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Starting with the noncommutation requirements among different components of a conserved source 
tensor for a massive spin-2 field, we discuss the resulting noncom mutation requirements between the 
source and the field variables, and the field dependence of the source that this necessitates. 

1. INTRODUCTION 

In theories involving vector fields and currents, an 
important consideration is the noncommutation 
among certain components of the currents and its 
relation to the field dependence of the currents.1- 6 

For instance, the vacuum expectation value (VEV) of 
the equal-time commutator (ETC) [jo(x, t), Ny, t)] 
cannot vanish in a Lorentz-invariant theory with a 
positive-definite metric. This in turn implies that 
(jA(x)/(jAz(Y) must be nonvanishing, where jix) is the 
source of the vector field A!'(x). 

In this paper we briefly discuss the corresponding 
requirements for the sources of massive spin-2 fields 
and their field dependence. These requirements are 
important in theories involving spin-2 fields, e.g., in 
attempts to formulate tensor-meson dominance of 
matrix elements of the energy-momentum tensor by 
spin-2 mesons. 7 The related question of the metric 
dependence of the stress tensor for a system involving 
matter fields coupled to the gravitational field has been 
discussed in detail by Boulware and Deser.s 

In Sec. 2, we write down the noncommutation 
requirements among different components of the 
source tensor J/l v' In Sec. 3 we note the noncommuta­
tion requirements that this implies between the source 
J/lV and the field variables, and the field dependence of 
the source that this necessitates. We indicate how the 
explicit field dependence can be determined in 
specific models. 

2. NONCOMMUTATION REQUIREMENTS 
AMONG SOURCE COMPONENTS 

We consider a massive spin-2 meson field U!'v 
coupled to a divergenceless source tensor J/l v: 

0/lJ!'v = O. (2.1) 

We first note the noncommutation requirements 
following from (2.1), Lorentz invariance, and a 
positive-definite metric. 

For a divergenceless, symmetric tensor J/lV' we may 
write the decomposition 

J!,vCx) = i!,vCx) + td/lv(o)j(x), (2.2) 
where 

(2.3) 

is the trace of J/l.(x) and where i/lv(x) is traceless as 
well as divergenceless. In (2.2), we have used the 
notation 

d"v(o) = 'YJ!'v - o!'ov( 0 2)-1, (2.4) 

where 'YJ/lV is the Minkowski metric (I, -1, -1, -1). 
As usual, we use fl and y to denote Lorentz indices 
0,1,2,3, and i,j, k, and lthe spatial indices. 

We can write, in general, 

(01 [i/lv(x), J;.iy)] 10) = 'J)/lV,;.a<o)g(x - y), (2.5) 

where g(x - y) is a Lorentz-invariant function of the 
4-vector (x - y) and 

'J)/lv,).aCo) = t(d!,;.dva + d!'adv;.) - td!,yd;.a. (2.6) 

It follows that 

(2.7) 
and 

(01 [J!,v(x), J).a(y)] 10) 

= (01 [i/l.(x), i).a(y)] 10) 

+ td!,v(o",)d).ioy) (01 [j(x),j(y)] 10). (2.8) 

The following results are then obtained. 

Theorem 1: If 
t (01 [Joo(x), JkO(y)] 10) = 0, (2.9) 

then J/lvCx) 10) = O. (Here and in the following, 
commutators of operators with arguments x, y, etc., 
denote ETC's.) 

Theorem 2: If 

(01 [J ~ix), J mn(Y)] 10) = 0, 

then J/lv(x) 10) = o. 
(2.10) 
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For a local source operator Jpv(x), the result 
Jpv(x) 10) = 0 would imply that Jpv(x) = 0,9 which 
would mean that the relations (2.9) and (2.10) are not 
compatible with a theory with a nontrivial interaction. 

Proo!, The proof of Theorem 1 is direct. For in­
stance, suppose the relation (2.10) holds. Operating 
with 

o 0 0 

OXk OYm oYn 

and using (2.1) and (2.8), one obtains 

(01 [ooj:o(x), o~joo(Y)] 10) 

+ t (01 [oov2,t(x), O~V2,(y)] 10) = 0, (2.11) 

where '(x) = (02)-1(X).10 From (2.11), it follows 
that 

(01 jJo(x)PPoo(Y) 10) + 11- (01 ,t(X)P2pgP2,(y) 10) = O. 

(2.12) 

Positive definiteness now implies that 

joo(x) 10) = 0, '(x) 10) = 0 (2.13) 

and therefore that 
Joo(x) 10) = 0, (2.14) 

which leads to 

(2.15) 

in a Lorentz-invariant theory. Theorem 2 may be 
proved similarly. 

Theorems 1 and 2 are contained in the spectral 
representations written by Boulware and DeserB for 
the VEV's of the ETC's in (2.9) and (2.10) for a 
divergenceless, symmetric tensor. We have here shown 
how they may be obtained directlyll; we shall use 
them to derive the results of the next section. 

Another result that may be obtained similarly is the 
following: 

Theorem 3: The vacuum expectation value of the 
ETC 

[JroCx), j(y)] 

cannot vanish unless j(y) 10) = o. 
(2.16) 

Proo!, If this VEV did vanish, one would obtain 

(0;)-1 (01 [V;oo/(x),j(Y)] 10) = 0, (2.17) 

which gives 

(01 {/(x)P2Poj(y) + j(y)P2poj(x)} 10) = O. (2.18) 

Positive definiteness then implies that j(x) 10) = o. 

A difference between the results obtained here, for 
Jpv and those holding for a vector current jp is that, 
whereas the latter follow in the same way for a non­
conserved vector current, there is an important 
difference between a divergenceless source tensor Jpv 
and a source tensor with nonvanishing divergence. 

For a source tensor Jpv for which opoJpv(x) = 
x(x) =/= 0 and J,/(x) = j(x) =/= 0, there are two scalar 
operators x(x) and j(x) contained in the decomposition 
of Jpv(x). Since the VEV (Oil (x)j(y) 10) would, in 
general, not vanish and since its sign is not definite, 
results such as those noted here will not follow 
directly for a source tensor with a nonvanishing 
divergence opo,JpvCx). 

3. FIELD DEPENDENCE OF THE SOURCE 

We now examine the implications of the non­
commutation properties of Jpv(x) discussed in the 
last section for the field dependence of the sources. 

We consider a massive spin-2 field described by the 
field operators Upv(x) and n ;'pv(x) , interacting with a 
divergenceless source Jp/x) , and described by the 
following equations12-16 : 

opn
p

pv - i(opnv + ovnp) - !1]/lvoifr;. - n;.) 

= tm2(Upv -1]/lVu) - !gJ/lV> (3.1) 

(ll" / - tt5~frV) + (n p
;." - !t5~fr/l) - 1]/lvn;. 

= o"Wpv - !t5/(oaWVC') - !t5/(oaWpa), (3.2) 

where 

wpv == Upv - !1]/lVu, np == n""/I' n
p == n/l"" , 

(3.3) 
and 

(3.4) 

Equations (3.1)-(3.4) lead to the following equations: 

OII(UpV -1]pvu) = 0, (3.5) 

n"pv = UOpU;.v + ovU;'P - o"Upv], (3.6) 

-g. . J" 
u = -2 J, J == '" 

3m 
(3.7) 

(0 2 + m2)Upv - [OIlOV + m21]IlV]u = gJllv ' (3.8) 

From Eqs. (3.1)-(3.8), we may separate out the 
following constraint equations17 : 

gJoo = OmOjU~j - (iV2 
- m2)Umm , (3.9) 

gJkO = m2UkO - 20mn?nk + 2ok TI':nm. (3.10) 

In Eq. (3.9), U!j denotes the transverse part of Umi : 

(3.11) 
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From these equations, we may derive the following 
noncommutation requirements of the source with the 
field variables: 

Theorem 4: If 

and 
(01 [JZo(x), U~b)] 10) = 0 

(01 [JZo(x), U mm(Y)] 10) = 0, 

then it follows that l"v(x) 10) = o. 

(3.12a) 

(3.12b) 

This is obtained by using Theorem 1 and the 
constraint equation (3.9) to express 100 in Theorem 1 in 
terms of U m! . 

Theorem 5: If 

t (01 [J kix), U mm(Y)] 10) = 0 
and 

(01 [J~o(x), TI~b)] 10) = 0, 

then l"vCx) 10) = o. 

(3.13a) 

(3.l3b) 

To obtain this, we first use Theorem 1, together 
with (3.10), to obtain the following result: If 

t (01 [J oo(x), UkO(Y)] 10) = 0 
and 

(01 [JJo(x), TI~b)] 10) = 0, 

then l"v(x) 10) = O. 
Using Lorentz covariance, we may write 

(01 [J~.(x), (U,lu(Y) -1],luu(y»] 10) 

= ~"v.,lu(O)FI(X - y) + d"v(o)dA,/o)F2(x - y), 

(3.14) 

where FI and F2 are Lorentz-invariant functions of the 
4-vector (x - y). From (3.14), it is seen that the rela­
tion 

(01 [J~o(x), UkO(y)] 10) = 0 

implies (3.13a). Theorem 5 follows. 

Theorem 6: If 

and 
(3.15) 

(01 [J~o(x), (UklY) -1]k!U(Y»] 10) = 0, (3.16) 

then l"v(x) 10) = o. 

To prove this, we use Theorem 2 and the constraint 
equation (3.10) to show that, if (3.15) holds and if 
(01 [lZ,(x), U mo(Y)] 10) = 0, then l"v(x) 10) = O. Using 
(3.14), we then obtain Theorem 6. 

We finally note the following result: 

Theorem 7: If 

(01 Vex), UkO(Y)] 10) = 0, (3.17) 

then j(x) 10) = O. 

Proof Using (3.14) and (3.7), we can show that 
(3.17) implies that 

(01 [JZo(x),j(y)] 10) = O. (3.18) 

Theorem 3 then leads to Theorem 7. 

The noncommutation requirements between the 
source and field may be used for obtaining information 
about the form of the field dependence of the source. 
For instance, we may write the spectral representation 

(01 [J~v(x), J ,luCY)] 10) 

= LXldS[a2(S)~"V'A'/O) + ao(s)d"v(o)d;.,/o)].~(x - y, s) 

(3.19) 

and evaluate the spectral functions in terms of a 
truncated sum over intermediate states. 

We then obtain 

= - g2 f ds 3aO(s}Oko(x - y). 
m s 

(3.20) 

Expressing UOk in terms of the dynamical variable 1TiZ , 

+ g2(JOk - ~ OkOmJom) , (3.21) 
m 3m 

we may obtain from (3.20) the relation 

(01 [lex), Oz (1TkZ(Y) - 3~41]k!a;Om1T;m(Y») ] '10) 

-2g .t 
= -2 (01 [j (x), OkOmJom(Y)] 10) 

3m 

-g f ds 2 = -2 - ao(s)V' OkO(X - y), (3.22) 
3m s 

which constrains the dependence of j(x) on Ult(x). 
We remark that Eq. (3.22) may be written as a 

differential equation for the function 

o OJ(x) 0 
( loUT ( ) 1 ), 

3m Y 
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which could, in principle, be solved in particular 
models to find the VEV of this functional derivative. 

We finally note that, in a Lagrangian theory, care 
must be taken in relating the source tensor ]/lv to the 
interaction terms in the Lagrangian. For instance, the 
interaction term in the Lagrangian cannot be merely 
of the form U/lVj/lV, with j/lv taken as a divergenceless 
tensor constructed from a set of matter fields 4> such as, 
for instance, the stress tensor for the field 4>. Such an 
interaction term cannot lead to a source j/lV in the field 
equations that would satisfy the field-dependence 
requirements; further, this interaction term would 
make j/lv nonconserved. 

In this paper we have examined the constraints on 
the field dependence of the source following because 
the source is divergenceless. Further constraints are 
imposed by the hypothesis of a field-source identity?; 
these will be discussed elsewhere. 

We hope to examine the explicit nature of the field 
dependence in particular models in a separate work. 
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1. INTRODUCTION 
A class of unitary irreducible representations of 

the group 0(4,2) [50(4,2) extended with parity] 
have found important applications in the dynamical 
problems in atomic and particle physics (Sec. 7). The 
problem of reduction of these representations with 
respect to the two chains [given in the abstract or 

in the Eqs. (2.5) and (2.6) below] arise in these 
applications, and is also of mathematical interest. 
The purpose of this paper is to give an algebraic 
characterization of the class of representations 
("representation relation"), and to present the rather 
remarkable features that occur when these representa­
tions are reduced according to the above chains. In 
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Sec. 6 we establish the equivalence of these repre­
sentations with those obtained by means of boson 
creation operators (oscillator representations). 

2. CHARACTERIZATION OF SO(4,2): 
REPRESENTATIONS 

A. Notations 

The following notations are used for SO(4, 2): 
The generators of SO(4, 2) are 

SA[J, A,B,C=5,0,1,2,3,4. (2.1) 

They obey the commutation relations 

[SAB, SCD] 

= -i(gACSBD + gBVS.W - gIWSAD - gADSBd, 

(2.2) 

SO(4, 2)501234 ::::J SO(4, 1)01234 ::::J SO(4)1234 

::::J SO(3b3' (2.6) 

Although there are two distinct SO(4, 1) subgroups, 
it is sufficient to consider in the reduction one of 
them; the other reduction is algebraically identical to 
this one. 

C. Algebraic Relations which Follow from the 
Representation Relation (2.4) 

From Eq. (2.4) it follows immediately that 

iSABSAB = -3a, (2.7) 

so that a can only be real and is essentially the quad­
ratic Casimir operator of SO(4, 2). From (2.4) and 
the definition (2.3) it follows further that 

with g55 = +1, goo = +1, gll = -1, g22 = -1, {rb' rc} + {Sab' sac} = -2agbC' a, b = 0, 1,2,3,4. 
g33 = -1, and g44 = -1. We define (2.8) 

ra =S5a, a=0,1,2,3,4, (2.3) 

and use the letters a, b, c, dfor the indices 0,1,2,3,4. 
There are two SO(4, 1) subgroups 

SO(4, 1)s"" and SO(4, lk.s~p' c(, ~ = 1,2,3,4. 

We indicate the generators of a subgroup as subscripts. 
We use the letters C(, ~, y, ... for the indices 1,2,3,4. 
SO(4) is generated by S~p. For the indices 1,2, 3 we 
use the letters i,j, k, .... SO(3) generated by'Sij is 
the rotation group. For the indices 0, I, 2, 3 we use 
the letters fl, 'II, 0, .... SO(3, I)sllv generated by SIlV 
is the Lorentz group. There is another SO(3, I) 
subgroup: SO(3, 1)rs. For the indices 5, 0,1,2,3 
we use the letters $, '1):' " .... There is one SO(3, 2) 
subgroup SO(3, 2)s~~. 

B. Representation Relation 

The first problem solved in this paper is to find all 
unitary irreducible representations of SO(4, 2) which 
fulfill the additional condition (representation rela­
tion)1 

{SAB' SAd = -2agBc, (2.4) 

where a is a number. It will turn out that only for 
special values of a are there nontrivial representations. 
Our task is therefore to determine the possible values 
of a and to give a complete classification of the 
corresponding irreducible representations. 

The second problem solved is to reduce the repre­
sentations characterized by (2.4) according to the 
reduction chains 

SO(4, 2)501234 ::::J SO(3,2)s0123 ::::J SO(3)123 

@ SO(2)50' (2.5) 

Equation (2.7) can be rewritten as 

rbrb + iSabsab = -3a, (2.9) 

and from (2.8) we obtain 

rbrb + Sabsab = -Sa, 

so that (2.9) and (2.10) give J 
iSabsab = 2a 

and 

(2.10) 

(2.11) 

(2.12) 

Thus, the second-order Casimir operator of the 
subgroup SO(4, 1)01234 is a constant. We must also 
evaluate the fourth-order Casimir operator 

w = _~_8abede8 fghiS S S S . 
G 4 a be de fg h. (2.13) 

of SO(4, 1)01234 for the representations characterized 
by (2.4). A lengthy but straightforward calculation 
using (2.2) and (2.8) gives 

W = a(l - a), (2.14) 

i.e., also a constant. 
In a similar way we evaluate the second- and 

fourth-order Casimir operators of the subgroup 
SO(3, 2)50123 and obtain 

and 
iSg~sg~ = -2a, $,1) = 5,0,1,2,3, (2.15) 

-PI = -6~8Kg~'E8"r~·'·"Sg~S~ESg.~.S,f' 
= a(1 - a). (2.16) 

Finally, we derive two relations involving the 
SO(4)~p @ SO(2)ro and SO(3, 1)IlY @ SO(l, 1)r. sub­
groups. From (2.8) we obtain 

(2.17) 
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and with (2.11) 

Sao sao + tS~fJS~fJ = -2a, IX, (3 = 1,2,3,4. (2.18) 

We find 

r02 = tS~fJS~fJ + a. (2.19) 

Similarly, from (2.4) we have 

so that 
{S4g, S\} + {Sq, S'q} = -2aggq (2.20) 

r4
2 

- S'5S'5 = a. 

From this and (2.15) we obtain 

rl = -a - tSllvS'lV. (2.21) 

3. REDUCTION WITH RESPECT TO SO(4,1)01234 

According to (2.11) and (2.13), both the second­
and fourth-order Casimir operators of the subgroup 
SO(4, 1)01234 are constants for representations of 
SO(4, 2) characterized by (2.4). We suspect therefore 
that these irreducible representations of SO(4,2) 
wilI remain irreducible also under the subgroup 
SO(4, 1). However, so far we only know that the 
irreducible representations into which it reduces must 
have the same values of the second- and fourth-order 
Casimir operators. If the irreducible representations 
remain irreducible under SO(4, 1), then the SO(4) ::::> 

SO(3) ::::> SO(2) basis of SO(4, 1) is already a com­
plete basis of the SO(4, 2) irreducible representation. 
We shall therefore investigate this point, making 
use of the complete classification of the irreducible 
representations of SOC 4, 1) given by Newton2 and 
by Dixmier.3 

The irreducible representations of SO(4)1234 are 
characterized by two numbers (ko, n), where Ikol is 
integer or half-integer and n is a natural number.4 
These two numbers are related to the values of the 
Casimir operators by 

tS~fJS~fJ = k0
2 + (Ikol + n)2 - 1, 

it;~fJYOS~fJSyO = ko{lkol + n). (3.1) 

From (2.19) and (3.1) we see that 

spectrum f02 = a-I + k0
2 + (Ikol + nY", (3.2) 

so that the spectrum of r 0 (up to a sign) is deter­
mined by the spectrum of SO(4)1234 in the irreducible 
representation of SO(4, 2). We shall now compare 
our irreducible representations characterized by 
(2.11) and (2.14) with the complete list of irreducible 
representations of SO(4, 1) of Newton2 and as 
corrected by Dixmier.3 For this purpose we divide 
our representations into subclasses: 

(1) a = 1. Then W = 0 [Eq. (2.14)], and Q == 
-iSabsab = 2. This is a class I representation of 

Newton,2 and its reduction with respect to SO(4) is 
given by 

co 

1(a=1) ~ ~ EB (ko = 0, n). (3.3) 
80(4) n=1.2.3··· 

There are no other representations in other classes 
with this value of a. 

