of a row can be specified by
the color o of the extreme left-hand face and the
positions x;, Xg, * * * , x,, of the down arrows.

The general coloring of a row is shown in Fig. 2.
The color numbers increase from left to right across
an up arrow and decrease across a down arrow, and
are to be interpreted mod 3. For example, colors
1, 4, 7, 10, etc., are the same. The cyclic boundary
condition implies that colors at the extreme left and
right must be the same, and so N and n must satisfy
the relation

N, = MN.

N —2n=3J, 2.2)

where J is an integer.

Noting that the jth down arrow has the effect of
repeating colors ¢ + x; — 2jand ¢ + x; — 2j + 1 in
the otherwise increasing sequence, we can see that
the product of the activities of the colors in the row is

DX) = ¢TTUo + %+ (23

where =
£ = (z17129) 7, (2.4)
U0) = 2,2pal(z1275), 2.5)

I1+2] .

1 2 3

o)

x =1 X, x +1

. otxy | otxp
~2n+1 -2n

xn- 1, %n xnti N
FiG. 2. Coloring of a row of the lattice; the arrows lie on vertical
bonds and the numbers between are the colors of the faces. (The
second line is to be regarded as to the right of the first.)

]v'{‘N-Zn
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and the mod 3 convention, i.e.,

{(o +3) = {9, 2.6)
has been used.

The transfer matrix can now be constructed in the
same way as for the ice model,? except that it is
multiplied by a diagonal matrix with elements D(X)
and it is necessary to keep track of the color of the
left-hand face of each row. Let f,(x;, x5, "+, x,) be
the elements (corresponding to the row-coloring of
Fig. 2) of the eigenvector of the transfer matrix. Then

fand the corresponding eigenvalue A are given by

Afa(xl’ Tty Xy,)
= D(X)(“zil méa:l. : .11 g _1fo'+1(y1’ T yn)

T3 23 N
+y§ 23' ' '"y:zfm(yl, T yn)), 2.7

where ]l < x; <%, < <X, <N, fos=f,andf
is to be replaced by zero on the right-hand side of (2.7)
when two successive y’s become equal (e.g., y; =
Xy = Y)-
In the limit of M large, the partition function Z is
given by
Z~ M, (2.9)
where A is the largest eigenvalue of Eq. (2.7). Thus,
from (1.3) and (2.1),
A~w¥

when N becomes large.

2.9

3. DIAGONALIZATION OF THE TRANSFER
MATRIX

By analogy with the method of the ice!? and
similar* models, we now attempt to solve the eigen-
value equation (2.7) by trying a solution for the
eigenvector f which is the sum of products of single-
particle wavefunctions. Some consideration of the
translation symmetries of the problem suggests the
ansatz

fa(xl’ T xn) = ; Aal.-".a,. ﬁ Ga;(x;')’ (3'1)

where

xj=x;+0+] (3.2)

and the summation is over all n! permutations
®,, " ,a,of the integers 1, - -+, n. Thus there are n
single-particle functions Gy(x'),---, Gy(x') to be
determined, together with the n! coefficients A4.

The condition f,,5 = f, can be satisfied by requiring
that for each function G,(x") there exists p, such that

G (x" + 3) = PG (x') 3.3)

R. J. BAXTER

for all integers x’ and that

P1+P2++pn=0 (3.4)

Thus -the single-particle functions are plane waves
mod 3 with wavenumbers py,-**,p,, and f is
translation invariant in the sense that it is unchanged
by replacing each x; by x; + 3.

As a first step, we insert the single product f =
Gi(x)Go(xy) - - - G,(x,) into Eq. (2.7). Using (2.3),
we see that the right-hand side becomes

& TT (O xi-) — HGe)
+ ETTROIH) = Bl (39)
where x, =0 + 1, x,,, =N+n+o+1,and

H,(x) = % G,(y) + const.

y=c+2

(3.6)

However, (3.5) spuriously includes terms which arise
when two y’s are equal in (2.7). These must be sub-
tracted ; for instance, the terms coming from the case
J1 = X, =y, in the first set of summations give a
correction

—s(H g(x;)) Ga(x} + DGx{ +2)

X I'£ [H(xj-) — H(x)] (3.7)
5=
to (3.5).