(2) a = O. Then W = 0 and Q = O. There is one 
class II representation with these values of Wand Q 
and with the SO(4) reduction 

00 

II(a=o) ~ '" ri\ (k 0) ~ d;i 0= ,n, 
80(4) n=2.3.4"· 

(3.4) 

and there are representations in the class IVa and 
IVb (which were not in the original listing of Newton 
and have been later added by Dixmier) with the 
reductions 

co 

IV~a=o) ~ ~ EB (ko = -1, n), (3.5) 
80(4) n=1.2.3"· 

00 

Iv~a=o) ~ .2 EB (ko = +1, n). (3.6) 
80(4) n=1.2.3·" 

Finally, there is a further representation of SOC 4, I) 
with Q = 0, W = 0, i.e., a = O. This is the class III 
representation,2 with S = I, with the reduction 

III(a=o) ~ ~ EB (ko = -1, n) EB (ko = + 1, n) 
80(4) n=1.2.3·" 

X n=~3 ... EB (ko = 0, n»). (3.7) 

(3) 0 < a < 1. Then W > 0, 0 < Q < 2. There is 
a class III representation of this kind whenever a is 
such that 

a(1 - a) = S(S + 1)2a + (S - I)S(S + 1)(S + 2), 

S = t, 1, t,··· (3.8a) 
and 

2a> t - (S + t)2, for S = integer, 

2a > t - (S + t)2, for S = half-integer. (3.8b) 

Equation (3.8a) can be satisfied with a real a only for 
two values of S: 

S = t, a = ! or a = -t, 
S = 1, a = -3 or a = O. (3.9) 

All these values are excluded-the first one (S = t, 
a = 1) by (3.8b). Consequently, there is no class III 
representation in the range 0 < a < 1. 

There are, however, other representations of SOC 4, 1) 
with the eigenvalues of Q = t and W = -{s' i.e., 
with a = 1 in this range. These are representations 
in the class IVa and IVb (which were also not in the 
original listing of Newton, but were later added by 
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Dixmier). Their reduction is 

co 

Iv~a=l) =::::::? L EEl (ko = -t, n), 
80(4) n=1.2.3"· 

IVb"=l) ~ .2 EEl (ko = +t, n). (3.10) 
80(4) n=1.2"· 

(4) a> 1. Then Q > 2 and W < 0, and there are 
no unitary irreducible representations of SO(4, 1) 
with these values of Q and W. 

(5) a < 0. Then Q < ° and W < 0. These repre­
sentations can only be of class IV, and there is a class 
IV representation of this kind whenever a is such that 

2a = -t(t - 1) - (S - 1)(S + 2), 

a(1 - a) = -t(t - 1)S(S + 1), (3.11) 

where 
S = t, 2, t, 3, ... 

and 
0< t ~ S. 

From (3.11) we obtain S = t; hence the only 
values of a for which there are unitary representations 
of SO(4, 1) of class IV are 

a = I - 52, 5 = t, 2, t, ... , 
or 

a = -t, -3, -~;l-, . . . . (3.12) 

The reduction of these representations reads 

2 00 

Iv~a=1-8) ~ .2 EEl (ko = -S, n) (3.13) 
80(4) n=1.2.3"· 

and 
2 00 

Iv~a=1-8 ) ~ .2 EEl (ko = S, n), 
80(4) n=1.2.3"· 

S = t, 2, t, .. '. (3.14) 

Herewith we have obtained a complete classifica­
tion of irreducible representations of SO(4,2) 
characterized by the additional representation rela­
tion (4). Collecting all the cases, we see that the 
spectrum of a is 

a = I - 52, 5 = 0, t, I, t, 2, .. '. (3.15) 

For 5 = ° (a = I) there is only one representation 
of SO(4, I); hence the 50(4,2) representation 
remains irreducible when restricted to the SO(4, I) 
subgroup. This fact is very well known. For S = %,2, 
t, .. " a = -t, -3, -'!.l-,"', there are two 
SO(4, I) representations for the same value of S 
[Eqs. (3.13) and (3.14)], and the question arises 
whether they belong to the same irreducible repre­
sentation of 50(4,2) or whether they belong to 
inequivalent irreducible representations of 50(4,2); 
in the latter case 50(4,2) would again remain irre­
ducible under 50(4, I). These two representations of 

SO(4, 1)01234 differ in the sign of ko' Now there is no 
operator in 50(4,2) which changes the value (in­
cluding the sign) of ko. First of all, SOa does not 
change ko, because 50. is a generator of SOC 4, 1)01234; 

then S5a is an 50(4) vector operator equivalent t05 

So. and consequently does not change ko; finally, 
S50 commutes with all of 50(4). Thus, 

(3.16) 

is an 50(4,2) invariant. Hence for each value of 
5 = %, 2, t, 3, ... there are two inequivalent repre­
sentations of SO(4, 2), 

(5, sgn ko = -1) with the reduction (3.13), 

(5, sgn ko = +1) with the reduction (3.14), 

and both of these representations remain irreducible 
under SO(4, 1). 

For 5 = t, there are two SO(4, 1) representations: 
(S = t, ko = -t) and (S = t, ko = +t) [Eqs. 
(3.10)]. These two representations of SO(4, 1) must 
extend-if they extend at all-to inequivalent repre­
sentations of SO(4, 2). Now in these representations 
the relation a = 1 - k 0

2 is fulfilled, so that by (3.2) 
we are led to a correct spectrum of r o' And because 
r 0 is the only generator that lies outside SO(4, 1), 
we have no further restrictions, from which we con­
clude that these two representations extend to SOC 4, 2) 
and remain irreducible under SO(4, 1). 

For S = 1, there are four SO(4, 1)01234 representa­
tions: 

(5= l,ko=O), (S= l,ko= -1), 

(S~I,k.~+I), (S~I'k.~ _~). 
By the same argument as used for the 5 = t case, we 
conclude that these representations of SO(4, 1) must 
extend, if they extend at all, to inequivalent repre­
sentations of 50(4,2). However, now the representa­
tions 

do not extend to a representation of 50(4,2). This 
follows from (3.2) and the fact that the difference of 
two eigenvalues fl of r 0 must be an integer. For the 
case a = 0, ko = 0, we would obtain from (3.2) 

fl = ±(n2 - l)t, n = 2, 3,4, ... , 
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n= I n=2 n= 3 n=4 and 

1 - a = S2 = k0
2

• (3.18) 
(0) Each of these SO(4, I) representations not only 

n=1 n= 2 n=3 

(b) 

n= I n=2 n=3 

(c) 

FIG. 1. Multiplicity patterns of SO(4,2) representations. Every 
SO(4) irreducible representation (IR) that occurs in one repre­
sentation of SO( 4, 2) is represented by a column of boxes, each 
box representing the SO(3)8, representation .wh!ch is contained 
in this SQ(4) IR. Solid lines between the boxes mdlcate the nonzero 
matrix elements of SSi and So, that transform between the SO(3) 
representations; a broken line indicates the nonzero matrix ele­
ments of S54 and S04' and a dotted line indicates the nonzero 
matrix elements of S4i' The first number in each box gives the 
eigenvalue f/, of r 0 [Eq. (3.\9)]: (a) the representation (S = 0, 
ko = 0)+; (b) (S = \, ko = -J)+ and (S = \, ko = +J)+; (c) 
(S, ko = +S)+ and (S, ko = -S)+, S = t, 2, t, .... For the IR's 
(S, sgn k o)- the reduction is the same as for IR's (S, sgn ko)+' only f/, 
has to be replaced by -f/, in each box. 

so that p cannot change in integer steps. For the same 
reason also the representation 

is excluded. The two remaining ones, 

(S= l,ko= -I) and (S= l,ko= +1), 

extend to inequivalent representations of SO(4, 2) 
and remain irreducible under SO(4, 1). There is a 
fourth irreducible representation of SO(4, 1) for 
which a = 0; this is the I-dimensional trivial represen­
tation SO(4, 1) --+ 1 which has the "SO(4) reduction" 

(s = I k = o)trivial -----+ (k = 0, n = I) 
, 0 80(4) 0 

-----+ (j = 0)-----+ (j3 = 0). 
80(3) 80(2) 

To summarize, in all the representations (S, ko = 
±S), S = 0, t, 1, t, t,··· , we have 

(3.17) 

extend to SO(4, 2), but they also exactly extend to two 
inequivalent irreducible representations of SO(4, 2). 
This additional doubling is due to the sign of ro: If 
we insert (3.18) into (3.2), we find 

spectrum ro = p = ±(S + n), n = 1,2,3,···. 

(3.19) 

There is no operator in SO(4, 2)which changes the 
sign of (S + n) and consequently the sign of p. Thus 

sgn p (3.20) 

is another invariant of our SO(4, 2) representations. 
We denote by (S, sgn ko)+ and (S, sgn ko)-, the irre­
ducible representations of SO(4, 2) which contain the 
(S, sgn ko) representation of SO(4, 1) and for which 
sgn p = + 1 and sgn p = -1, respectively. 

For the following considerations a graphical repre­
sentation of our results will be very useful (Fig. 1). 

4. REDUCTION WITH RESPECT TO SO(3, 2)50123 

In this section we consider the reduction according 
to the chain (2.5). According to Eqs. (2.15) and (2.16), 
only those IR's of SO(3, 2) which have the same value 
of the fourth- and second-order Casimir operator 
will occur in the reduction. However, contrary to the 
SO(4, 1) reduction discussed in the previous section, 
the SO(3, 2) IR's are characterized by three numbers, 
and we cannot expect that the IR's of SO(4" 2) 
remain always irreducible also under SO(3, 2). 

The reduction into IR's of SO(3, 2) can be easily 
read off from the graphical representation of Fig. 1. 
In SO(3, 2) we do not have the operators S4i' S45' 
and S40' Thus, the connection between the boxes given 
by broken and dotted lines does not exist for the 
SO(3, 2) operators. Furthermore, in contrast to the 
SO(4, 1) reductions, the representations (S, sgn ko)+ 
and (S, sgn ko)- of SO(4,2) contain inequivalent 
SO(3, 2) representations, differing by the sign of p; we 
shall call them (S, sgn kO)~0(3,2) and (S, sgn kOYSO(3,2) ' 

respectively. 
The resultant reduction is shown in Fig. 2 for the 

(S, sgn ko)+ class. The reduction of the IR's 
(S, sgn ko)- is completely analogous; one has only to 
replace everywhere p by - p. 

To summarize:Wehave seen that the IR's (S, ko = 
±S)±, S = 0, t, 1, t, ... , of SO(4, 2) characterized 
by (2.4) (where a can only be a = I - S2) reduce with 
respect to SO(3,2) into a subclass of singleton 
representations of Ehrman.7 Except for S = 0, they 
remain irreducible under S0(3,2). For S = 0 the 
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(0) 

it follows that P changes the sign of k o. Consequently, 
only the IR's (S = 0, ko = O)± can extend to repre­
sentations of SO(4, 2) and P. 

For the IR's (S = 0, ko = 0), the SO(4) states are 
already P eigenstates because ko = 0. So to each box 
in Fig. 1 (a) corresponds a definite parity, and, if we 
choose the P eigenvalue of the lowest state to be + 1, 
we obtain the parity assignment as given in the upper 
right corner of each box in Fig. l(a). 

In all the other IR's (S, ko = ±S)±, adjoining of 
P leads to parity doubling: An IR of (S, Iko!)± of 
{SO(4,2) and P} reduces with respect to the proper 
SO(4, 2) into the direct sum of two (S, ko)±: 

(S, Ikol)t:s0(4,2),Pl __ (S, ko = S)± 
80(4,2) 

@ (S, ko = - S)±. (5.6) 

( b) To obtain parity eigenstates we have to take the 

FIG. 2. Multiplicity pattern" of SO(3,2) representations into 
which the I R's of SO( 4, 2) reduce. (a) The representation (S = 0, 
k o = 0)+ given in Fig. l(a) reduces into two inequivalent IR's of 
SO(3, 2): (S = 0, ko = 0)+ -+ (S = 0, ko = 0, /lmin = 1) (j) (S = 0, 
k o = 0, J1mln = 2). (b) The IR's (S, ko = ±S)+ of SO(4,2) 
(S =!, 1, t, 2,"') remain irreducible under S0(3,2) and 
contain the IR of SO(3, 2) shown. 

representation reduces into the direct sum of two 
inequivalent IR's of SO(3, 2) with the same value of 
the two Casimir operators. These singleton representa­
tions are those which reduce continually with respect 
to SO(3, 1).6 

5. EXTENSION BY PARITY 

We now want to extend SO(4, 2) by the parity P. 
Because SO(3)8;; is the rotation group and SO(3,1)8I'v 
is the Lorentz group, we must have 

[P, Si;] = 0, 

{P, So;} = 0, 

(5.1) 

(5.2) 

and consequently [because of equivalence of the 
SO(3,1)] 

(5.2') 

If we further assume that also the S4i are vectors 
(rather than pseudovectors) 

{P, S4i} = 0, (5.3) 

then we remain with the SO(2, 1)80.8048.4 group of 
scalar operators 

[P, SO(2, 1)803'5'048 5) = O. (5.4) 

So r 0' S2, and S3 can be simultaneously diagonalized 
with P. However, because of (5.3) and 

! S4iSi = koClkol + n), (5.5) 
i 

linear combinations 

If-ljj3 ±; S) = If-ljj3; S ko = +S) 

± If-lJh; S, ko + -S). (5.7) 

6. RELATION TO BOSON FORMALISM 

In this section we give an explicit form of the repre­
sentations of SO(4, 2) satisfying (2.4) in terms of two 
pairs of boson creation and annihilation operators 
(aI' a2) and (bl , b2). Many of the results obtained 
can also be explicitly verified in terms of this realiza­
tion, and we establish the equivalence of the repre­
sentation relation with this explicit form: 

So = Ha+aka + b+akb), (ijk-cyclic) , 

Si4 = -Ha+aia - b+aib), 

SiO = -Ha+aiCb+ - aCa;b), 

Si5 = tiCa+a;Cb+ + aCaib), 

S45 = Ha+Cb+ + aCb), 

S40 = ti(a+Cb+ - aCb), 

S05 = Ha+a + b+b + 2), 

(6.1) 

where a i are the Pauli matrices and C the antisym­
metric matrix 

These operators act on the states in the SO(3)(1) @ 

SO(3)(2) basis of SO(4, 1): 

1 
. . \ +;t+ml +11-ml +j2+ m2 +j2-m2 

h ml12m2/ = Na l a2 bl b2 10), 

N-
2 

= (jl + ml)! (jl - m1)! (j2 + m2)! U2 - m2)!' 

(6.2) 

The operator, which has the eigenvalues ko and 
which is an SO(4,2) invariant [see Eqs. (3.1) and 
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(3.16)], is represented by 

Ko = !(a+a - b+b), (6.3) 

has eigenvalues ko = j1 = j2, and commutes with all 
SAR' 

Parity operator (see Sec. 5) is represented by 

P:a+ -- b+, b+ -- -a+ (6.4) 

and changes the sign of ko . 
The representation with the opposite sign of the 

eigenvalues of r 0 can be obtained by replacing 

j1 -- -1 - }1, }2 -- -1 - h (6.5) 

and applying P. 
From (6.1), we obtain after some calculation, e.g., 

SA5S'\ = H(a+a)2 + (b+b? - 2a+ab+b - 4] 

= -SA4SA4, (6.6) 

which on states (6.2) gives immediately the value 
(ko

2 - 1). By symmetry, the same is true for the sum 
of squares of all other rows (or columns) of the 
matrix (SAR)' 

Similarly, we find, after some calculations, 

{ r (I) r ll (2)} = 0 
II ' , (6.7) 

where r <I> = Sand r (2) = S and by symmetry 
II 511 II 411' 

the remaining equations of (2.4) are satisfied. These 
"oscillator-like" representations have been discussed 
in different forms in Refs. 8-11. 

7. GUIDE TO APPLICATIONS 

The representation (S = 0, ko = 0) is realized in 
the conformal interpretation of 0(4,2) to describe 
massless spin-zero particlesI2 and, in the dynamical 
group interpretation of 0(4,2), to describe the rest 
frame states of H-atom9 and mesons.13 The existence 
of r II is crucial in the calculation of transition proba­
bilities. The representation (S = t, ko = ±t) has been 
used in the 0(4, 2) hadron model and accounts for the 
dipole form factor of the proton. IO The representations 
(S, ko = ±S) occur in the dyonium model, an atom 
formed out of two-spinless particles having both 
electric and magnetic charges. ll Matrix elements for 
some finite transformations for these representations 
have been given in Refs. 9-11. 
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APPENDIX 

In this appendix we give explicit expressions for the 
infinitesimal generators. Clearly, it is sufficient to give 
the generators Si+1.i' i = 1, ... ,5, because the 
other generators can be determined from these by the 
relation (2.2). We take the generators S21' Sa2, and 
S4a from4 

S21/a ; ko, n,j,ja) = is /a; ko, n,j,h), (AI) 

Sa2la; ko, n,j,h) = H(j + h + I)(j - h)]! 

x/a; ko, n,j,ja + 1) 

+ HU+ h)U- is + I)]! 

x la; ko, n,j,ja - 1), (A2) 

S431a; ko, n,j,ja) = [0 + ja + 1)0 - ja + I)]! 

x Cm/a; ko, n,j + I,is) 

+ isAj /a; ko, n,j,ja) 

- [(j - ia)(j + ja)]! 

x C j la; ko, n,j - I,ja). (A3) 
Here 

A. = koC/kol + n) 
3 j(j + 1) , 

C. = !((l - k0
2)[l - (/ko/ + n)2])!. 

3 j 4l- 1 

The expression S54 we take from14 

S541a; ko, n,j,ja) 

Here 

a(ko, n) 

= ta(ko, n)[(ko + } + I)(ko - j)]! 

x/a; ko + 1, n,j,ja) 

+ tb(ko, n)[(j - n)(j + n + I)]! 

x la; ko, n + I,j,j.) 
- tc(ko, n)[(j + n)(j - n + I)]! 

x la; ko, n - I,j,h) 

- td(ko, n)[(ko + j)(ko - j - I)]! 

x/a; ko - 1, n,j,h). (A4) 

( 
(ko - r)(ko + r + 1)[ko(ko + 1) + a] )! 

= (ko - n)(ko - n + 1)(ko + n)(ko + n + 1) , 

b(ko, n) 

( 
(r - n)(r + n + l)[n(n + 1) + a] )! 

= (ko - n - 1)(ko - n)(ko + n)(ko + n + 1) , 

c(ko, n) = -b(ko, n - 1), d(ko, n) = a(ko - 1, n). 

The matrix elements can also be derived easily using 
Eqs. (6.1) and (6.2); the basis /Jlmd2m2) can be trans­
formed to the Ijja) basis by 3j-symbols. rand (J are 
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connected with the Casimir operators through 

+r(r + 1) + 2 + a = 2a, 

+r(r + l)a = a(a - 1). 

For all the representations considered in this paper 
we have r = S = Ikol = +(1 - a)!. S50 = fo is 
given by (3.2): 

S50 lao; konv;jj3> 

= ±[(a - 1 + k0
2) + (Ikol + n)2]! lao; konO;jj3)' 

(A5) 
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connected with the Casimir operators through 

+r(r + 1) + 2 + a = 2a, 

+r(r + l)a = a(a - 1). 

For all the representations considered in this paper 
we have r = S = Ikol = +(1 - a)!. S50 = fo is 
given by (3.2): 

S50 lao; konv;jj3> 

= ±[(a - 1 + k0
2) + (Ikol + n)2]! lao; konO;jj3)' 

(A5) 
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equilibrium for each type of interaction. Finally, the 
time behavior of each model is linked to specific 
spectral properties of the corresponding effective 
Hamiltonians. 

The framework for the models is that of the C*­
algebra approach. The theories of invariant means on 
groups and asymptotic probability distributions are 
also employed. 

2. THE GENERALIZED ISING MODEL 

At each site i in a v-dimensional lattice zv, associate 
a 2-dimensional complex Euclidean space q (spin 
space). Let F be the set of all finite subsets of Zv. Then, 
for each finite volume V E F, consider the direct 
product space ®iEV C; of Murray and von Neumann,I 
and let m(V) be defined as B(®iEV q), the set of all 
bounded operators on ®iEV q. m(V) is the set of 
observables pertinent to the volume V. It is a concrete 
C*-algebra with respect to the usual operator norm, 
denoted II II, and adjoint, denoted *. For any two 
volumes V, V' E F, satisfying V c V', there is a 
natural mathematical way to imbed m( V) in m( V')­
symbolically, for A E m(V) let A = A ®iEV'IV Ii E 

m(V'), where Ii is the identity operator in ~l(i) and 
V'/V = {j E Zv I j E V',j t/= V}. It is easy to check that 
this imbedding is norm preserving and, in fact, a 
*-isomorphism of the C*-algebra m(V) onto a sub­
algebra of m(V'). To obtain all local observables, we 
follow the prescription of Takeda,2 which essentially 
involves the construction of a *-algebra mo defined as 
the union UVEF m(V) with "equivalent" elements 
identified. This normed algebra is not complete, but 
upon completion it is a C*-algebra, denoted m, 
consisting of the so-called quasilocal observables. 3 We 
denote by (5 the set of all states on m. 

To simplify notation throughout this paper, we 
identify m(V) with its image in mo or m and also with 
the matrix algebra GL(2NW ), C), where N(V) is the 
number of sites in V. For example, a~ E m(i) c mo c 

m for the Pauli matrix ax. 
We now turn our attention to the dynamics of the 

system.4 With each V E F, we associate an energy 
observable Hv E meV) defined by 

HV = i L Ejka~a~, 
(J,k)EVXV 

where V x V is the Cartesian product of V with itself. 
To make Hv self-adjoint, we require that Ejk be real; 
for homogeneity and isotropy we require that Ejk be a 
function only of the Euclidean distance Ii - kl 
between j and k, i.e., Ejk = E(lj - k/). To avoid self­
interaction, we assume that Eli = 0 and, for stability, 
we require that the total energy at any site due to 

interaction with the entire lattice be finite, i.e., 
LiEZv IE(/j/)I < 00. We call this the generalized Ising 
model (GIM). 

For A E mo, we can give the dynamics as follows. 
Consider oc;(A) = exp (iHvt)A exp (-iHvt). It is 
easy to see that the ocr are *-automorphisms of mo and 
form a group with the multiplication 

(x;" oc~)(A) = x~(oc~(A» = oc~+t2(A), 
i.e., 

oc Voc V - oc V 
11 12 - 11+12' 

Clearly, we need to take the infinite volume limit to 
get the full dynamics. Therefore, for a local observable 
A E mCVl), consider oc;2(A) with V2 :::J VI' By Magnus' 
formula,5 we have 

00 (itr 
oci2eA) = L -, [HV2 ' [ ••• , [HV2 ' A] ... J] 

n=O n. 
00 (it)n 

=L- L L 
n=O n! (jl,kl)EV2XV2 (jn.TC.)EV2XV2 

X [<Pinkn' [ ... ,[<Phkl , A]' .. ]], 

where <Pik = iEika~a~ and [ , ] denotes the commutator. 
It is clear that, ifh and kl E V2/VI' then [<Pirkl' A] = O. 
Therefore, we may restrict the relevant summation 
index to (h, k l ) E V2 x V2/ [( V2/VI) x (V2/VI)]. For 
any two subsets WI and W2 of zv, let W2 -:-- WI denote 
W2 X W2/[(W2!WI ) x (W2/WI »), a subset ofZv x zv. 
Now consider [<Pilkl , A] in more detail. This operator 
can have at most a;s at the sites outside VI' Therefore, 
if (j2' k 2) E (V2/VI) x (V2/VI ), then [<Pj2k2' [<Pirkl' 
A]] = O. By induction, we see that we can restrict all n 
summation indices to (ji' k i ) E V2 -:-- VI' Now we 
bring these summation symbols back inside the 
brackets to get 

rxV2(A) = ~ (itr[ "" <P, 
t £.., ~ lnkn' 

n=O n! (in ,k.)EV2+ VI 

[ .. , [ "" <P, A] ... ]] , k 11kl' . 
(h.kr)EVi+Vl 

At this point, we take the infinite volume limit since, 
by the stability condition, the net L(J,k)EV2 -o-V, <Pjk has 
a norm limit in m as V2 -- 00, namely flv, == 
LCi,k)EZv-o-Vl <Pik . By Magnus' formula, we get 

norm- lim oc;2(A) == octCA) = exp (iflV,t)A 
VZ-OC' 

x exp (-iflv,t). 

To see that {oc;(A) I V E F} is Cauchy for all A Em, we 
use the inequality 

/loc;'eA) - oc;CA)/i S I/rxi'(Ao) - oc;CAo)1I 

+ Ilrx;'(A - Ao)II' + 1100;(Ao - A)/I. 
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Taking Ao E Illo and using IllXn = I gives the result. 
At this point, it is easy to show that the IX t form a 
group of *-automorphisms of Ill. The fact that 
\\lXt(A) - IXt (A)\\ ~ 0 for all A E III is easily checked 

• t-t. 
(on Illo first). We collect our results up to this point as 

Proposition 1: If 

Hv = t I e(U - k\)a~a~, e(U - k\) 
U.k)EVXV 

is real, e(\O\) = 0, and LjEZV \e(\jl)\ < 00, then, for all 
A E Ill, the net IXf(A) = eiHvtAe-iHrt has a norm 
limit in III as V --+ oo,denoted IXt(A). The set {lXt I t E R} 
forms a strongly continuous group of *-automorphisms 
of III satisfying IXt,IXt2 = IX t ,+t2' Furthermore, for any 

A E Ill(V), IXt(A) = eillvtAe-ii'/vt, 
where 

ilv == t I e(lj - k\)a~a~. 
(j.k)EZ

V +v 

As an application of this proposition, we obtain 

octCa;) = a; cos (2P j t) - ay sin (2P j t), (1) 

octC a~) = a~ cos (2P jt) + a; sin (2P jt), (2) 
where 

P j = I e(lk - ji)a~. 
kEZ

V 

3. EQUILmRIUM 

We now have a time development and wish to 
investigate the approach to equilibrium. A first step in 
this direction is to answer the following question: 
Given a nonequilibrium state p on Ill, what should be 
the corresponding equilibrium state is? A useful tool 
for inve;;tigating this problem is contained in a paper 
of Emch, Knops, and Verboven. 6 We first give some 
necessary background. 

Let G be a topological group and define the normed 
linear space CD(G) as the set of all bounded, contin­
uous, complex-valued functions on G, with pointwise 
addition and scalar multiplication and sup norm. A 
mean on CD( G) is by definition a linear form M on 
CD( G) which satisfies 

(i) M(J) = M(f), where· the overbar denotes 
complex conjugation for allfin CD(G), 

(ii) inf If(x)1 :::;; MU) :::;; sup If(x)1 for all real-
"'EO (J)EO 

valued f in CD(G). 

This is clearly a mathematical translation of the 
heuristic concept that M averages over the group.7 M 
is called a left invariant mean if M(Lyf) = M(f) 
for all y E G and allf E CD(G), where the translation 
LlIfE CD(G) is defined by Lyf(x) = fCyx). If 2t is 
a C*-algebra with unit and if {ocg I g E G} is a 

strongly continuous8 group of *-automorphisms of 
Ill, then,9 for any left invariant mean M on CD(G) 
and state p on Ill, the form M p defined on III by 
M pCA) = M[p(oc",A)] is a state on Ill, invariant in the 
sense that M p(oc",A) = M peA), for all A E Ill, x E G. 
Using G = R interpreted as time development, we 
see that M p is a time average of the states oci p defined 
by oci peA) = p(octA). Therefore, each invariant meanlO 

M could be used to project a given state onto possibly 
different equilibria. Since there arell many invariant 
means on CD(R), the question of the uniqueness of 
this prescription arises. We now wish to investigate 
this question in the case of the GIM. To do so, we 
need some definitions. 

The class AP(R) of almost-periodic functions on the 
real line can be defined as the subset of CDCR) of all f 
such that the set of translates {Ldl t E R} is pre­
compact in the norm topology. The set of weakly 
almost-periodic functions W(R) consists of the subset 
of CDCR) of all f such that {Ld I t E R} is precompact 
in the weak topology. Since the weak topology is 
weaker than the norm topology, AP(R) C WCR). 
W(R) plays an important role in the theory of invari­
ant means since12 all invariant means on CD(R) 
coincide on the subspace W(R); furthermore, they can 
be taken in the form 

Mf = lim T-1 (Tf(t) dt. 
T"'oo Jo 

In this connection we now prove: 

Proposition 2: In the GIM, p[IXt(A)] is a weakly 
almost-periodic function of t E R, for all A E 2t and 
pEG. 

Proof: First, let A' = a{~··· ai~, where 'k = x, y, 
or z, and all the jk are distinct sites of the lattice. Then 
IXt(A ' ) = IXt(ai~) ... IXt(ai:). Using 

cos (D) = Hexp (iD) + exp (-iD)] 
and 

sin (D) = [exp (iD) - exp (-iD)]/2i 

in (1) and (2), where BEllI, we put IXtCA') in the form 
of a finite linear sum of terms such as 

exp (iQlt)a{~ ... exp (iQnt)a{:, 

where, for lk = Z, Qk = 0 and, otherwise, Qk = 
± 2Plk' We move the exponentials to the right by 
noticing that 

exp (iQmt)a{~ = a{: exp (iRmt), 

where Rm = a;ZQma:Z. Note that, independently of 
i k , Rm only has a;s in it, i.e., Rm = Ljaja~ (a finite 
sum with aj E R). Therefore, we also see that all the 
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Rm are self-adjoint and commute. By moving all 
the exponentials to the right in this way, we obtain 
oct(A') as a finite linear sum of terms of the form 
a;~ ... ai~ exp (iSt) with S self-adjoint. If p EO 6, by 
considering the GNS representation TIp associated with 
p, with cyclic vector <I> p in .rep, we see that p [oct(A')] 
is a finite linear sum of functions of t of the form 

(<I>p, TIp[a{~] ... TIp[a{:] exp (iTIp[S]t)<I>p) 

which, upon taking adjoints, becomes 

('¥p, exp (illp[SJt)<I>p). 
But 

('¥p' exp (illp[S]t)<I>p) EO W(R) , 

sinceI3 {exp (ill p [S]t) I t EO R} is precompact in the 
weak operator topology. Therefore, p[oct(A')] EO W(R) , 
since W(R) is a linear space. For an A" equal to a 
finite linear sum of A's of the above form, the same 
result follows by linearity again. For arbitrary A EO m, 
take An -->- A, as n -->- 00 (norm topology), with An of 
the latter form. Then we have 

Hence, p[octCAn - A)] -->- 0, as n -->- 00, uniformly in 
t E R. Therefore, p[oct(A)] is the limit of a sequence 
p[oct(An)] of functions in W(R) , converging in the 
sup norm. Hence, p[octCA)] E W(R), since14 W(R) is a 
closed subspace of CB(R). QED 

Note that a shorter proof of Proposition 2, which 
does not rely on the local implementation of Propo­
sition 1, can be obtained by observing that 

exp (iHvt)A' exp (-iHvt) = A' exp (iA'HvA't) 

X exp (-iHvt) 

= A' exp (iA' HvA' t 

- iHvt ). 

However, parts of the given proof are needed below. 
We have proven that a canonical time averageI5 M p 

exists for every initial state p. We use "canonical" to 
emphasize the uniqueness of M. Given this association 
between states and equilibrium states, we consider the 
following question: Can one ensure that M p' will be 
"close" to M p by taking p' sufficiently "close" to p? 
We answer this for the three simplest topologies. 

Lemma 1: In the GIM, with 6 in its norm topology, 
the mapping M:6 -->- 6 is continuous. 

Proof: Let 1>, 1>n E 6, with 1>n -->-1>, as n -->- 00, in 
norm. For x E mI , the closed unit ball of m, 

1>n[oct(x)] -->-1>[ocix)], 

as n -->- 00, uniformly in t E R and uniformly in 
x E mI' Therefore, given E > 0, there exists N> ° 
such that, for all n ;;::: N, 

l1>n[oct(X)] - 1> [oclx)]1 < E, for all t E R, x E mI' 

Therefore, 

independently of T> 0. Hence, M1>n -->- M1>, as 
n -->- 00, in norm, i.e., 

lim sup I lim 1. (T(1>n[octCX)] - 1>[ocb)]) dt/ = 0. 
n-+o:J ",ell, T-+o:J T Jo 

QED 

Corollary: In the GIM, with 6 in its weak topology, 
the mapping M:6 -->- 6 is continuous. 

The proof is immediate from Dunford and 
Schwartz.I6 

Proposition 3: In the GIM with dimension v = 1, 
let E(I}!) = I/;-lil for} r!: 0, ;- > 2. Then, with 6 in 
its w*-topology, the mapping M:6 -->- 6 is not 
continuous. 

Proof: A proof by contradiction is immediate from 
the following two facts: On the one hand, we exhibit a 
state 1> such that M1>(a~) r6 0; on the other hand, we 
exhibit a subset U of 6 which is w*-dense and for 
which Mp(~) = ° for all p in U. To this end, let p 
be the product state @iEZ h, where h is the state (1n 
m(j) defined by any normalized vector h which 
satisfies 

if j > 0, 

a~fj = -fj' if j < 0, 

a~fo =fo' 

Now let 1> = M p. Then, 1> is time invariant and 

1>( a~) = M [pC OCt [a~])] 

= M[p(a~ cos [2Pot] - a~ sin [2Pot])]. 

If TIp is the GNS representation of m corresponding 
to p, with cyclic vector <I> p' it is easy to see that 
TIp(Po)<I>p = ° from cancellations. Hence, pCP;) = 0 
for all n EN, n r!: 0. Therefore, p[ocla~)] = p(~) = 
1 for all t E R. Hence, M1>(a~) = 1>(a~) = 1. This 
concludes the first part of the proof. Now, from 
Dixmier,17 we know that the set U of vector states of 
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any nonnull representation of the simple, antiliminaP8 
C*-algebra m: is w*-dense in 6. Consider the GNS 
representation generated by p = ®iEZ ", where 
C1;J; = J; for all j E Z. Choose the orthonormal basis 
for:Iep consisting of {'Y I lIE F}, where 

'YI = L IIiC1~)<I>p for 1 E F, I ¥= 0, 
iEI 

and 
'Y 0 =<I>p. 

Now IXt(C1~) = C1~ cos (2Pot) - a~ sin (2Pot). Note that 
II/Po)'Y I = P I'Y I, where PI = ~iEZ €(ljl)gi and 

gj = + 1, if j E Zj I, 

= -1, if j E I. 
Therefore, 

and 
('YI' IIiP:;")'Y i ) = 6I ,JPr;'. 

IfQ is a unit vector in:Iep' let Q = LIEF wI'Y I' Hence, 

(0, IIp(P:;'')O) = L wlwA'YI , IIp(P:;'')'Y J) 
I.JEF 

= ~ WIWIPr;'· 
IEF 

Similarly, 

(0, IIp[a~P:;''D = 2 WIoWIPr;' 
IEF 

where 10 = Ij{O} if 0 E I, 10 = 1 u {O} if 0 ¢ I. 
Therefore, 

(0, IIp(a~) cos [2IIiPo)t]0) 

= (0 .i (it)2n II (aOp 2n)0) 
'n=O (2n)! I' '" 0 

= ~ wloWI cos (2Plt). 
IEF 

By taking finite sums in 1 E F, we can approximate 
h(t) = (0, IIp(a~) cos [2II p(Po)t]0) uniformly in t E 

R. On the finite sums hN(t), since no PI can vanish for 
the given interactions, we have MhN = O. Therefore, 
Mh = 0, since M is continuous on CB(R). Similarly, 
M[(O, II/a~) sin (2IIp[Po]t)0)] = 0, so that 

[M1)](a~) = 0 

for all vector states 1) corresponding to the rep­
resentation III" QED 

Note that the above proof can also be used to show 
that the GIM is not always G-Abelian in time, i.e., 
need not satisfy the condition 

M[4>([lX t(A), Bm = 0 for all A, B E m: 
and all 4> E 6 1 , 

where 6 1 is the set of time invariant states. To see this, 
just use the 4> of the above proof and A = ~, B = a~. 
This example reinforces the doubts one might have of 
the validity of the assumption that general systems are 
G-Abelian in time and, hence, justifies the attempt to 
avoid the assumption. Compare in this respect 
KnopsI9 and Emch, Knops, and Verboven. 2o See also 
Araki.2I 

Proposition 3 is rather disconcerting in that one has 
good reason for taking the w*-topology on 6 as the 
most physical one. The proposition might, however, 
be an indication of the fact that 6 itself is bigger than 
actually needed for physical purposes. 22 It is, further­
more, conceivable that M is w*-continuous on a 
w*-dense subset 60 of 6, where 60 itself contains all 
physically accessible states. 