Expanding each product in (3.5) gives 2" terms, of
which all but one contain either x,, x,_ ,, or two
functions H of the same variable. If n is even, the two
other terms (one from each product) reinforce one
another to give a contribution

2 Hl [E(xpH (x))] (3.8)
ol
to the right-hand side of (2.7). This is also a product of

single-particle functions and can be made to equal the
left-hand side of (2.7) by requiring that

#,Go(X) = {(X)H, (%), (39
for a.== 1, - - -, n and all integers x, and that
A=28uphs " Uy (3.10)

The constant in Eq. (3.6) may depend on , but not
on x. By comparing (2.6), (3.3), and (3.9), it is
apparent that this constant must be chosen so that

H(x + 3) = e¥%aH,(x), (3.11)



THREE-COLORINGS OF THE SQUARE LATTICE

i.e., H,(x) is also a plane wave mod 3. Equations (3.6)
and (3.9) then reduce to a cubic eigenvalue equation
determining u, and the single-particle function G,(x)
in terms of p,.

From (3.10) it is clear that A is unchanged by
permuting the single-particle functions and hence
Hy, -, 4, . Thus one can try the general form (3.1)
in Eq. (2.7) and attempt to choose p;, - * * , p,, and the
coefficients 4 so as to cancel all the remaining un-
wanted terms on the right-hand side. Since the
correction terms such as (3.7) are of the same type as
the terms in the expansion of (3.5) which contain two
functions H of the same variable, these can be made to
cancel by requiring that

Sa gV A.gp + Sp.a(X)A. .. =0 (3.12)
for all integers x, where
Sq,8(X) = H(X)Hp(x) + G,(x + 1)Gp(x + 2). (3.13)

The coefficients 4 in (3.12) differ only in that the two
successive indices « and § are interchanged.

It is also necessary to cancel the terms in (3.5)
containing x, and x/_ , . This can be done by perform-
ing a single cyclic shift of «,, - * * , «, and noting that
the terms containing x, in the original permutation
are the same as those containing x,_, in the second,

which leads to the condition

H, (0 + DA,,...a,
=H,(N+n+0+ DA, ..0. (314

for ¢ = 1, 2, 3. It can be shown that the conditions
(3.12) and (3.14) are, in fact, sufficient to ensure that
all the unwanted terms in the transfer matrix equation
cancel.

It remains to show that p,, - - -, p, and the A’s can
be chosen to satisfy these conditions. To do this, it is
first necessary to solve Egs. (3.6), (3.9), and (3.11) for
the single-particle functions. From (3.6) it can be seen
that

G(x)=H,(x —2)— H,(x—1). (3.15

Substituting this result into (3.9), using (3.11), and

setting
(3.16)

we find that three successive values of H,(x) can be
written as

H(x—1)=py, + vl(x + 1),

—3ip,
Vo = —U,€ %y

Hy(x) = ppv, — Lx — Dix + 1), (3.17)
H,(x + 1) = pv, + p{(x — 1),
while u, and », must satisfy the relation
Hava + u¥% + 3Buy, — 1 =0,  (3.18)

3119

where
3B={(1) + {(2) + {3, (3.19)

i.e., B is given by (1.5). We have used the relation
{MULB) =1, (3:20)
which follows from (2.5).
Substituting (3.15) and (3.17) into the definition
(3.13) of s, 4(x) and using (3.20) give
E(x)sa.ﬂ(x) = Uyp + g(x - l)vq,ﬂ + C(x)wa,ﬁ’

where u, 4, v, 4, and w, , are independent of x, being
given by

(3.21)

Upp = —3B’V¢ — He¥a — HpVp — Voligs
(3.22)

Ua.ﬂ =V — :uﬂ’
wa.ﬂ = .u'ava:uﬂvﬂ + V-

Using (3.18), we now find an essential and otherwise
not obvious result, namely, that

uu.ﬂ/uﬁ.a = va.ﬂ/vﬂ,a = a.ﬂ/wﬂ,a- (3.23)

Thus the ratio s, 4(x)/ss.(x) is also equal to the
common ratio in (3.23). Selecting the simplest
expression in (3.22), we can say that

sa.ﬂ(x)/sﬂ.a(x) = va.ﬁlvﬂ.a' (324)

The condition (3.12) is therefore independent of x and
can be satisfied by choosing the 4’s so that

Aal,...,a" = €p (3.25)

Usp.a;
k%59
1<j<k=<n

where ep = 1 is the sign of the permutation
Oy, * "ty 0,

Finally, the condition (3.14) must be satisfied.
From (2.2) itis apparentthato + land N + n + o +
1 differ by an integer multiple of 3; thus, using (3.11),
we obtain

Agyay = Xp [N + n)p, 14,00, (3.26)

By substituting (3.25) into (3.26) and using (3.22), it
follows that the condition (3.14) is satisfied provided
that

e W HmPg o (_yn-1 TI Yo T He (3.27)
[

=19, —
fora =1,2,---,n. « Tt
The results of this section can now be summarized:
Equations (3.16) and (3.18) define u, and v, as func-
tions of p, . Thus (3.27) is a set of n equations for the n
unknown wavenumbers p,, - - -, P.- Once these are
satisfied, the ansatz does indeed give a solution of the
transfer matrix equations, with the eigenvalue A
given by (3.10).
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It should be noted that (3.27) has solutions where
two or more of the wavenumbers p, are equal. How-
ever, such solutions should be ignored since all the
clements of the eigenvector f can then be seen to
vanish.

4. EQUATIONS FOR THE MAXIMUM
EIGENVALUE

Equations (3.16), (3.18), (3.27), and (3.10) can be
written more explicitly by defining a set of quantities

g1, ", &, such that
po = igtetira, 4.1)
Equation (3.16) then becomes
vy= —i g;l e—gm’

(4.2)

and from (3.18) it follows that g, = g(p,), where the
function g = g(p) is defined by

g* — 3Bg + 2sin (3p) = 0. 4.3)

Using (4.1), (4.2), and the condition (3.4), we can
write Eqs. (3.27) as

eisz, = (_)n—l H e—ia,',, (4_4)
g=1
fora = 1,---,n, where
e—ioa'ﬁ = Fp’a/Fm,p ’ (4.5)
and

Fa,ﬂ = ei[%zrﬁpp]ga + e"’“’aﬂ"ﬂlgﬂ. 4.6)

Lastly, using (4.1), we see that Eq. (3.10) for A4
becomes

A=2(=)1"¢/(g:82" " gn): 4.7

The problem is now to find the solution p,, -, p,
of (4.3)-(4.6) which gives the largest value of A.
Equation (4.7) suggests.that this solution is obtained
when the function g of p is chosen to be the numerically
smallest root of the cubic equation (4.3). Since B can
be seen from its definition (1.5) to be not less than one,
the smallest root g of (4.3) is a real function of p, of
period 4w, and odd. By taking the appropriate
logarithm of both sides of (4.5) and using (4.6), it
follows that 6, , = 0(p,, ps) is a real function of
P. and pg such that

0pas pp) = —0(ps. pa) = —0(—pa> —pp)- (4.8)
Using these properties, we find that (4.4) has
solutions such that the wavenumbers p,,- -, p, are
real and occur in pairs p, —p. By analogy with the
icel-? and similar* models (or by considering the case
when N 3> n), we expect the maximum eigenvalue A
to be given by taking the logarithms of both sides of
(4.4) so that

Np,=nQ2«—n—-1—->80,, 4.9
p=
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for «=1,---,n This choice of the logarithms
ensures that
4.10)

(4.11)

<p < <p,,

Pri1—a = —Pa
and gives the solution of (4.4) which has the most
closely packed distribution of distinct p, about the
origin.

5. TRANSFORMATION TO DIFFERENCE

KERNEL FORM

In all the ice-type models'2* it is found that a
transformation

4, = u(p,) (5.1)

exists such that 6, ; depends only on the difference
between u, and u,, i.e.,

0,5 = 0(u, — up). 5.2

In this case, it is by no means obvious that such a
transformation exists, but let us suppose that it does
and consider the consequences.

Equation (5.2) is equivalent to asserting that the
functions 6(p,,p;) and u(p,) — u(ps) of the two
variables p, and p, are functionally dependent, so that
their Jacobian must vanish identically, i.e.,

u'(p) —u'(g
M(r,q) (. g)| = (5.3)
op oq

where p, and p, have been replaced by p and ¢ and
u'(p) is the derivative of the function u(p).

By taking the limit of ¢4 — 0 in (5.3) and using
(4.3)-(4.6), it follows that

w'(p) = L/[B — g*(p)],

where L is an arbitrary constant. Substituting this
form for the functions #'(p) and u'(¢) back into (5.3)
and using (4.3)-(4.6), we find that (5.3) is indeed
satisfied. This establishes the required identity (5.2).