4. TEMPERATURE STATES 

It is desirable, for the consistency of the approach 
used in this paper, to establish the existence of 
infinite volume limits of the usual canonical equilib­
rium ensembles since, in the present theory, these 
limits should play the role of states describable by a 
temperature. Specifically, the question is whether one 
can take a limit of the states2a pr defined on m:(V) by 

prcA) = Trv (A exp [-flHvDjTrv (exp [-flHvD, 

where Trv is the usual normalized trace state on m:(V). 
Araki has shown that, for a I-dimensional lattice and 
any finite-range interaction, such a limit does exist.24 

By restricting ourselves to ferromagnetic Ising-type 
interactions, we obtain the same conclusion for 
infinite-range interactions in v dimensions. 25 

Proposition 4: In the GIM, assume that €(Ij!) 
~ 0 for all j E zv. Then, extending the canonical 
ensemble P~ to the state fir = pr ®iEZV/V Tri on 
m:, we see that there exists a state pC; on m: defined as 
* I' -v w - Imv-->oo Pp . 

Proof: The proof consists of reducing the problem 
to the finite-volume subalgebras where generalized 
Griffiths inequalities can be used. Consider, then, any 
three nonempty elements VI, V2 , and Va of F such 
that VI C V2 C V3 • Introduce the following two 
interactions on m:(Va): 

Ha = t I e(\j - kl)a:a~ 

and 
(i.k)EVaXVa 

H2 = t L €(U - k!)a;a~. 
(j.k)EV.XV2 

Note that Ha can be obtained from H2 by adding 
ferromagnetic bonds. If, for each p E 6, we define the 
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state p I ~(V) on ~(V) by restriction, then we have 

fiPO I ~(VI) 
= TrV3 (. exp [-,BH3D/TrV3 (exp [-,BH3D I ~(VI) 

and 

fiPO I ~(VI) 
= Trv. (- exp [-,BH2D/Trv. (exp [-,BH2D I ~(VI)' 

We now show that, in fact, 

iJPO I ~(VI) 
= TrvaC- exp [-,BH2D/TrV3(exp [-,BH2D I ~(VI)' 

(3) 

To see this, introduce the following orthonormal 

basis in ®iEVa q: 

el =f~ ®f~ ® ... ®f~CV3» 

e2 = fi ®f~ ® ... ®f1CVa) , 

e3 =f~ ®f~ ® ... ®f~CV3)' 

e4 =fi ®f~ ® ... ®f~CV3)' 

where f~ is a fixed normalized vector in q satisfying 
a!n = nand a!n = -f~. If A E ~(VI)' then 
exp (- ,BH2)A E ~(V2)' Calculating in the above basis 
gives, for any B E ~(V2)' we obtain 

Trva (B) = 2NCVa )-NCV2) TrV2 (B). 

Therefore, (3) follows. Now we need some further 
notation before we can continue with the proof. For 
each triple A = (AI, A 2 , A 3) where the Ai E Fare 
pairwise disjoint, define aA as <IleAl a~)(IIjEAI a;) X 

(IIkEAa a~), where IIt'E0 Bt' is defined to be the 
identity I. Note that ~o is the linear manifold generated 
by the set of all aA . Now, if Al U A2 y!: 0, then 

(4) 

for all V E F such that V::> Al U A2 U As since in the 
above basis the diagonal elements of exp (-fJHv)aA 

are all zero. Kelly and Sherman26 have shown that, 
by increasing the number of bonds, we have 

fiP( aA) ~ fir2( aA) 
if 

A = (0, 0, A3) and A3 c V2 C V3. (5) 

Combining (4) and (5) with another theorem of Kelly 
and Sherman, which says that iJr (aA) ~ 0 if aA E 

~(V) c ~(V') and A = (0, 0, As), we have, for 

V'::> V and aA E ~(V), 

o ~ fin aA) ~ 1 and fin aA) ~ iJr< aA), 
so that fi~ (aA ) is an increasing function of V, bounded 
above by 1. Therefore, lim fir (aA

), as V - 00, exists if 
V increases by inclusion. Define pp(aA ) as the limit. 
Considering Pp as a functional on the *-subalgebra 
~o of ~, p p is clearly linear and bounded, with norm 1. 
When Pp is extended to ~, it still has norm I and 
satisfies p{j'(I) = 1. Therefore, it is a state on ~. 

QED 
5. APPROACH TO EQUILIBRIUM 

Now that we have shown the existence of a canon­
ical association between arbitrary initial states and 
equilibrium states, and also that at least some of these 
equilibrium states are reasonable, we would like to 
investigate the association in more detail. One reason 
for this is to examine the question of recurrences. We 
are motivated in this approach by a paper of Emch, 27 
where the following experiment is considered. 

A CaF2 crystal is placed in a magnetic field (thus 
determining the z direction), and allowed to reach 
thermal equilibrium. Then, an rfpulse is applied which 
turns the net nuclear magnetization to the x direction. 
The magnetization in the x direction is then measured 
as a function of time, and the result is an oscillatory 
function which damps to the equilibrium value of 
zero.28 

Emch assumes an interaction of the form 

Hv = (t ! e(1i - kJ)a~a~) - B !a; 
Ci,k)EVXV jEV 

on a finite I-dimensional volume V. As the state 
representing the system after the application of the rf 
pulse, he takes the product state p = ®jEV CPj' where 

cpk) = Trj (. exp [-ya~D/Trj (exp [-ya~D. 

This choice is justified by an entropy argument. 
With the interaction Hv and initial state p, he then cal­
culates the time development of the magnetization in 
the x direction, Sx = [I/N(V)] !jEV a~, and obtains 
without approximation 

p(lXnS",D = p(S",)(U cos22e (ljDt) cos 2Bt. (6) 

By taking an infinite volume limit at this point, Emch 
shows that interactions with a cutoff give recurrences 
(with calculable frequency) and that the infinite 
range interaction of the form e(ljl) = I/21jl gives, 
with Vieta's identity,29 

IT cos (~) = (sin t) , 
n=1 2n t 

the nonrecurrent damping exhibited by experiment. 
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In this section, we generalize this work in the follow­
ing respects. We consider arbitrary observables and 
show what range of behavior is possible with different 
choices of the function €. Furthermore, the class of 
initial states considered is extended, and the approach 
to equilibrium is exhibited in the stronger form of an 
initial state decaying into an equilibrium state, rather 
than just considering individual expectation values. 
To simplify calculations, we assume throughout that 
there is no external field. Inspection of (6) shows that 
the damping we are looking for comes solely from the 
spin-spin interaction of the lattice, not the external 
field. 

The general result for finite range models, hereafter 
denoted F L, is then: 

Lemma 2: In the GIM, if €Ojl) = ° for all j E ZV 

such that Ijl > L, 0< L < 00, then p[tXtCA)] is 
almost periodic for all A Em:, p E 6. 

Proof: From the proof of Proposition 2 with the 
above hypothesis added, we see that the observable S 
is only a finite linear sum of a;s. This implies that the 
spectrum of S, and hence of IIp(S), consists of a finite 
number of isolated points. Using the spectral theorem 
in Jep ' we get [tXt(A')] in the form 

N 
~ a .eib;t b E R £.., , 1 , 
j=1 

which is almost periodic. Since AP(R) is also a closed 
linear subspace of CB(R) , we get the result for all 
A Em: as in Proposition 3. QED 

It will become apparent later that the full range of 
behavior of the GIM due to different choices of the 
function € is already predictable from (6). Because of 
its importance, therefore, we derive a convenient 
generalization of (6). 

Let 4> be any state which satisfies 4>(aA
) = ° for all 

A such that As -:;6 0. Consider 4>[tXtCa~)] in the GIM. 
As shown in Proposition I, 

tXtCa~) = norm-lim tXr(a~), where V E F, 
V-+oo 

and Ri = "(Ijl)a~. Using the conditions on </>, we have 

4>[tXr(a~)] = 4>[ a~ cos (2t;~ R;) 1 (7) 

We show by induction on the number of sites in V that 

4>[tX;(a~)] = 4>(a~) IT cos [2€(lji)t]. (8) 
ieV 

For V = {j}, cos (2tRj) = cos[2t€(lji)], since (a~)2n = 
I for all n E Nand (8) follows from (7). Now 
assume (8) for V having N sites with site I ¢ V. Then 

4>{ a~ cos [2tCfv R; + Rz) J} 
= 4>[a~cos (2tj~vRj) cos (tR z) 

- a~ sin (2t j~ R;) sin (2tR z)} 

The second term on the rhs vanishes since, in the 
series expansion of the sines, every term has at least 
one "unmatched" az in it which is annihilated by 4>. 
Again, cos (2tR z) = cos [2t€(III)], so that 

4> [tX;UZ( a~)] = 4>( a~)· IT cos [2€(Ul)t]. 
;EVUZ 

By induction, we have (8) for all V E F, V -:;6 0. To 
take the volume limit, we first define TI;EZv a;, 
where a, E C, as the limit, if it exists, of the net 
IT;EV a;. We make no exceptions for zero factors or 
convergence to zero. Since 2 j EZV 1€(IjDI < 00, we 
must have €(I}')) -:----+ 0, so that it is clear that the 

,~r>J 

limit existsSO for the net TIjEV cos [2t€(lj/)], Hence, 

4>[tXtC a~)] = 4>( a~) TI cos [2€(Ul)t], (6') 
;EZV 

A natural means of investigating the influence of a 
particular choice of € is thus determining the resulting 
behavior of TI:=1 cos [€(n)t]. As mentioned above, 
Vieta's formula shows that the choice €(ljD = 1/2111 
produces nonrecurrent behavior. More generally, one 
might inquire into the time behavior resulting from 
€(ljl) = 1/ ;Ijl, ; > 1. The model with €(Ijl) = 
a1jl)-1 for j -:;6 0, where ; > 1, for stability, is 
called the exponential model E~. We haves1 that 

IT cos ( tn) ~ 0, for ; > 1, 
n=1 ; t-+oo 

if and only if ; rf= S/{2}, (9) 

where S is the countable set of all algebraic integers 
over the rationals with conjugates having moduli 
strictly less than one. From this, we see that the 
qualitative behavior of the model is discontinuous in ;. 
For this reason, and because of certain results concern­
ing phase transitions by Dyson,32 we also consider the 
following form for €:€(ljD = I/i al forj -:;6 0, where tX 
is assumed greater than the dimension y for stability. 
We call this the Dyson model Da. The nonrecurrent 
time behavior of the Dyson models is shown by the 
following lemma. 
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Lemma 3: 

IT COS
2 (~) ----+ 0, for all IX > 1. 

j=1 /' t-+oo 

Proof: Define 

J(t) = IT cos
2 (~) = IT [1 - sin

2 
( ~a)J· 

J=1 ) J=1 ) 

Assume that Jet) does not have limit zero as t ~ 00. 

Then there exists a 15 > ° and a sequence In > 0 such 
that In ~ 00 and j(tn) > 15 for all n EN. Now e"' ~ 
1 + x for all x E R. Therefore, if I + Xj 2 0, 

N N 
II eX; ~ II (1 + Xj)' 
j=1 j=1 

Therefore, 

g exp [ -sin
2 C:) ] ~!5 for all n. 

Taking logarithms, we obtain 

- I sin2 (t.:) ~ In 15. 
J=1 J 

Hence, 

ISin2(t.n) ~ -In 15, forall nEN. (10) 
j=1 Ja 

Let N n be the number of solutions m in N of the 
expression sin2 (tn/ma) 2 i. Clearly, N n is greater than 
or equal to the number of solutions m in N of 

or 

(11) 

Therefore, N n ~ 00 as tn ~ 00. This contradicts (10). 
Hence,f(t) ~ ° as t ~ 00. QED 

We now combine the above facts to prove the 
following proposition. 

Proposition 5: With dimension '/! = I, let the 
interaction be that of any exponential model E g, 

where ~ is transcendental, or any Dyson model. Let 
e/> be any state which satisfies e/>(aA) = 0 for all A 
such that A3 =F 0. Then Me/> = @jEZ Trj . 

Proof: We show that Mrp and @jEZ Trj coincide on 
the set of all aA , which by linearity and continuity will 
give the full result. Note that @jEZ Trj (aA ) = 0 for 
all A =F (0, 0, 0). For A = (0, 0, A 3), IXlaA) = 
aA so that e/>[IXt(aA)] = e/>(aA), and the coincidence is 
obvious. Hence, for the rest of the proof, we assume 
that A1 u A2 ¥= 0. As in the proof of Proposition 2, 
IX/aA) can be put in the form of a finite linear sum of 

terms, such as 

where S = IjEZ aja!, and for j E Z such that Ijl > 
W == maxm=1 ..... n {ljk+ml} we have 

taj = ±E(lj -jk+11) ± ... ± E(lj - jk+ni)· 

To show that Mrp(aA) = 0, we first notice that M(aA) 
is a finite linear sum of terms of the form 

By von Neumann's ergodic theorem,33 the above 
expression equals (0/"" PeI> ",), where 

0/ == 11 [a ik+n '" ail]eI> 
'" '" lk+n z '" 

and P is the projection defined by the strong operator 
limit, 

lim [E(O) - E(E)], 
£-+0-

where {E(A) I A E R} is the resolution of the identity 
corresponding to 11",(S). We will show that PeI> '" = 0, 
and this will complete the proof: 

IIPeI>",11 = (eI>"" PeI>",) 

= lim T-1 (T(eI>", , exp [iTI",(S)t]eI>",) dt. 
T-+oo Jo 

By arguing as in the proof of (6'), we get 

(eI>"" exp [iTI",(S)t]eI>",) = II cos (ajt). 
jEZ 

All we need to do now is show that 

II cos (ajt)---+ 0. 
jEZ t-+oo (12) 

For the exponential models, we have for all large 
enough Ijl that 

1 1 
lao = ± -- ± ... ±--
2 J ~Ij-itl ~Ii-jnl . 

Therefore, if ~ is transcendental, it is clear that aj does 
not vanish. Then,since aj can be factored, 

.l2a . = ~ [±;h ± ... ± en], for j» 0, 
J e 
1· . = _. [±~-J1 ± ... ± ~-Jn], for j« 0, 
~-J 

a simple change of variable in (9) gives (12). For the 
Dyson models, we use a different argument. First, we 
need to show that aj does not vanish for all sufficiently 
large Ijl. There are two cases to be treated separately: 
(1) a j does not have an equal number of +2 and -2 
coefficients for the l/lj - j1l a ; (2) it does have an 
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equal number. In case 1, it is clear that the sign which 
appears more often gives aJ that same sign for all 
large enough \j\. Case 2 follows from the fact that the 
functions of a complex variable defined by 

1 1 
a (z) = ± ± ... ± ---

1 (z - j1Y' (z - jn)" 
and 

1 1 
a (z) = ± ± ... ± ---

2 U1 - Z)" Un - z)" 

are both analytic at infinity, so that there is a compact 
set K which contains the zeros of both functions. 
An argument similar to Lemma 3 then yields (12). 

QED 

In addition to the result stated in the proposition, 
we point out that the above proof not only determined 
the equilibrium value of all local observables, but also 
showed that this equilibrium value is actually ap­
proached for large t. In fact, we have proven the 
following: 

Corollary: With dimension y = 1, let the interaction 
be that of any exponential model Es with ~ tran­
scendental or of any Dyson model. Let </> be any state 
which satisfies </>(aA ) = 0 for all A such that A3 -:;6 0. 
Then 

p[extCO)] ~ Mp[O] 

for every local observable 0. 

We conclude this section with an example which 
shows that one cannot expect the models to be so well 
behaved on all initial states. In particular, we exhibit 
a state which shows recurrences for all ferromagnetic 
Ising-type models. 

Define </> E 12) as ®JEZV /;' where a{It = It for 
j -:;6 0, and a~fo = fo. Then, in the GIM, we have 
from (1) that 

</>[extCa~)] = </>[a~ cos (2Pot) - a~ sin (2Pot)]. 

But Jo(a~) = 0, and so the second term on the rhs 
vanishes. Hence, 

</>[ext(a~)] = I (it)2n </>(P~,,). 22n 
,,~O (2n)! 

= cos (2pt), 
where 

6. RATE OF DECAY TO EQUILIBRIUM 

Most of the proofs in previous sections depended 
on properties of functions of the form 

00 

J(t) = II cos (ant). 
n=1 

We now want to comment on the essential connec­
tion of this function with our problem. We show, in 
particular, thatfis the Fourier transform of a certain 
measure f-l of physical origin and that investigation of 
the structure of this measure can give detailed informa­
tion about the behavior of the system. Before we can 
discuss this further, we need some definitions and 
facts. 

Let f-l be a Borel probability measure, hereafter 
abbreviated Bpm. We denote Borel sets with Lebesgue 
measure zero by Z, and countable sets by C. Then f-l 
is called 

(1) absolutely continuous if f-l(Z) = 0 for all Z, 
(2) singular continuous if f-l(Z) = 1 for some Z 

and f-l( C) = 0 for all C, 
. (3) discontinuous if f-l( C) = 1 for some C. 

An equivalent classification is obtained by using the 
function f-l(Jx) of x E R, called the distribution function 
of f-l, where Ix = {y E R Iy ~ x}. Then f-l is 

(1) absolutely continuous if and only if f-l(Ix) is an 
absolutely continuous point function, 

(2) singular continuous if and only if f-l(Ix) is 
continuous and df-l(Ix)fdx = 0 for almost all x, 

(3) discontinuous if and only if the range of f-lU,,) 
is a countable set. 

If f-l1 and f-l2 are Bpm's, the set function defined by 

f-l1 * f-llA) = f
R
f-l1(A - x) df-l2(X) 

is a Bpm called the convolution of f-l1 and f-l2' If f-l 
is a Bpm, the point function defined by 

fl,(t) = fR eit
" df-l(x) 

is called the Fourier transform of f-l. We then have the 
following connection: If f-l1 and f-l2 are Bpm's, then 
f-l-;;:-f-l2(t) = (t1(t)fl,2(t). Furthermore, the Fourier 
transform is a means of determining continuity 
properties of Bpm's since34 if y is greater than the 
positive integer p, then 

(t(t) = 0:l:CIt\-y) implies that f-l(1,,) E CPo (13) 

Here, we use the notation that a function get) satisfies 
get) = 0 ± [h(t)] if there exist positive constants c and 
d such that Ig(t)1 ::;; ch(t) for all t > d. Also, g E CP 
means that g has continuous derivatives through 
order p. 

We now come back to p[ext(a~)]. From Proposition 
1, we have 
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where flo = O'~ ~kEZV E(lk/)O'~. It is then easy to 
obtain 

p[at(O'~)] = p(O'~ exp [i2HotD. 