When p; = 0, it also follows from (4.3)-(4.6) that
g =0and 6, , = p,. By inverting the relation be-
tween p and u so as to regard p as a function p(u) of u,
it follows that

(5.4)

0,5 = p(u, — up). (5.5)

It therefore becomes necessary to use (4.3) and
(5.4) to express g and p as functions of u. Equation
(4.3) can be used to evaluate dg/dp in terms of g;
dividing the result into (5.4) gives

du

= =2L/i4 ~ (3B - gt (5.6)
g
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Changing to the variable x = g%, we can integrate
Eq. (5.6) by using elliptic functions (Sec. 3.147.2
and 8.11-8.15 of Ref. 5). Let a, b, and ¢ be the three
roots of the cubic equation

x(3B—x)*—4=0. 5.7

Since B > 1, these roots are real and positive and can
be ordered so that

a>b>c>0. (5.8)
Choosing

L = }(a — ot (59)

and u to be zero when p and g are zero, we find that
g is given as a function g(u) of u by

g¥u) = ac sn® (w/[a — ¢ + csn® (W],

where sn (4) is the usual elliptic sn function, with
modulus

(5.10)

k = ((“——ﬁ)—"')% (5.11)

(a — )b

p is now given as a function of u by Egs. (4.3) and
(5.10). Alternatively, Eq. (5.4) can be inverted to give

dp = h(u), (5.12)
du
where
h(u) = [B — g*w)]/L. (5.13)

6. THE THERMODYNAMIC LIMIT

Using (5.5), we can write Eq. (4.9) in terms of the
new variables u,,* * -, u, as

Npuy) = n2e —n —1) —ﬁép(ua — ug) (6.1)

fora =1, -, n It can be seen from the above that
p is a monotonic increasing odd function of u; thus,
from (4.10) and (4.11), u,, -, u, are arranged in
increasing order and are distributed symmetrically
about the value zero.

We are interested in the thermodynamic limit when
the width of the lattice becomes large, so that n,
N — oo, the ratio n/N remaining fixed. As with the
ice-type models,'-2-* we expect u,, - * * , u,, to approach
a continuous distribution along the real axis in some
interval (— @, Q), so that a distribution function p(x)
can be defined such that Np(u)du is the number of
u, lying between « and u + du. Thus the total number
of u, is

Q

n = Nf p(u) du, (6.2)
-Q

while the value of « corresponding to u, = u is

x=N f * o) du. (6.3)
-Q
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In this limit, (6.1) therefore becomes the integral
equation

u Q
pu) = 2m f p(u’) du’ — f_Qp(u — W) du' (64)

[by using the fact that p(#) must be an even function].

The eigenvalue A and hence the partition function
can be obtained from (4.7). First note that from (1.4),
(2.4), and (2.9)

N-1llog (A/28) = log Wy (6.5)

(N large). Since the g, occur in pairs g, —g, it follows
that, in the thermodynamic limit, (4.7) becomes
Q
log Wp = -—%f p(u) log g%(u) du. (6.6)
-Q
Equation (6.4) determines p(x) in terms of the
known function p(u) and the constant Q. Q can then
be determined in terms of »/N from (6.2) and W,
evaluated from (6.6).
Differentiating (6.4) and using (5.12) give

Q
h(u) = 2mp(u) —J_Qh(u —u)p(uydu'. (6.7)

From (5.10), (5.13), and the theory of elliptic func-
tions,® it can be seen that #(u) is an even function of
u, of period 2K, where K is the complete elliptic
integral of the first kind of modulus k. Thus, when
Q = K, Eq. (6.7) can be solved by Fourier series.

h(u) is also periodic with period 2iK’, where K’ is
the complete elliptic integral of the first kind of
modulus

[from Eq. (5.11)]. The only singularities of A(x) in the
complex ¥ plane are simple poles at

(6.8)

u = it + integral multiples of 2K and 2iK’, (6.9)

where
sn (i7) = i[(a — c)/c]. (6.10)
From the cubic equation (5.7), it follows that
a, b, and c satisfy the dimensionless relation
at = bt + ¢t (6.11)
Using this result together with (5.11), (6.10), and the
addition theorems for elliptic functions (8.156) and
(8.157) of Ref. 5, we find that
T = %K' (6.12)

Also, using (5.9)-(5.11) and the differentiation
formulas for elliptic functions, we find the residues of
g%(u) at +it to be

Res [+ir | g*@)] = %iL. (6.13)
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The coefficients of the Fourier series for h(1) can
now be found® by integrating around a rectangle in the
complex u plane with vertices at —K, K, K + 2iK’,
and —K + 2iK’ and by using Cauchy’s residue
theorem. This gives

< e
huy=2 y ——w—
() Km==z~oor_m+1+m

izmu/K

. (6.14)

where

—2rK'/3K

r=e (6.15)

Equation (6.7) can now be solved by Fourier series to
give
© eirmu/K

P(u)_EEm—z—oor +r -m

Substituting the expression (6.16) into (6.2), we find
that

(6.16)

n=3iN (6.17)

when Q = K. Thus there are as many up arrows as
down arrows in each row of the lattice. Intuitively, we
expect this to be the case which gives the maximum
eigenvalue A of the transfer matrix and, hence, the
correct values of Wand Wy, .

To evaluate Wy, we first obtain the coefficients of
the Fourier series for log g®(«) by integrating around
the above mentioned rectangle in the complex u plane
and taking account of the branch cuts on the segments
[0, ir] and [2i7, 2iK’] of the imaginary axis.” This
gives

4nK' 2 (1 ~ r*™) cos (mmu/K)
lo =———2
g =—"g =23 m(l + ™ + 2™
(6.18)
Using (6.16) and (6.18) in Eq. (6. 6) we find that
K: © — pim
log W,
W= ot 2 rz"‘)(l P
(6.19)

Equation (6.19) is the essential result of this and
the four previous sections. Together with (5.7), (5.8),
(5.11), and (6.15) it defines W, as a function of the
dimensionless parameter B introduced in (1.5).

7. ELIMINATION OF ELLIPTIC FUNCTIONS

The above working leans heavily on the theory of
elliptic functions. It is remarkable that the series in
(6.19) can be summed so as to completely eliminate
these functions and integrals, giving simply an alge-
braic expression for Wy, in terms of the roots @, b, and
¢ of the cubic equation (5.7).

To show this, we generalize (6.19) by multiplying
the summand of the series by cos (wmu/K). The
summand can then be written as the sum of two terms

R. J. BAXTER

to give
log Wy = lim [Sy(u) + Sy(w)), (7.1)
where w0
_7K' 31— ') cos (mmu/K)
Si) 3 +mz 1 m(1 + r*™) ’ (72)
27K’ 2 (1 — r*™) cos (wmu/K)
Syu) = ~ T .
®) 9K mz=1 m(l + r™ 4 r’™) (7.3

By comparing (6.18) and (7.3), it is apparent that
Sy(u) = 4 log g*(w). 7.4

Also, using the series expansions for logsn? (i)
(8.146.20/23 of Ref. 5), one finds that

Sy(u) = —6logk
3 2
-~ %Zﬂ ‘gologsn2 [fu + 3«K + 38iK']. (1.5)

By substituting the expressions (7.4) and (7.5) into
Eq. (7.1) and using (5.10) and the periodicity and
symmetry properties of sn (u), it follows that

__dlac/(a — c)]i

- ’ (7.6)
K (mmamanal®
where
m =sn(it), n,=sn(K+ ir),
= sn (}K), 7, = sn (K + i7). (1.7

The numbers 7, -, n, can be evaluated by
using (5.11), (6.10), and the addition theorems for
elliptic functions, giving

7e = (blo)},
(5 — M1 — K*nins).
(1.8)

Using (5.11), (6.8), and (6.11), we can simplify these
expressions to give

m = il(a — o/l
= — Kk, ot =

4abc*
[(a — ofa)t — [(b — o]t

The formula (1.7) quoted in the introduction can
now be established by noting that, if B is parameter-
ized according to (1.6), the roots of Eq. (5.7) are

c = (1 — 9r2)},

(7.9)

WD =

a=}c(3y + 1) (7.10)
b= 1c3y — 1)?
where
1 — 2\
= ) 7.
4 (1 — 9t2) (7.11)

Substituting these expressions into (7.9), we obtain the
result (1.7).
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8. HARD SQUARES MODEL

Having evaluated the partition function for the
general 3-coloring problem, let us now specialize to
the case when color 1 is regarded as a particle and
colors 2, 3 as forming a background. Thus we set

8.1

where z is the activity of the particles. As was discussed
in the introduction, this system is reminiscent of the
hard-square lattice gas.

Zy =12, Zy=123=1,

From (1.4),
W= z2W,, (8.2)
while from (1.5) B is now given by
B = (1 + 22)/(32%). 8.3)

It is easy to see that one of the roots a, b, and ¢ of
Eq. (5.7) is z-}, the others therefore being given by a
quadratic equation. Owing to the requirement that
a, b, and ¢ be ordered so that a > b > ¢, two cases
arise which must be discussed separately.