Defining ft as the spectral measure of fIp(2Ho) 
corresponding to the form p(O'~ .) = (fIp(O'~)<I>p,' <l>p), 
we have from Stone's theorem that 

(14) 

By a simple generalization of (13) to complex meas­
ures, we have 

Proposition 6: In the GIM, if p[a/t/(O'~)] = 0 ±(Itl-Y) 
for any y greater than the positive integer p, then 
ft(Iz) E CP, where ft is the spectral measure of fIp(Ho) 
corresponding to the form p(O'~ .). 

To show that the available range for the rates of 
decay into equilibrium is wide enough to be of 
interest, we investigate the situation discussed in 
Sec. 5. Therefore, restricting ourselves to dimension 
'JI = 1 and states p which satisfy p(O'A) = 0 for all A 
such that Aa :;6 0, we have, as in (6'), 

p[at<O'~)] = p(0'~)p(e-i2tlot) 
00 

= p(O'~) II cos2 [2E(n)t]. 
n=l 

We therefore need to classify the measures ftL' fts' 
and ft« which have Fourier transform 

00 

II cos [2E(n)t], 
n=l 

with E coming from the finite-range, exponential, and 
Dyson models, respectively: 

(A) For the finite-range models, it is easy to see 
that ft L is discontinuous, producing recurrent behavior. 

(B) For the exponential model E~ with ~ > 2, it is 
known35 that ft~ is singular continuous so that f1~ ¢ Cl 
and, therefore, from (13) that 

00 (2t) II cos2 
-;:; :;6 0:10(1 tl-Y), for any y > 2 if ~ > 2. 

n=l ~ 

In fact, it is further known36 that f-l~ * f-l~ is singular 
continuous for ~ > 3 so that 

ir cos2 (2!) :;6 O±(ltl-Y), for any y > 1 if ~ > 3. 
n~1 ~ 

(C) For the Dyson model Doc, the following lemma 
shows that, for some c > 0, 

00 (2t) 11 cos2 n« < exp [-c ItI 1/«] 

so that ft« E COO • 

Lemma 4: If a > 1, there exists a c > 0 such that 

Proof: For 0 < x < 1, we have 0 < cos x < 1 -
cx2 for some c > 0, and I - x S e-z• Therefore, for 
t > 0 we have 

I fr cos ( ~«) I S II I cos ~ I 
1=1 ] j>t1 /« ] 

( t
2

) <II l-c-- ,2« 
j>t'/11. ] 

S exp (-c II ~:). 
j>t'/rz] 

By integral approximation, 

The transition to negative t then gives the full result. 
QED 

The above classification shows by example how wide 
a range of rates of decay is attainable. To complete the 
picture, we note37 that for no form of interaction in 
the GIM is there a c > 0 such that 

00 

II cos2 [2E(n)t] = 0:lo(e-c/t /). 
n=l 

7. CONCLUSIONS 

The analysis presented in this paper leads to an 
explicit statement on the relation, in the thermo­
dynamical limit, between the spectrum of the "Hamil­
tonian" and the time behavior of the expectation 
values for local observables. In particular, Proposition 
6 shows that, for generalized Ising interactions, the 
degree of continuity of the spectrum oflocal Hamilton­
ians, considered in the Hilbert space generated by any 
initial state, limits the rate at which that initial state 
can approach equilibrium. 
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1. INTRODUCTION 

The second law of thermodynamics is still often 
stated in the manner of Kelvin: It is impossible to 
construct a system that, operating in a cycle, will 
produce no effect other than the extraction of heat from 
a reservoir and the performance of work on a mechanical 
system. Such formulations have a comfortingly 
operational sound, but they are unsatisfactory as a 
basis for a physical theory. Their most serious defect 
is that they are incomplete. For example, they give no 
indication of what processes are possible for a physical 
system. One is forced to rely on intuitive judgements, 

which makes it impossible to construct a logically 
sound theory. To make matters worse, the processes 
required in traditional applications of the second law 
are often "quasi static" or "reversible," and can be 
defined only by subtle limiting procedures. 

Caratheodoryl was the first to attempt an axiomatic 
formulation of thermodynamics. Although his theory 
is not completely general, it does apply to a large 
class of systems. Heat, entropy, and temperature are 
defined in terms of measurable quantities, and the 
assumptions of the older theory are made more 
explicit and simplified. Despite these considerable 
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advances, his theory has been ignored by most 
physicists, probably because they have been unwilling 
to master the necessary mathematics of Pfaffian forms. 2 

In recent years a number of authors have tried to 
simplify or generalize Caratheodory's work. The 
common feature of the new theories is that they make 
assumptions about the possibility of processes with 
arbitrary initial and final states, whereas Caratheodory 
is mainly concerned with neighboring states. The 
simplest of the theories is that of Buchdahl. 9 Its 
generality and rigor are similar to CaratModory's, but 
it uses only elementary mathematics. The most general 
and rigorous theory is due to Giles4 ; that of Falk and 
Jungs resembles it, but is less fully worked out. Both 
theories require nonelementary mathematics-differ­
ent from Caratheodory's, but no simpler. The same 
is true to some extent of the theory of Buchdahl and 
Greve. 6 

We shall attempt to construct a theory of the same 
type as those just described, but simple, general, and 
rigorous. We would, however, point out that this is 
by no means the only sensible approach to thermo­
dynamics. If one wishes to apply or generalize the 
theory, it is often convenient to postulate the existence 
of entropy and temperature functions with the 
desired properties. This procedure, which derives from 
Gibbs, is well exemplified in the books of Guggen­
heim,7 Callen,S and Tisza. 9 As Tisza emphasizes, the 
two points of view are complementary. The advantage 
of ours is that it gives a more immediate insight into 
the meaning of entropy and temperature. 

We shall be mainly concerned with the formal 
structure of thermodynamics-the statement of 
axioms and the proof of theorems-which is of 
course only the skeleton of the subject. To give the 
bare bones life, one must interpret the undefined 
elements of the formal theory in terms of measurable 
quantities. Such interpretations, and the informal 
arguments by which one makes the axioms plausible, 
are not part of the formal theory. We shall always try 
to keep this distinction clear, since failure to do so 
can cause great confusion. We shall, for example, 
speak of the definition of elements in the formal theory, 
but of interpretation or characterization in the informal 
discussion. (E.g., an adiabatic process is an undefined 
element of the formal theory, but it is characterized 
informally as a process in which a system is thermally 
insulated-where thermal insulation is something that 
can be demonstrated in the laboratory.) 

2. INTERNAL ENERGY 

We begin by giving an account of the first law of 
thermodynamics and the definition of internal energy. 

The axioms and theorems of this section are needed 
later, but there is nothing really new; so we will be 
brief. 

Informally, thermodynamics is concerned with 
systems that can sometimes be described in terms of 
macroscopic variables. A macroscopic variable is a 
measurable quantity whose values are not subject to 
significant random fluctuations and are independent 
of any sufficiently careful measurements made on the 
system. (Thus, the mass of gas in a very small volume 
and the momentum of an electron are not macroscopic 
variables). The number of macroscopic variables of a 
given system may differ from time to time. When the 
number is maximal, one says that the system is in 
a state. 10 Any state is determined by the values of a 
maximal set of macroscopic variables. A system in a 
state may evolve in time, either spontaneously or by 
interaction with its surroundings, into another state 
or into no state at all. If it evolves from a state to a 
state, we say that it undergoes a process. 

As axiomatists, we are not concerned with the many 
difficulties associated with the ideas of the last para­
graph. We do not have to talk even about systems. 
All we need say is that there exists a set l: whose 
elements are called states. Time does not appear in 
the formal theory. There is a set n, whose elements are 
called processes, and there are mappings J: n -* l: 
and .'F:n -* l:. If J(7T) = a, .'F(7T) = b, then a is the 
initial state of 7T, b is the final state of 7T, and 7T is a 
process from a to b. If J (7T) = .'F (7T), then 7T is said to 
be cycliC. We assume that, if there is a process from a 
to b and a process from b to c, then there is a process 
from a to c: 

V 7T, a E n 3 l' E n :.'F(7T) = J(a) 

=> J(T) = J(7T) & .'F(T) = .'F(a). 

We use conventional logical notation: read V asfor all, 
E as belonging to, 3 as there exists, => as implies or 
only if, and & as and. We shall also use 3! for there 
exists a unique, -¢:::>for iff or if and only if, and V for or. 

If a system undergoes a process, work may be done 
on it. We assume that this work is measurable. 
Formally speaking, there is a mapping w:n --+ Rl, 
where Rl is the set of real numbers, and W(7T) is caUed 
the work done in 7T. When interpreting the theory, one 
chooses a system of units and takes W( 7T) to be the 
work done on the system as measured in those units. 

We shall be concerned for the rest of this section 
with a special class of processes called adiabatic 
processes. These are characterized as processes that a 
system undergoes when it is thermally insulated. In 
the formal theory we assume that there exists a set 
Ll c n, whose elements are called adiabatic processes, 



                                                                                                                                    

CLASSICAL THERMODYNAMICS SIMPLIFIED 2957 

and we assume that, if there is an adiabatic process 
from a to b and one from b to c, then there is one 
from a to c: 

V Tr, a E d 3 T E d:S(Tr) = J(a) 

~ J(T) = J(Tr) & SeT) = Sea). 

lhere' is not always an adiabatic process from a 
state a to a state b. When there is, we say that b is 
adiabatically accessible from a and write a ~ b. The 
formal definition is a ~ b <=> 3 Tr E d: J(Tr) = a & 
:F(Tr) = b. We assume the following axioms for all 
a, b, eEL: 

1. a-"a; 

II. a -" b & b -" c ~ a -" c; 

III. a -" b V b ~ a. 

An example of an adiabatic process that satisfies I 
is one that begins and ends at the same instant. II is 
simply a reformulation of our previous assumption 
about adiabatic processes. Axiom III, which says that 
one can always go from a to b or from b to a by an 
adiabatic process, entails a restriction on the type of 
system the theory can deal with. It is easy to see, for 
example, that it is not valid for many systems in 
which friction occurs. It might be possible to replace 
III by something weaker: One could try V a, b E 

L 3 c E L: (a ~ c V c ~ a) & (b -" c V C --"7 b). This 
would considerably complicate the theory, however, 
and we shall therefore be content with III. 

The first law of thermodynamics states that the 
work done in an adiabatic process from a to b is 
independent of the adiabatic process chosen: 

IV. V A, Tr E d: J(A) = J(Tr) & SeA) = S(Tr) 

~ W(A) = W(Tr). 

It follows that one can speak without ambiguity of 
the work done in an adiabatic process from a to b. 
The next axiom says that this work plus the work done 
in an adiabatic process from b to c is the work done 
in an adiabatic process from a to c. 

V. V A, Tr, "" Ed: J(I.) = J(",,) & :F(I.) = J(Tr) 

& :F(Tr) = :F(",,) ~ W(A) + W(Tr) = W(",,). 

Note that the processes A, Tr, and"" need not be 
distinct. This fact is used in the proof of our first 
theorem. 

Theorem J: (i) If "" is a cyclic, adiabatic process, 
then W(",,) = O. (ii) If A is an adiabatic process from 
a to band Tr is an adiabatic process from b to a, then 
W(A) = - W(Tr). 

Proof' (i) Consider ,1.= Tr = "" in V. (ii) From I, 
there is an adiabatic process"" from a to a, and, from 
V and (i), W(I.) + W(Tr) = W(",,) = o. 

For any state a E L, a function Ua:L - Rl, called 
the internal energy with respect to a, is defined as 
follows. For all bEL, III implies that there is an 
adiabatic process A from a to b or an adiabatic 
process Tr from b to a. In the first case we define 
Ua(b) = W().) , and in the second case Ua(b) = 
- W( Tr). From IV, it does not matter how A and Tr are 
chosen, and, from Theorem 1, the definition is unam­
biguous when a ~ band b ~ a. 

The internal energies with respect to different 
states are very simply related. 

Theorem 2: Ue = Ua + Kea for all a, c E L, where 
Kea is a constant function. 

Proof(outline): From III, a --"7 c or c --"7 a. Without 
loss of generality one may assume a --"7 c. Given 
bEL, it follows from III that there are four possibili­
ties. These are: (i) a --"7 b & c ~ b; (ii) a -" b & b --"7 c; 
(iii) b --"7 a & c ~ b; and (iv) b ~ a & b --"7 c. The 
theorem is now proved using V, the definitions of Ua 

and Ue , and, in case (iii), Theorem 1. In case (i), for 
example, let A, Tr, and"" be adiabatic processes from 
a to c, c to b, and a to b, respectively. Then W(I.) + 
W(Tr) = W(",,) from V, and hence Ua(c) + Ue(b) = 
UaCb) and Kea(b) = - Ua(c). The other cases are 
similar. 

Any function of the form Ua + K, where a E L 
and K is a constant, is called an internal energy. It 
follows from Theorem 2 that any pair of internal 
energies differ by a constant. Since it rarely matters 
which internal energy is used, we shall normally speak 
of the internal energy and denote it by U. (One may 
say that U is arbitrary to the extent of an additive 
constant.) 

Theorem 3: The work done in an adiabatic process 
is equal to the increase in the internal energy. 

Proof Let Tr E d, J(Tr) = a, S(Tr) = b. From the 
definition of Ua, Ua(b) = W(Tr). From I and Theorem 
I, UaCa) = 0, and hence W(Tr) = Ua(b) - Ua(a). 
Since any pair of internal energies differ by a constant 
function, one has W(Tr) = U(b) - U(a) for any 
internal energy U. 

For nonadiabatic processes it is, in general, untrue 
that the work done is equal to the increase in internal 
energy. We define a mapping Q:II _ Rl by Q(Tr) = 
U(b) - U(a) - W(Tr), where a = J(Tr) and b = :F(Tr) 
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and we call Q(-lT) the heat absorbed in 7T. It follows that 
the increase in internal energy in any process is the 
sum of the work done and the heat absorbed in the 
process and that the heat absorbed in an adiabatic 
process is zero. 

3. ADIABATIC ACCESSmILITY 

The axioms introduced so far are compatible with 
any state being adiabatically accessible from any 
other. In this section, we impose restrictions on 
adiabatic accessibility, and, in particular, we require 
that in any neighborhood of a state there be adiabati­
cally inaccessible states. Before we can make this 
precise, we must define what is meant by a neighbor­
hood, which means that we must impose on the set of 
states the structure of a topological space. 

In this section we shall not be concerned with the 
whole set of states ~, but with a subset S of~. (It will 
turn out that S is the set of equilibrium states of the 
system, see Secs. 4, 6.) We assume that there exists a 
set A whose elements are subsets of S, and such that 
(i) 8 E A, (ii) 0 E A, where 0 is the null set, (iii) 
V B 1 , B2, ... , B fI E A: Bl n B2 n ... n B n E A, (iv) 
V K c A: U BEK B E A. Here n denotes the inter­
section of sets, U their union, and A c B means that 
A is a subset of B. In words, (iii) says that any inter­
section of a finite number of elements of A is an 
element of A, and (iv) says that any union, finite or 
not, of elements of A is an element of A. The pair 
(8, A) is called a topological space, and the elements 
of A are called open sets. By abuse of language, we 
speak of the topological space 8 and the open sets of 8. 
In most applications of the theory, one can label the 
states of a system by sets of n coordinates, that is, by 
points of Rn. The open sets are then defined in the 
obvious way in terms of the usual open sets of Rn. 
Although coordinates are probably necessary to 
specify the topology in applications of the theory, 
they need not be introduced into the formal structure. 

We need very little topology. We recall that, for any 
sets A and B, one defines B - A to be the set of 
elements of B which are not elements of A; that is, 
B - A = {a E B I a rf. A}. If (S, A) is a topological 
space and A c S, then Fr A, the frontier of A, is 
defined to be the set of points b E S such that any 
open set that contains b also contains points of A and 
S - A; i.e., 

bE Fr A -¢:> b E S & V B E A(b E B 

=> 3 a, c E B:a E A & C E 8 - A). 

If Fr A c A, then A is said to be closed. One proves 
easily that A is closed iff S - A is open. 

For any state a E S, we consider the set A(a) of all 
states adiabatically accessible from a; that is, 

A(a) = {b E 81 a=> b}. 

We assume that A(a) is closed for all a E 8. Note 
that this assumption is made purely for mathematical 
convenience, and usually has no physical content 
(there is no way to test it experimentally). We call 
Fr A(a) thefrontier set ofa. 

We assume the following axioms for all a, b E S: 

VI. a E Fr A(a); 
VII. b E Fr A(a) => a E Fr A(b). 

Axiom VI is called the principle of Caratheodory. It 
implies that in any neighborhood of a state a, Le., in 
any open set that contains a, there are states not 
adiabatically accessible from a. Axiom VII is a 
slight extension of III. If bE Fr A(a), then in any 
neighborhood B of b there is a state CB which is not 
adiabatically accessible from a. From III, a is adiabati­
cally accessible from cB' or a E A(cB ). It does not 
follow from III that a is adiabatically accessible from 
b, the limit point of the states c B' but this is implied by 
VII, since a E Fr A(b) => a E A(b). 

We now prove that two states are mutually adia­
batically accessible iff all states adiabatically accessible 
from one are adiabatically accessible from the other 
and iff one belongs to the frontier set of the other. 

Theorem 4: 

Va, b E 8:a ~ b & b -" a -¢:> A(a) = A(b) 

-¢:> b E Fr A (a). 

Proof" (i) If a -" band c E A(b), then a ~ b & 
b -"7 C, and a -"7 C from II. Thus c E A (a) and A(b) c 
A (a). Similarly, b -'7 a => A(a) c A(b), and hence 
a -"7 b & b -"7 a=> A(a) = A(b). (ii) If A(a) = A(b), 
then Fr A (a) = Fr A(b), and bE Fr A (a) from VI. 
(iii) If b E Fr A(a), then b E A(a) since A(a) is closed, 
and it follows that a -"7 b. From VII, b E Fr A(a) => 
a E Fr A(b), and hence b ~ a. Thus bE Fr A(a) => 
a -"7 b & b -" a. The proof is completed by using the 
transitive property of =>. 

If I.'l is a set of sets and A is a set, then one says that 
Q partitions A if every element of A is an element of 
exactly one of the elements of Q. (As an example, take 
A = R2 and Q to be the set of all lines in R2 parallel 
to a given line.) 

Theorem 5: The set ~ = {Fr A(a) I a E S} partitions 
S. 

Proof: From VI, a E Fr A(a), and so every element 
of S is an element of one of the elements of ~. If a E 
Fr A(b), then A(a) = A(b) from Theorem 4, and 
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hence Fr A(b) = Fr A(a). We call ~ the set offrontier 
sets. 

4. ANERGIC PROCESSES 

It is not obvious how many frontier sets there are, 
nor whether one can label them with one or more 
real parameters. We prove in the next section that, in 
fact, one real parameter is sufficient. But, first, we 
must introduce a new set of processes called anergic 
processes (they are a slight generalization of what 
BuchdahP calls isometric processes). 

One can partially characterize an anergic process 
as a process in which no external force does work on 
the system in any time interval. (Very roughly, one 
can say that anergic processes are "no work" proc­
esses, just as adiabatic processes are "no heat" 
processes.) This characterization is sufficient for some 
systems, but not for all. To be more precise, we assume 
that the states of L can be labeled by a set of co­
ordinates. That is, there are functions Xi: L _ Rl, 
i = 1,2, .. " such that the mapping a - (xI(a), 
x2(a), ... ) is an injection (or one-to-one). We assume 
that the cooordinates can be chosen so that: (i) 
Xl = U, the internal energy; (ii) there is a subset 
Ie {2, 3, ... } such that the Xi with i E I correspond 
to physical quantities that can be measured at all 
times (not only when the system is in one of the states 
of L); (iii) in any process in which the Xi are constant 
at all times for all i E I, the work done by each 
external force is zero in every time interval. 

We can now characterize an anergic process from 
a to b as a process in which Xi has the same value 
whenever it can be measured, for all i > 1. In partic­
ular, the Xi are constant at all times for i E I, and 
xi(a) = xi(b) for all i > 1. It follows from (iii) that 
this is compatible with the previous, partial characteri­
zation. 

The coordinates Xi are useful in characterizing 
anergic processes, but they play no part in the formal 
theory, where anergic processes are undefined 
elements. Formally, we assume that there exists a set 
N c n whose elements are called anergic processes 
and that the following axioms are satisfied: 

VIII. Va E L 3 71" E N: J(7I") = .r(7I") = a; 

IX. V 71", U E N 37 E N:.r(7T) = J(u) 

=> J(7) = J(7I") & .r(7) = .r(a); 
X. V7TEN:W(7I") =0. 

Axioms VIII and IX are similar to I and II for 
adiabatic processes. Note that X is not a definition 
of anergic processes; i.e., it is possible to have 
W(7I") = 0, 71" ¢ N. If 71" is an anergic process from 
a to b, then the heat absorbed in 71" is Q(7T) = U(b) -
U(a) - W(7I") = U(b) - U(a) by X. Thus, the heat 

absorbed is the same in all anergic processes from 
a to b. 

In what follows, we restrict ourselves once more to 
the subset S of L. 

Let dom q be the set of all (a, b) E S X S such that 
there is an anergic process from a to b [that is, 

(a, b) E dom q <=> a, b E S & 3 71" E N: J(7I") = a 

& .r(7T) = b]. 

Define a mapping q; dom q - Rl by q(a, b) = 
U(b) - U(a). From the remarks above, q(a, b) is the 
heat absorbed in any anergic process from a to b. 
Axiom VIII implies that (a, a) E dom q for all a E S. 
Axiom IX implies that if (a, b), (b, c) E dom q, then 
(a, c) E dom q, and, from the definition of q, one has 
q(a, c) = q(a, b) + q(b, c). 

If there is an anergic process from a to b in which 
the heat absorbed in nonnegative, then the next axiom 
asserts that there is also an adiabatic process from 
a to b. If the heat absorbed is negative, then there is 
no such adiabatic process. 

XI. V (a, b) E dom q:q(a, b) ~ 0 <=> a ~ b. 

If 71" is an energic process from a to b in which the 
heat absorbed is k, then, in terms of our previous 
informal characterization, we have Xl (b) = U(b) = 
U(a) + k = Xl (a) + k. Since xi(b) = xi(a) for i > I, 
it follows that the final state b of the anergic process 
is uniquelyll determined by the initial state a and by 
the heat absorbed k. It also seems plausible that, by 
suitably choosing k, one should be able to go from a 
to some state in any frontier set. Fortified by these 
heuristic arguments, we assume the following axiom: 

XII. Va E S,V P E ~ 3! b E p: (a, b) E dom q. 

It is easy to prove that there is no anergic process 
from a state b to a distinct state c belonging to the 
same frontier set and to show that, if there is an 
anergic process from a to b, then there is one from 
b to a. 

Theorem 6: 

V p E 'J,V a, b E p: (a, b) E dom q <=> a = b. 

Proof: (i) If a = b, then (a, b) E dom q by VIII. 
(ii) Assume bE p, (a, b) E dom q. From XII, b is 
unique. But (a, a) E dom q from (i), and a E p. 
Hence, a = b. 

Theorem 7: 

Va, b E S:(a, b) E domq => (b, a) E domq. 

Proof: Let a E oc E!l'. From XII, 3! c E ex.: (b, c) E 

dom q. Since (a, b) E dom q, IX implies that (a, c) E 

dom q, and c = a by Theorem 6. Since q(a, b) = 
U(b) - U(a), one has q(a, b) = -q(b, a). 
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The set of anergic and adiabatic processes is very 
restricted. In fact, if the initial state of such a process 
belongs to S, the final state is the same as the initial 
state (the process is cyclic). 

Theorem 8: 

Va E S,V A E ~ ('\ N: J(A) = a=> J"(A) = a. 

Proof" Suppose that a E S and A is an anergic and 
adiabatic process such that J(A) = a and J"(A) = c. 
Since A is anergic and adiabatic, (a, c) E dom q 
andq(a, c) = O. From Theorem 7, (c, a) E dom q, and 
q(c, a) = O. Hence, a ~ c & c ~ a from XI, and 
c E Fr A(a) from Theorem 4. It follows from Theorem 
6 that c = a. 

Physically speaking, we say that a system is isolated 
if it is thermally insulated and no force does work on 
it in any time interval. We characterize an equilibrium 
state as a state in which an isolated system can 
remain indefinitely. The processes which an isolated 
system undergoes must be adiabatic, but they need 
not be anergic. In our characterization of anergic 
processes at the beginning of this section, we re­
quired both that the coordinates Xi for i E I should 
be constant (which is all that is needed to ensure that 
no force does work) and that each of the Xi with 
i > 1 should have the same value at the beginning 
and at the end of the process.12 The latter condition 
need not always be satisfied by an isolated system. 
However, it is very often satisfied for the states of S 
(in the simplest cases there are no Xi such that i > 1, 
i ¢ I). Theorem 8 implies that in such cases all the 
states of S are equilibrium states. 

If there are anergic processes from a to b and from 
c to d, where a and c belong to the frontier set ex and 
band d to the frontier set (J, then the heat absorbed 
q(a, b) need not be the same as q(c, d), but it does 
have the same sign. 

Theorem 9: 

Vex, {J E'S,V (a, b), (c, d) E dom q:a, c E IX & b, dE {J 

=> (q(a, b) ~ 0 <=> q(c, d) ~ 0). 

Proof" Suppose not: Suppose q(a, b) ~ 0 and 
q(c,d) <0. From Theorem 7, (d,c)Edomq, and 
qed, c) = -q(c, d) > o. It follows from XI that 
a --,. band d --,. c. Since c E ex = Fr A(a), one has 
c --,. a by Theorem 4, and similarly b --,. d. From II, 
a -7 d & d ~ a, and dE Fr A(a) = oc from Theorem 
4. Since c, dE ex, and (c, d) E dom q, Theorem 6 
implies that c = d and q(c, d) = U(d) - U(c) = O. 
This contradicts the assumption q(c, d) < o. For the 

caseq(c, d) ~ O,q(a, b) < 0, one has only to exchange 
the roles of (a, b) and (c, d). 

5. EMPIRICAL ENTROPY 

We now label the frontier sets with a real param­
eter; that is, we define a real function on'S. One can, 
in fact, do this in many ways. For example, given any 
state a E S, one may take the value of the function 
at the frontier set {J to be the heat absorbed in an 
anergic process from a to a state of {J. If b is any 
state of {J, then we call the value of the function at {J 
an empirical entropy of b. Different choices of func­
tion give different empirical entropies, but we prove 
that in all cases the principle of increase of entropy 
is satisfied (Theorem 12)· 

Given any a E S, it follows from XII that 
V {J E 'S 3! b E {J : (a, b) E dom q. Hence one can define 
a mapping 1a:'S ~ Rl by 1a({J) = q(a, b). We prove 
that fa is an injection. 

Theorem 10: 

Va E S,V (J, y E 'S:Ia({J) = Ia(y) => {J = y. 

Proof· From XII, there exist unique states bE {J, 
C, C' E Y such that (a, b), (a, c), (b, c') E dom q. From 
IX, (a, c') E dom q, and hence c = c' by XII. Since 
q(a, c) = q(a, b) + q(b, c), q(a, c) = Ia(y) , q(a, b) = 
1a({J) , and fi{J) = fiy) , one has q(b, c) = 0, and 
b ~ c from XI. From Theorem 7 and XI, (c, b) E 
dom q, q(c, b) = 0, and c --,. b. Theorem 4 implies 
bE Fr A(c), and (J = y. 

Corollary: From the proof of the theorem and the 
equation q(b, c) = Jr,(y) , it follows that 

Va E S,V (J, y E'S 3 b E (J:Ia(y) = 1a({J) + Jr,(y). 

If a E ex E 'S, then, from Theorem 6, Ia(ex) = 
q(a, a) = O. Conversely, from Theorem 10, iffa(IX) = 
0, then a E IX. 

From Theorem 9 one can deduce conditions that 
must be satisfied by any pair of functions la, Jr, . 

Theorem 11: 

Va, b E S,V (J, y E 'S:Ia(y) -1a({J) ~ 0 

<=> Jr,(y) - Jr,({J) ~ O. 

Proof" From the Corollary to Theorem 10, there 
exist c, dE (J such that Ia(y) = li{J) + Ie(y) , hey) = 
Jr,({J) + fiy)· From XII there exist c', d' E Y such that 
Ie(y) = q(c, c'), Ia(y) = qed, d'). Theorem 9 implies 
that !c(y) ~ 0 <=> Ia(y) ~ 0, and the theorem follows. 

Since la is an injection, the inverse f;l exists for all 
a E S. The transformation functions Fba can therefore 
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be defined by Fba = fr, 01;;1 for all a, b E S. We assume 
that the Fba are differentiable. That is, the derivative 
F~a(x) exists for all x E/a('J). One proves from Theo­
rem 11 that F~a is everywhere nonnegative. Since 
F~b exists everywhere, it follows that F~a has no zeros, 
and is therefore strictly positive for all a, b E S. 

It is convenient to consider a set of functions which 
includes thela as a subset. We definef:'J --+ Rl to be a 
parametrization of 'J if for some a E S, one has f = 
F;;1 0 fa' where the functions Fa and F;;l are differenti­
able and F~ is strictly positive. It follows at once that 
fis an injection. From the results of the last paragraph 
we see that parameterizations can be defined in terms 
of any of the functions fa and that fa is itself a param­
etrization of'J for all a E S. 

If f is a parametrization of'J and a E S, there is a 
unique oc E 'J such that a E oc. One can therefore 
define a function Z:S --+ R1 by Z(a) = f(oc). We call 
Z an empirical entropy, and Z(a) = f(oc) is an 
empirical entropy of a. Note that different parametri­
zations of 'J give rise to different empirical entropies. 
If we speak of the empirical entropy, it is to be under­
stood that we are considering a definite parametri­
zation. The physical significance of empirical entropy 
is shown by the following theorem. 

Theorem 12 (Principle of Increase of Entropy): For 
all a, bE S, b is adiabatically accessible from a iff 
the empirical entropy of b is not less than that of a. 

Proo!, (i) If a, bE oc E 'J, then a ~ ~ by Theorem 4. 
Since the empirical entropy of a is the same as that of 
b, the theorem is trivially satisfied. (ii) (a) Suppose 
a E oc, bE f3, where oc, f3 E 'J, oc ¥: f3. From XII and 
Theorem 7, 3! c E oc: (b, c), (c, b) E dom q. Since oc ¥: 
f3,fr,(oc) = q(b, c) ¢ 0 and!c(f3) = q(c, b) ¥: O. Hence 
by XI,fr,(oc) > O<;:>b ~c, and!c(f3) > O<;:>c ---,b. 
Now let f be any parameterization of 'J. One has 
J" = Fb 0 f, where F; is strictly positive, and it follows 
from the mean value theorem that h( oc) - J,,(f3) = 
K(f(oc) - f(f3» , where K> O. Since J,,(f3) = 0, it 
follows thatf(oc) - f(f3) > 0 <;:> b ~ c. Similarly, or 
from III, one shows f(oc) - f(f3) < 0 <;:> c ---, b. (ii) 
(b) Assume that a ~ b andf(oc) - f(f3) > O. From 
(a), b -, c and, from Theorem 4, c -, a. Hence 
a -, b & b ~ a, and oc = f3, from II and Theorem 4. 
This contradicts the assumption oc oF f3, and it follows 
that a --, b => f(oc) - f(f3) < O. Conversely, assume 
thatf(oc) - f(f3) < O. From (a), c -, b, and, since 
a -, c by Theorem 4, one has a -, b from II. 

To understand the physical significance of the F~, 
let f be a parameterization of ~ and write f(oc) = 
z andf(f3) = z + h, so that!a(oc) = Fiz) and!a(f3) = 

Fiz + h). From the Corollary to Theorem 10, there 
exists b E oc such that fa(f3) =.Ia( oc) + fr,(f3) , and, from 
XII, there exists c E f3 such that h(f3) = q(b, c) = 
U(c) - U(b). It follows that 

!a(f3) - !a(oc) = Fa(z + h) - Fiz) = U(c) - U(b) 

and 

hF~(z) = U(c) - U(b) + o(h) = q(b, c) + o(h) 

as h --+ O. Thus F~(z) is the rate of change of internal 
energy with respect to z in an anergic process or the 
heat absorbed per unit change of z in an anergic 
process. 

6. STATES HAVING THE SAME TEMPERATURE 

One can often give empirical meaning to the 
statement "state a has the same temperature as state b." 
The operations by which one verifies such a statement 
usually involve some kind of thermometer, but they 
do not require any particular temperature scale. (We 
can graduate the thermometer arbitrarily.) One can 
imagine a system for which two states have the same 
temperature iff they have the same empirical entropy. 
This we exclude. We assume, in fact, that there are 
states which have the same temperature and any 
values of the empirical entropy. 

The above ideas are formalized in terms of an 
equivalence relation on the set of states S. We recall 
that an equivalence relation on a set B is a subset R 
of B x B such that, for all a, b, C E B, (a, a) E R, 
(a, b) E R => (b, a) E R, and (a, b) E R & (b, c) E R => 
(a, c) E R. The axiom is the following. 

XIII. There exists an equivalence relation b on S 
and a state ao E S such that V f3 E 'J 3 b E f3:aobb. 

If (a, b) E b, then we write abb and say that a has 
the same temperature as b. It follows that for all 
a, b, c E S, aba, abb => bba, and: abb & bbC => abC. 
One can, of course, replace ao in XIII by any state 
bo E S such that bo bao' The existence of the equiva­
lence relation b is roughly equivalent to what is called 
the zeroth law of thermodynamics in other treatments of 
the subject. 

For the sake of simplicity, we shall use Axiom 
xm, but one can develop the theory on the basis of 
a more complicated but much weaker assumption 
(see XIIl' below). Roughly speaking, the idea is that 
one should demand that XIII hold, not for all sets of 
~, but only for neighboring sets. To make this precise, 
let f be a parameterization of ~ and J be a finite or 
infinite set of consecutive integers; e.g., one might 
have J = { ... , -2, -1,0,1,2, ... }. For all n EJ 
let In C Rl be an open interval such that UnEJ In = 
f(~), In n In+l oF cp, and In n In+2 = 0 for all n, 
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n + I, n + 2 EJ. Define ~n = {IX E ~ If(IX) = In}. 
We then have UnEJ ~n =~, ~n (\ ~n+l -:;E: 0, and 
~ n (\ ~ n+2 = 0 for all n, n + I, n + 2 E J. A set 
a = {~n In E J}, where J and ~ n satisfy the above 
conditions, is called a countable, open cOl'ering of~. 
We calJ' now state the modified form of Axiom XIII. 

XlII'. There exists an equivalence relation b on S 
and a countable open covering a of ~ such that 
V ~ n E a 3 an E IX E ~ n ,V /3 E ~ n 3 b E /3: an bb. 

7. TEMPERATURE AND ENTROPY 

The parameterizationsfa of~ and the corresponding 
empirical entropies depend on an arbitrary choice of 
state a, and they cannot be expected to have any deep 
physical significance. In order to find a nonarbitrary 
entropy function and also a nonarbitrary tempera­
ture function, we use another of Caratheodory's 
ideas. We consider a compound system that consists 
of two identical subsystems which have the same 
temperature (a more precise statement is given below). 
We assume that all the previous theory applies 
both to the compound system and to the subsystems. 
We assume too that certain specified processes of 
the subsystems correspond to adiabatic processes of 
the compound system. One can then show that the 
empirical entropy of the compound system is a 
function only of the empirical entropies of the sub­
systems . and that the parametrizations fa must 
satisfy a fairly restrictive condition (Axiom XIV 
below). Using this result, one easily proves the 
existence of nonarbitrary temperature and entropy 
functions. 

In carrying out the program just outlined, one has 
a choice of tactics: Either one can construct a com­
pletely rigorous theory of compound systems, or 
one can give a heuristic argument to make it plausible 
that the parametrizations fa should satisfy a certain 
condition, and can then adopt this condition as an 
axiom of the formal theory. We choose the second 
alternative because it is simpler. (A brief, formal 
account of compound systems is given in the 
Appendix.) 

More formally, one considers a set ~c = ~ x ~ 
and a set Sc c S x S c ~c such that (a, b) ESc <=> 
abb, where ~ and S are sets of states of a subsystem 
and b is the relation on S that satisfies Axiom XIII. 
We assume that all the theory that has been developed 
up to now is valid for ~, S, and the sets of processes 
11,~, and N and that it is also valid for ~c, Sc, and 
the corresponding sets of processes 11 c, ~ e, and N c. 
(If Ae E ~e, we say that Ae is an adiabatic process 
of the compound system, etc.) The relation b on S 
and the corresponding relation be on Se are assumed 

to satisfy (a, b)bC(C, d) <=> abC for all (a, b), (c, d)E 
Sc· 

Let us denote adiabatic accessibility in the com­
pound system by ~c. We assume that adiabatic pro­
cesses in the subsystems induce an adiabatic process in 
the compound system: a ~ b & c ~ d~ (a, c) ~c 
(b, d) for all (a, c), (b, d) E Sc. If in addition 
a, bE IX and c, dE /3, where IX, /3 E~, then Theorem 
4 implies that a ~ b & b ~ a and c ~ d & d ~ 
c. It follows that (a, c) ~e (b, d) and (b, d) ~e 
(a, c), and Theorem 4 for the compound system 
implies that (a, c) and (b, d) belong to the same 
frontier set: (a, c), (b, d) E Yc E ~ c. We have there­
fore proved that to each (IX, /3) E ~ X ~ there corre­
sponds a unique Ye E ~ e such that a E IX & bE /3 ~ 
(a, b) E Ye for all (a, b) ESe, and we can define a 
mapping K:P X P ---+- Pc, K(IX, /3) = Ye' In terms of 
parametrizations f of ~ and fe of ~ e, one writes 
Ze = fdyd, Zl = f(IX) , Z2 = f(/3) , and 

g = f 0 K 0 (f-l,f-1), 

and one has Z e = g(Zl , Z2)' Since Zl, Z2 , and Z e are the 
empirical entropies of states a E IX, bE /3, (a, b) EYe, 
respectively, we have shown that the empirical entropy 
of any state (a, b) ESe is determined by the empirical 
entropies of a and b. 