A.0<z<1,0<p<}
When z < 1, it is found that the roots of (5.7), in
their correct ordering, are

a=z¥(+ 10

b=zt (8.4)
c=z¥(— 1),
where
e = (1 + 82)%. 8.5
Using these results in (7.9) and (8.2) gives
W= (e—D/et[e— 3 — X}, (8.6)
where
X =33 - ol + e}, (8.7

Since Z ~ W™t is the grand-partition function of
this system, log W is the grand potential PlkyT (P
being the pressure, ky Boltzmann’s constant, and T
the temperature). Thus the density p of particles per
lattice site (or face) is

~ dlog W

ra (8.8)

Substituting the expression (8.6) into (8.8) and using
(8.5) and (8.7), we find that

p = (e — D/R2e(1 + 2X)].

By inspection of these equations, it can be seen that,

8.9
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as z increases from 0 to 1, p varies from 0 to %, while
W goes from 1 to the ice-model value 653

It is of some interest to consider W as a function of
p- Eliminating € and X from Egs. (8.5)-(8.9), we find
that W2 is the positive root of the equation

W4 — p2(4 + 8u — 2TuY)WE — 16us = 0,

where

(8.10)

p=1-—p. (8.11)

From this result the virial expansion for the grand
potential can be obtained, namely

log W= p + 24p* + 43p° + 1}p*

— 314p5 — 1793p8 — -+, (8.12)

Comparing this with the corresponding expansion for
the hard-square lattice gas,® we find that the first three
coefficients are indeed the same, as expected.

From (8.10) it can be seen that the only singularities
in the complex p plane of the function W? are branch
points at the four points

p = 3(/2 + 11[(/2) + i],
HW2) = 12 11,

while the only zero is at p = 1. Thus, log W is analytic
in a circle, with center at the origin, of radius [(\/2) —
11/y/3 =~ 0.239. This radius is therefore the radius of
convergence of the virial expansion (8.12).

(8.13)

B.z>1,3<p<%}

When z > 1, the roots of (5.7) are still given by
(8.4), except that now b and ¢ must be interchanged to
ensure the correct orderinga > b > c. Thus, ¢ = z-3,
and from (7.10) the parameter ¢ is the positive root
of the equation

z= (1 —-9%)7, (8.14)
From (1.7) and (8.2) it follows that
W2 = 64/[27(1 + 1)3(1 — 31)], (8.15)
and (8.8) now gives
p= (433 + 31). (8.16)

Thus, in this case, z and W? are rational functions
of z and p. In particular, eliminating ¢ from (8.15) and
(8.16) gives

W2 =41 — p)¥(1 — 2p). (8.17)

From these results it can be seen that as z increases
from 1 to oo, ¢ goes from O to }, p from } to its
close-packed value %, and W from (£)? to .
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C. Nature of the Transition

In Figs. 3 and 4 the grand potential log W and its
derivative with respect to density are plotted as
functions of p for the physically permissible range
0 < p < % It can be seen that log W is a continuous
function of p, monotonic increasing except at the
point p = %, where the algebraic form of W changes
from (8.10) to (8.17). Expanding both forms in Taylor
series about p = }, we find that

log W = 3log § — 36(3p — 1) + O{(3p — )%,
(8.18)

where
0=1

= —1

if p<4,
if p>% (8.19)

Thus the derivative of log W vanishes at the critical
point p =4, and the isothermal compressibility,
given by (1.11), becomes infinite, being given to first
order by (1.12).

Also shown in Fig. 3 are the numerical estimates of
log W for the hard-square lattice gas.® It can be seen
that the two models agree at low densities as expected,

T

r T

0.8 I

log W

0.4 T

0 1 L | L
o] o2 Q5
P
F1G. 3. Equation of state of (a) the hard square model of this
paper and (b) the true hard-square lattice gas.® The circles indicate
critical points.
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[¢1:]

FiG. 4. Plot of d(log W)/dp, which is proportional to the inverse
compressibility, for the hard square model of this paper.

but that there are considerable differences in the
transition region and above.

It is interesting to note that both (8.10) and (8.17)
give functions W of density that are analytic through-
out the entire permissible range 0 < p < 4. However,
each applies only in its appropriate interval, [0, ]
and [}, 3], respectively, and one is not the analytic
continuation of the other.
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