We do not assume that the only adiabatic processes 
of the compound system are those induced by adia­
batic processes of the subsystems. Since the compound 
system absorbs no heat in an adiabatic process, it 
may seem reasonable that the amount of heat 
absorbed by one subsystem should be minus the 
amount absorbed by the other. However, an implicit 
assumption here is that the heat absorbed by the 
compound system is the sum of the heats absorbed 
by the subsystems, which is not always true. We shall 
assume it to be true in the special case when the 
subsystems undergo anergic processes and are 
always at the same, ~r almost the same, temperature. 

To be specific, we consider an adiabatic process of 
the compound system from (a, b) E Se to (c, d) E Se, 
where both states have the same empirical entropy Z e . 
The empirical entropies of the states a, b, c, and d of 
the subsystems are Zl, Z2, Zl + bz1 , and Z2 + bz2, 
respectively. One subsystem undergoes an anergic 
process from the state a to a state a' with empirical 
entropy Zl + bZ1 and then an adiabatic process from 
a' to c. The other subsystem undergoes an anergic 
process from b to a state b', with empirical entropy 
Z2 + bz2 , and then an adiabatic process from b' to d. 
We assume that, for small bz1 , and bz2 , the heat ab­
sorbed by the compound system is the sum of the 
heats absorbed by the subsystems. Since the com­
pound system undergoes an adiabatic process, this 
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implies that F~(Zl)c5z1 + F~(Z2)c5z R:J 0 (cf. the end of 
Sec. 5). Since Zc = g(Zl, Z2) and the states (a, b) and 
(c, d) have the same empirical entropy, we have 

Provided that Og/OZI and Og/OZ2 do not vanish, we 
can solve these equations, and find 

The right-hand side of this equation depends only 
on Zl and Z2' On the left-hand side, a and b are any 
states of S with empirical entropies Zl and Z2, respec­
tively, subject only to the condition that a has the 
same temperature as b [since (a, b) E Sel. It follows 
that, if i, j E S have empirical entropies Zl and Z2' 

respectively, and i has the same temperature as j, then 
F~(Zl)/F~(Z2) = F;(Zl)/F;(Z2)' 

We emphasize that the argument of the last para­
graphs is not rigorous and is not part of our axiomatic 
structure. Its purpose is only to make the next axiom 
plausible. 

XIV. Y z, W Ef('J), Y a, c Ef-1(z), Y b, d Ef-l(W): 
a'bb & c'bd => F~(z)/F;(w) = F;(z)/F~(w). 

We have stated XIV in terms of a parameterization 
f of 'J and the functions Fa = fa 0 f-1, but one shows 
easily that it is, in fact, independent of the choice of j 
and represents a condition imposed on the fa. To 
see the physical meaning of XIV, use the interpreta­
tion of F~ at the end of Sec. 5. 

As a special case of XIV, we put Z = wand a = b. 
One then has c'bd => F;(z) = F~(z) for all z Ef('J) 
and for all c, d Ef-l(Z). 

A temperature function is defined to be a mapping 
T: S -+ Rl that satisfies the conditions (i) Y a, 
bE S:a'bb => T(a) = T(b), (ii) Y rx E 'J,Y a, b E rx:z = 
f(rx) => T(b) = T(a)F~(z)IF~(z), and (iii) 3 a E S: 
T(a) > O. We note that (ii) is independent of the 
choice of parametrization f 

To prove the existence of a temperature function, 
we first choose T(ao) > 0, where ao is the state that 
appears in XIII. If dES, then there exists a unique 
fJ E;r such that dE fJ. From XIII, there exists b E fJ 
such that ao'bb. Define T(d) = T(ao)F~(w)IF~(w), 
where w = f(fJ). (Recall that F~ is strictly positive.) 
This definition is independent of the choice of the 
state b, since, if c E fl, and ao13c, then b13c and F~(w) = 
F;(w) from XIV. Again using XIV, one verifies that 
(i), (ii), and (iii) are satisfied. Since F~ is strictly 
positive for all a E S, it follows that T is strictly 
positive. 

If tis any temperature function, then one can define 
a function r = 1'1 T (this makes sense because T is 
strictly positive). The conditions (i) and (ii) imply that 
a13b => rea) = reb) for all a, b E S and that rea) = reb) 
for all rx E'J and for all a, bE rx. It follows from 
XIII that rea) = A, a constant, for all a E 8, and 
hence t = AT. From (iii), one has A > O. We have 
therefore proved that a temperature function is 
uniquely determined by conditions (i), (ii), (iii), and 
by its value (necessarily positive) at a single state. 

If one uses Axiom XIII' instead of XIII, the proof 
of the existence and uniqueness of a temperature 
function is only slightly more complicated. The proof 
already given establishes the existence and unique­
ness properties of temperature functions restricted 
to. the sets 'J n' and one has only to show that these 
functions can be chosen so that they coincide on the 
intersections of their domains (proof by induction 
on n). 

From condition (ii), one sees that for any tempera­
ture function T and for any rx = f-1(z) E'J the ratio 
F~(z)IT(b) is constant for all bE rx. One can therefore 
define a function s' :f('J) -+ Rl by s'(z) = F~(z)IT(b), 
where b E f-1(z). We assume that s' is continuous on 
f('J), and it follows that there exists a function s on 
j('J) whose derivative is s'. Since the functions F~ and 
T are strictly positive, so is s', and this implies that 
so f is a parametrization of 'J. For a given tempera­
ture function T, s 0 f is arbitrary to the extent of an 
additive constant, but it is independent of the param­
etrization f (i.e., if J is another parametrization of 
'J and Fb =j;,oJ-l, s'(z) = F~(z)IT(b), then soJ= 
s ~f). If T is replaced by ~T, where A > 0, then s is 
replaced by SIA. 

The function S:S -+ Rl defined by Sea) = so f(rx) , 
where a E rx, is called the entropy. Like so j, it is 
arbitrary to the extent of an additive constant for 
a given temperature function T, and it is replaced by 
SjA if T is replaced by AT. Since S is an empirical 
entropy, it satisfies Theorem 12, the principle of 
increase of entropy. 

It was shown in Sec. 5 that the heat absorbed in 
an anergic process Tr from a Ef-l(Z) to b Ef-l(Z + h) 
is Q(Tr) = U(b) - U(a) = hF~(z) + o(h) as h -+ 0. 
Since hF~(z) = T(a)hs'(z) + o(h), one has Q(Tr) = 
U(b) - U(a) = T(a)(S(b) - Sea)] + o[S(b) - Sea)] 
as S(b) - Sea) -+ O. 

The existence of temperature and entropy functions 
is the essential content of the traditional second law of 
thermodynamics. For completeness, we note that the 
third law states that the internal energy and the 
entropy are bounded below, and that, as the internal 
energy approaches its lower bound, so does the 
entropy, and the temperature approaches zero. 
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XV. The internal energy U has a greatest lower 
bound glb U, the entropy S has a greatest lower bound 
glb S, and for all sequences 

{anESln= 1,2,3,"'}: 

lim U(an) = glb U => lim Sean) = glb S 
n-oo n-oo 

where T is any temperature function. 

One can, of course, choose the arbitrary constant 
in S so that glb S = O. 

We note finally that the theory can be easily 
generalized to include states of negative temperature. 
Instead of a single set S, one assumes the existence 
of two disjoint sets S, S, such that S, S c ~. The 
axioms satisfied by S exactly parallel those satisfied by 
S. In particular, XIII (or XIII') holds for S. However, 
no state of S has the same temperature as any state of 
S. A temperature function T is defined on S as before. 
A function T: S --+ R1 is defined which satisfied the 
conditions (i) and (ii) for a temperature function. 
Instead of condition (iii), we require that there exists 
a E S such that T(a) < O. One can then define a 
generalized temperature T* on SuS such that T* 
restricted to S is T and T* restricted to S is T. 

8. CONCLUSION 

We have shown that one can develop thermody­
namics in a manner which is rigorous, and also quite 
simple and general. The distinguishing features of our 
treatment are the use of anergic processes, rather than 
quasistatic or reversible processes, and the very 
sparing use of arguments that involve compound 
systems. 

The main purpose ofaxiomatizations of the present 
kind is to make clearer the physical significance of 
such abstract concepts as entropy and temperature. 
It is also possible that axiomatization may lead to 
generalizations of the theory (cf. the remarks follow­
ing Axiom III). From a broader point of view, one 
can argue that no physical theory is complete until it 
has been axiomatized. Certainly, one cannot under­
stand the nature of physical theories until one has 
performed a few such dissections. 

APPENDIX 

We here give an account of compound systems 
which is a little more complete and general than that 
in Sec. 7. One should note that, following Caratheod­
ory, we use compound system in a very special sense. 
The subsystems of a compound system are not 
thermally insulated from one another, and the sum 

of their internal energies is equal to the internal 
energy of the compound system. Other kinds of 
compound system are sometimes discussed in thermo­
dynamics. 

We consider a compound system composed of two 
subsystems (the generalization to any number is 
trivial). Quantities referring to the subsystems are 
labeled by suffixes I and 2, and those referring to 
the compound system, by a suffix C. We introduce 
sets of states l:n' Sn' sets of processes TIn' Lln' N n, 
etc., where n = I, 2, C, and we assume that all our 
previous assumptions about ~, S, etc., also hold for 
~n' Sn' etc. 
_ We assume that there exists an equivalence relation 
lJ on Sl U S2 such that the restriction of 'G to S p is 
lJ p , for P = I, 2. The set of states ~ 0 is defined by 
~o = ~1 X ~2' and So is defined by 

So c Sl X S2' (aI' a2) E So -¢:> a11;a2' 

The equivalence relation lJo on So is defined by 

(aI' a2) lJ o( b1, b2) -¢:> a1 ~b1 . 

In accordance with the general assumption of the last 
paragraph, the lJn satisfy Axioms XIII and XIV, for 
n=I,2,C. 

If an' bn E ~n and bn is adiabatically accessible from 
an, we write an --., n bn • We assume that for all (aI' a2), 
(bi>b2)ESo 

a1 --., b1 & a2 --., b2 => (aI' a2) --., 0 (b1, b2). 

By an easy modification of the proof of Sec. 7, one 
shows that there exists a mapping K:(f1 X (f2 --+ (f 0 

such that 

a1 E ot1 & a2 E ot2 => (aI' a2) E K(ot1' ot2) 

for all (aI' a2) E So. 

Further, if fn is a parametrization of the set (f n of 
frontier sets, then there exists a mapping 

g:h«(f1) x };«(f2) --+ fc«(f d 
which determines the empirical entropy of any state 
(aI' a2) E So in terms of the empirical entropies of 
a1 and a2' 

We assume that anergic processes in the subsystems 
induce an anergic process in the compound system. 
That is, for all (aI' a2)' (b1, b2) E So, 

(aI' b1) E dom q1 & (a2' b2) E dom q2 

=> «aI' a2), (b1, b2» E dom q 0, 

where the functions qn are defined in the manner of 
Sec. 4. We also assume that, with a suitable choice of 
the arbitrary constants, the internal energy of the 
compound system is the sum of the internal energies 
of the subsystems; i.e., 

U 0(a1, a2) = U1(a1) + U2(a2) 
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for all (aI' a2) E So. It follows from the definitions of 
the paramet'rizations ina of a' n that 

!Oac({3c) =!lal({3I) + !2a.({32) 

for all ao = (aI' a2) E So, where 

{3n E a' nand (3o = K({3l' {32)' 

In terms of any parametrizations!n of a' n , we write 
!nC{3n) = Zn, Fna = ina o!-;;1, and we have 

F Oa/z c) = FlaJZl) + F2a/Z2) 

for all Zl E!l(a'l) and for all Z2 E!2(a'2), where Zo = 
g(Zl' Z2)' It is assumed that g and the Fna are differ­
entiable, and it follows that 

F~ac(ze) z,0g (Zl' Z2) = FPa/z p) 
UZp 

for P = 1, 2. Using this result, one shows that 
Axiom XIV for the compound system is compatible 
with Axiom XIV for the subsystems and that 

V Zl EN~I\), V Z2 E!2(a'2), V aI' bl E!ll'Zl)' 

V a2. b2 Ef21(Z2):a l t;a2 & bl t;b2 ~ F{al(Zl)/F~a.(Z2) 
= F{bl(ZI)/F~b.(Z2)' 

As in Sec. 7, temperature functions T p are defined 
on Sp for P = 1, 2. Given (aI' a2) E So, one can 
determine the T p uniquely by choosing 

TICal) = T2(a2) = To. , 
where To> O. If ap E IXp E a' p, bp E IXp. and bl~b2' 
then, from the equation at the end of the last para­
graph and property (ii) of temperature functions, we 
have Tl(b1) = T2(b2). If dp E{3pEa'p and dl~d2' 
then, from XIII, there exist Cp E (3p, ep E IXp such that 
cpbpep and hence cp~ep. We assume that the ep 
may be chosen so that el 'Ge2' It then follows from 
our previous result that TI(el) = T2(e2), while from 
the transitive property of ~ we have CI 'Gc2 • From 
property (i) of temperature functions, T p(cp) = 
Tp(ep), and hence TI(CI ) = T2(C2). Again using the 
equation at the end of the last paragraph'and property 
(ii), one finds that TI(dl ) = T2(d2). We have therefore 
proved that 

V dp E Sp:dl~d2 ~ TI(dl ) = T2(d2). 

A temperature function To: So - RI is defined by 
To(al • a2) = TI(al ) = T2(a2) for all (aI' a2) E So. 
Conditions (i) and (iii) of Sec. 7 are trivially satisfied. 
To show that (ii) is satisfied, we must prove that 

V !Xo E a' o:V (aI' a2). (d l , d2) E !Xo: Zo = !cCIXe) 

~ T(ldl , d2) = To(al , a2)F~(dl.d.)(Zc)/FC(al.a.)(ze). 

We take 

ap E rxp = fINzp), dp E (3p = r;}(wp). 

where 

g(Zl' Z2) = g(Wl' w2) = Zo' 

It follows from Axiom XIII that there exist ep E IXp, 
Cp E {3p such that ep'Gcp. We again assume that the 
e p may be chosen so that el 'Ge2' and it follows that 
Cl'GC2 and (el • c2) E So. Since (cI , c2)~C(el' e2) and 
(cI , c2), (el , e2) E IXo, Axiom XIV implies that 

FC(el.e.)(ze) = FC(CI.C.)(Za>. 

Substituting F~(dl.d.) in terms of F~dl' etc., one finds 

To(al , a2)Fc(dl.d2)(ze)/F~(al.a2)(zO) 
= TI(al)F {dl( wl)F {e.(zl)/F {Cl( wl)F{a.(ZI) 

= Tl(al)TI(dl)Tl(el)/Tl(cl)Tl(al) 

= Tl(dl) = To(dl , d2). 

The functions s~ :fn(a' n) - Rl are defined by 

s~(z) = F~a(z)/Tn<a), 

where a E!-;;I(Z). Because 

T clal' a2) = Tp(a p) 
and 

FC(al.a.)(ZO)(og/OZp)(Zl, Z2) = FPaizp) 

for P = 1, 2, Zo = g(ZI' Z2), and for all (aI' a2) E 
Icl(ze), we have 

sc(zc) :g (Zl' Z2) = sp(zp). 
uZp 

Integrating these equations gives 

so(zo) = Sl(Zl) + S2(Z2) + K, 

where K is an arbitrary constant. It follows that the 
entropy functions Sn satisfy 

So(a l , a2) = Sl(al) + S2(a2) + K 

for all (aI' a2) E So. 

1 C. Caratheodory, Math. Ann. 67, 355 (1909); Sitzber. Preuss. 
Akad. Wiss. Physik-Math. Kl. 39, (1925). 

• An extended version of the Caratheodory theory is given in 
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8 H. B. Callen, Thermodynamics (Wiley, New York, 1960). 
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bridge, Mass., 1966). 
10 One could say macroscopic state, but we will be concerned 

with no other kind. 
11 It is to ensure this uniqueness that we introduce the coordinates 

x, with i> 1, i ¢:I. Consider, for example, a system that consists 
of a solid block. A given amount of heat absorbed in a process 
might warm the whole block without changing its phase, or it might 
melt a corner off. By including among the coordinates some that 
determine the geometry of the block, we can specify which of these 
alternatives is to occur in an anergic process. 

12 A similar restriction on anergic processes is impliCit in Axiom X 
of the formal theory. 
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It is shown that the f-dimensional nonrelativistic Coulomb Green's function and the associated 
reduced Green's functions can be obtained by differentiation of the corresponding functions in the 
I-dimensional (f odd) or 2-dimensional (f even) case. A new expansion of the 3-dimensional coordinate­
space Coulomb Green's function and a new sum formula for a product of two Laguerre polynomials with 
different arguments are derived. 

Recently there has been some interest in the non­
relativistic Coulomb Green's function infdimensional 
space.1 We will here show that the fdimensional 
Coulomb Green's function can be obtained by 
successive differentiation of the Coulomb Green's 
function in the I-dimensional case (j odd) or 2-
dimensional case (j even). The proof of this is based 
on an integral representation of the fdimensional 
Green's function analogous to a previous repre­
sentation2 of the 3-dimensional Green's function. The 
mathematical techniques that were used to obtain the 
integral representation in the 3-dimensional case can 
be applied also to the fdimensional problem. 

The fdimensional Coulomb Green's function Gf 

will be defined as the solution of the differential 
equation 

[V~ + (2kv/r2) + k2]Gir2' r l ) = <5
f
(r2 - r l ), 

1m (k) > 0, (1) 

subject to suitable regularity conditions at the origin 
and at infinity. Here 

, ( 0 )2 V2 ==L -
j=1 OX j 

(2) 

denotes the Laplacian operator of the [dimensional 
space. The f-dimensional Dirac <5 function occurs on 
the right-hand side of Eq. (1). The parameters k and 11 

are taken to be independent complex parameters, 
arbitrary except for the condition 1m (k) > o. Our 
calculation begins with the partial wave expansion of 
the solution to Eq. (1). This isS 

00 

Gir2, r l ) = L !7T-!fr(!f)(21 + f - 2) 
1=0 

X (f - 2)-lcrU-2)(cos 0)~,(r2' r1), 

~,(r2' r1) = (2ik)-1(r2r1)-!<t-or(l - ill + Hf - 1» 
X W;v:l(2!+f- 2)( -2ikr» (3) 

X .A(,iv:!(21+f-2)( -2ikr <), 

cos 0 == (r2 • r1)/r2r1, f = 3,4, 5, 6, .... 

The function ~zCr2' r1) is the radial Green's function. 4 

The 2-dimensional Green's function is treated 
separately. Its partial wave expansion is5 

+00 
G2(r2 , rl ) = L ~m(r2' r1)(27T)-leim6

, 
'l-n=-oo 

o == O2 - 01 , (4) 

~m(r2' r1) = (2ik)-1(r2r1r trn + I m I - ill) 

X Wiv:lml( -2ikr».A(,iv:lml(-2ikr <). 

One now uses an integral representation for a product 
of two Whittaker functions with different arguments 
and the Neumann's series for6 J.(kz) to obtain the 
integral representation 

( ·k)'-2 G (x, y) = -/ e,,;[iv-!(f-l)J 
f (47T)!U-l) 

7T X ------~------ 1 

sin 7T[ill - Hf - 1)] 27Ti 

1
(1+) 

X d,(, + lyv+!U-3) 
+00 "rc(~±l)=O 

X (' - 1)-iV+!U-3)eik"'~ 

I!U_3)[-ik(x2 -l)!a2 - 1)!] 
Xl' 

[-tik(X2 - l)!(,2 - 1)!p~U-3) 

X = r 2 + rIo Y = Ir2 - rll, f = 1,2,3,4, ... , 

(5) 

for the [dimensional nonrelativistic Coulomb Green's 
function. We learn here that the Green's function 
depends upon r2 and r1 only through the two variables 
x and y. It is quite remarkable that Eq. (5) holds for 
allf, despite the necessity of treating the 2-dimensional 
case separately in the derivation. One can even 
substitute f = 1 in (5), and one will obtain the 
correct answer for the I-dimensional Coulomb 
Green's function of Meixner7

•
s 

G1(X, y) = (2ikrlr(1 - ill) 

X W;v:!{-ik(x + y».A(,iv:!{-ik(x - y», 
(6) 

2966 
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provided that one interprets y as y = 1'2 - '11. (Note 
that this is consistent with the general definition 
y = Ir2 - rll. The magnitude of the difference 
between two I-dimensional vectors having com­
ponents '2 and '1 is 1'2 - '11.) The identity9 

C~(Z) = (-ltr(n + 2v)[n! r(2v)r1 

X 2Fl( -n, n + 2v, v + t; -HI + z», 

v ~ 0, (7) 

was used to identify the Neumann's series occurring 
in the derivation of the integral representation in the 
case f ~ 3. The derivation in the case f = 2 involves a 
rather tricky limiting case of the Neumann's series.10 

Weare now in a position to establish the general 
relation 

a 
G/H(x, y) = - -2 ~ GtCx, y), (8) 

7TYUY 

which exists between the nonrelativistic Coulomb 
Green's functions in spaces of different dimensionality. 
By successive applications of this recurrence relation, 
we find the identities 

( 
-0 )tU- I

) 

GtCx, y) = 27Tyay GI(x, y), 

f= 1,3,5,"', (9) 

( 
-0 )!U-2) 

GtCx, y) = 27Tyay G2(x, y), 

f = 2, 4, 6, .. " (10) 

expressing the fact that the Coulomb Green's function 
in a space of arbitrary dimensionality can be obtain­
ed from either the I-dimensional Green's function 
(f odd) or the 2-dimensional Green's function 
(f even) by successive differentiation. The closed 
expression (6) for GI(x, y) has already been discussed, 
but no closed expression for G2(x, y) seems to be 
known. The recurrence relation (8) can be ob­
tained quite simply by applying the operator (27T)-I. 
(- a/yay) to both sides of Eq. (5). On the right-hand 
side of this equation we take the operator under the 
integral sign, where it acts on the Bessel function to , 
give 

1 ( ()) (I1U-3)(Z») 
27T yay (tz)1<t-3) 

= (-ik)2 (,2 _ 1)(I1<tH-3)(Z») 
47T (iz)lCf+2-3) , 

Z = -ik(x2 - y2)1('2 - 1)1, (11) 

which follows from the identityll 

(
..!!.-)m(IvCZ») = Iv+m(z) . (12) 
zdz z· zv+m 

The integrand for G/(x, y) is thereby converted into 
the integrand for Gf+2(X, y), and Eq. (8) is seen to be 
true. 

Reduced Green's functions, defined by 

~(r r E) __ ~ ~ ~ <Pklr2)<pklr ])* 
2, l' n - £.k , 

2m k*n I Ek - En 
(13) 

play an essential role in Rayleigh-Schrodinger 
bound-state perturbation theory.12 In the Coulomb 
case we now assume that k and v satisfy a relation of 
the form 

v = A/k, A> 0. (14) 

A general relation between a reduced Green's 
function and the corresponding full Green's function 
G(r2' rI , E) isl3 

. d 
~(r2' r l , En) = dE [(E - En)G(r2' r l , E)]IE=En ' (15) 

In view of this relation, the identities (8)-(10), 
connecting Coulomb Green's functions in spaces of 
different dimensionality, are seen to apply also to the 
reduced Coulomb Green's functions. By using (8) 
one finds that 

a 
aE [(E - En)G/+2(X, y, E)] 

a ( -0 ) 
= aE (E - En) 27Tyay GtCx, y, E) 

-0 a 
= 27Tyay aE [(E - En)G/(x, y, E)], 

where En is the nth energy eigenvalue of the (f + 2)­
dimensional problem. One observes that each energy 
eigenva~ue of G /+2 is also an energy eigenvalue of G 1.14 

E.valuatmg the above at E = En and using Eq. (15) 
gIVes 

-0 
~f+2(X, y, En) = -2 ~ ~tCx, y, En)· (16) 

7TyUy 

This is the analog of Eq. (8). That the analogs of Eqs. 
(9) and (10) are true follows immediately. One can 
therefore compute all reduced Coulomb Green's 
f~nctio~s for f o~d (even) once the corresponding 1-
dImenSIOnal (2-dlmensional) function is known. 

Now the 3-dimensional reduced ground-state 
Coulomb Green's function has been obtained in 
closed form earlier.Is The connection with the 1-
dimensional problem was not known at that time. For 
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the sake of completeness, we here give the corre­
sponding I-dimensional result: 

~l(X, y, El ) 

= !(x + y)e-).Y - xe-).'" - !}.(x2 -i)e-).'" 

x {t - y - Ax - In [}.(x + y)] + g(}.(x - y»}, 

g(z) == (Zdt e
t 

- 1 = -zez (ldte- tz In (1 - t). (17) 
Jo t Jo 

Equation (17) can be obtained quite readily using the 
work of Ref. 13. The expression (17) has been checked 
by verifying explicitly that the Green's function 
equation and the boundary conditions are satisfied. 
[It was also verified that the previous 3-dimensional 
result is obtained upon application of the differential 
operator (211')-1( - a/yay), but this checks (17) only to 
within an arbitrary additive function of x.] 

It is known that the nonrelativistic Coulomb 
Green's function possesses an eigenfunction expansion 
which involves a sum over a discrete set of states 
only.16 This can be obtained by writing the Green's 
function in the form 

;,2 * 1 * GtCr2' rlO E) = - - (r21 (r) 2 (r) Irl)' 
2m A - (Ze /411') 

2 

A = (r)* L (r)* - Er, E < 0, (18) 
2m 

and inserting a complete set of eigenfunctions of the 
Hermitian operator A. For this purpose we limit our 
consideration to E real and negative. The Green's 
function for general complex E is obtained from this 
special case by analytic continuation. The operator A 
has no continuous spectrum. Its eigenvalues }.n are 
just the values of the coupling constant Ze2/411' that 
would be required to produce an nth bound-state 
eigenfunction of the Coulomb Hamiltonian at the 
preassigned negative real energy E. When this method 
is applied to the 1- and 3-dimensional Green's 
functions, we obtain the two expansions 

00 

Gl(x, y) = I (2n)-1(n - iy)-lik(x2 - y2)eik
'" 

and 

n=l 
X L~_1[ -ik(x + y)]L~-J[ -ik(x - y)] 

(19) 

00 

G3(x, y) = 2ikeik(r2+rl) I (n - iy)-1 
n=l 

x nil (21 + I)Pz (n - I - 1)! 

1=0 411' (n + I)! 
X (-2ikr2Y( -2ikr1)! 

X L~~LI( -2ikr2)L~~L1( -2ikr1), (20) 

respectively. On the other hand, a more compact form 
for G3(x, y) could be obtained by using (8) in con­
junction with the I-dimensional result (19). We thus 
obtain the new expansion 

00 ik ° a 
G3(x, y) = - I - n-1(n - iy)-le'k'" - (x 2 - i) 

n=1411' yay 

x L~_l(-ik(x + y»L~_l(-ik(x - y» 

(21) 

of the 3-dimensional coordinate-space Coulomb 
Green's function. The individual terms of this ex­
pansion have the same general structure as the closed 
form expression previously obtained for the nonrelati­
vistic Coulomb Green's function, but are free of 
hypergeometric functions. The nuclear charge appears 
in Eq. (21) only through the denominator (n - iy)-l. 
Substituting iy = 0 in Eq. (21) leads to the expansion 

1 ok ~ ik ok a 2 2 
-(411'yr e' Y = - k --2 e' '" - (x - y ) 

n=1411'n yoy 

x L~_1(-ik(x + y»L~_1(-ik(x - y» 

of the free-particle Green's function. Another form 
of Eq. (21) can be obtained by separating out the 
free-particle part. This is achieved by means of the 
identity 

Thus, 

G3(x, y) = Go(x, y) + ~3(X, y), 

where Go(x, y) is the free-particle Green's function and-

~3(X, y) = - ii'll ik n-2(n _ iy)-1eik'" ~ (x 2 _ y2) 
n=1 411' yay 

x L~_1(-ik(x + y»L~_1(-ik(x - y». 

(22) 

U sing the fact that jy and k in the expansions (20) 
and (21) can be independent variables, one concludes 
that the equality of (20) and (21) must hold term-by­
term. [The pole terms, proportional to (n - jy)-1, 

must agree in both expansions.] We thus obtain a new 
sum formula 

X L;;~!~1(2tr2)L~~1~1(2trl) 

= __ 1_ ~ (x 2 _ y2)L~_1(t(X + y»L~_l(t(X _ y», 
811'n yay 

x = r1 + r2 , Y = Ir2 - r11, t arbitrary, (23) 
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for a product of two Laguerre polynomials with 
different arguments. This sum formula was originally 
derived by another method, reported in the Appendix. 
As mentioned in Ref. 16, the momentum space 
counterpart of Eq. (20) has been given by Schwinger, 
who exploits the 4-dimensional rotational invariance 
of the Coulomb problem. His expansion of the 
momentum-space Green's function involves a sum of 
products of 4-dimensional spherical harmonics. The 
identity (23), which enables one to express the sum 
over the nth energy eigenspace in Eq. (20) in closed 
form, corresponds in momentum space to the addition 
theorem for the 4-dimensional spherical harmonics. 

APPENDIX17 

The sum formula (23) was originally obtained from 
the identity18 

Ga(r2 , r 1 , E) 

= _ .!!.....i ± ('" dk fPzm(k; r2)fPzm(k; r 1)* 
2mz=Om=-z Jo (fj2k2/2m) - E 
fj2 00 n-l Z () ()* __ ! ! ! fPnzm r2 fPnlm r 1 

2m n=l z=o m=-l En - E 

r(1 - i'l') a 
= - . - W;v;l(-ik(x + y» 

47T1k yay 

x .A{,iv;l(-ik(x - y) (AI) 

by computing the residue of each side of the equation 
at E = the nth Bohr energy level En. On the left-hand 
side of the equation, only terms from the discrete sum 
contribute to this residue, the integral over the 
continuous spectrum being an analytic function of E 
in the neighborhood of E = En < O. This contribution 
is 

fj2 n-l Z 

2m z~ m~?nzm(r2)fPnlm(rl)* (A2) 

and has the interpretation of (the coordinate space 
representative of) the perpendicular projector onto 
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tonian, times fj2/2m. The evaluation of the residue of 
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(simple) pole of the right-hand side is the pole of the 
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found to be 

(_l)n Ji2
2 
~ Wn;l(X + Y).A{,n;l(X - Y), 

(n - I)! 47Tmn a'l yay nal nal 
47Tfj2 

al = --2' (A3) 
mZe 

The identity (23) emerges when one equates (A2) and 
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sum of terms in Eq. (AI) is a function of only the two 
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P =_1 1. ~ (A4) 
n 27TiJEn+E-H' 

and is therefore subject to the above theorem. It 
follows that the coordinate space representative of 
(A4), which (aside from the factor Ji2/2m) is just the 
finite sum of terms (A2), is a function of x and y only. 
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In the Bethe-Salpeter formalism, the scattering Green's function is known to have multiple poles 
synthesized out of coinciding simple poles. The present paper proposes an axiomatic approach to the 
problem of finding the residues of the multiple poles in terms of those of M coinciding simple poles. 
The latter residues are regarded as finite-dimensional, mutually orthogonal projection operators on a 
reflexive Banach space and its dual. Then various properties of the residues of the multiple poles are 
derived without recourse to the original Bethe-Salpeter equation, and especially it is shown mathemati­
cally that they can be decomposed into a direct sum of operators which commute with the Bethe-Salpeter 
operator. The residues of multiple poles are explicitly determined in two particular cases, M = N + 1 and 
M = 2, where N denotes the highest order of the singularities (in a parameter) of the residues of the 
coinciding simple poles. 

1. INTRODUCTION 

As is well known, quantum-theoretical states are 
represented by vectors in a Hilbert space. Every state 
has positive norm, which is usually normalized to 
unity. In the field theory, however, one sometimes 
needs vectors whose squared norm is negative. Since 
those negative-norm states are not probabilistically 
interpretable if they do not disappear asymptotically, 
they are usually called ghost states. When the differ­
ence between a normal state vector and a ghost one 
tends to zero, one has a zero-norm state and a state 
which cannot be an eigenstate of the Hamiltonian. 
The latter is called a dipole ghost; it was first proposed 
by Heisenberg! in the Lee model. Subsequently, 
several authors2 investigated physical implications of 
the dipole ghost and made various extensions to other 
models from theoretical points of view. As a more 
practical application, the present author3 made use of 
dipole ghosts in order to quantize the electromagnetic 

field in the Landau gauge in a manifestly covariant 
way. 

In the scattering amplitude or the Green's function, 
I-particle intermediate states correspond to simple 
poles in the invariant energy. If it has double poles, 
then dipole ghosts must exist in the intermediate 
states. In general, higher-order or multiple poles 
correspond to multipole ghosts. The present author4 

found in the Bethe-Salpeter formalism that the 
scattering Green's function generally has multiple 
poles at some particular values of invariant energy 
squared s. For example, at s = 0, M bound-state 
simple poles coincide to produce multiple poles 
whose highest order is M. 

A general theory of coinciding simple poles and 
multiple poles was formulated by the present author. 5 

From the consistency, one obtains the cancellation 
conditions, which are closely related to the unequal­
mass conspiracy conditions of Freedman and Wang. 6 
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Indeed, the Khuri scattering amplitude, instead of the 
Regge one, has multiple poles at s -= 0 (see Ref. 7), 
according to the prescription given in the above 
general theory.s 

Recently, Ida8 has made some interesting mathe­
matical considerations on the theory of multiple poles. 
His approach is based on the Riesz-Schauder theory 
of compact, nonnormal operators. The present paper 
is, in some sense, an extension of his work. Our 
emphasis, however, is on a more axiomatic formula­
tion of the theory. We show that we can construct the 
theory of coinciding simple poles and multiple poles 
without using the properties of compact operators. 

In the next section, we briefly review our problem in 
an intuitive way. Section 3 is devoted to mathematical 
prelIminaries. In the subsequent two sections, we 
present an axiomatic formulation of the theory of 
coinciding simple poles and multiple poles. Two 
interesting special cases are investigated in detail in 
Sec. 6. In the final section, we make some additional 
remarks. 

2. INTUITIVE CONSIDERATION 

The scattering Green's function G(s, A) satisfies the 
inhomogeneous Bethe-Salpeter equation 

[K(s) - A/(S)]G(s, A) -= 1 (2.1) 

in the operator notation. Here s is the invariant energy 
squared and A is a parameter which can be identified 
with the coupling constant squared in the ladder 
approximation; [K(S)]-l denotes a product of the 
propagators of the two particles and /(s) stands for 
the integral kernel. 9 

Suppose that G(s, A) has M simple poles in A (with 
s fixed)lO whose locations tend to a common value 
A -= Ao =F 0 as s ~ so. Then it is convenient to 
introduce new variables w == A,-l - Ail1 and z == 
s-so·Weset 

A(z) == J(s)[K(s)rl - Ao\ (2.2) 

F(z, w) == AK(s)G(s, A). (2.3) 
Then (2.1) is rewritten as 

[w - A{z)]F(z, w) -= 1. (2.4) 

We also have 

F{z, w)[w - A(z)] = 1. (2.5) 

We assume that A(z) is an operator-valued analytic 
function holomorphic at z -= O. 

By assumption, F(z, w) has M simple poles in w 
whose locations tend to zero as z ~ 0: 

F(z, w) = S(z, w) + fez, w), (2.6) 

M Rm(z) 
S(z, w) = 2 , z ¥:- 0, (2.7) 

m=l W - wm(z) 

where fez, w) is holomorphic near z = 0 and w -= 0, 
and the functions w1(z), ... , WM(Z) are holomorphic 
at z == ° and vanish there. 

The residues Rm(z) have the following important 
properties: 

A(z)Rm(z) = R1)l(z)A{z) -= wm(z)Rm(z), (2.8) 

Rt{z)Rm(z) = b1mRm(z), 

where the latter follows from 

-aF/aw = p. 

(2.9) 

(2.10) 

We assume that the residues Rm{z) have multiple 
poles at z = 0, whose highest order is denoted by N. 
Then, as z ~ 0, S(z, w) tends to 

Since 

N s[n] 
S(O, w) == I -;;:;:i . 

n=O W 
(2.11) 

11f 

[w - A(z)]S(z, w) = S(z, w)[w - A(z)] = I Rm(z), 
m=l 

we find 
(2.12) 

[w - A(O)]S{O, w) = S(O, w)[w - A(O)] 

M 

= lim I Rm(z). (2.13) 
z-+O m=l 

On substituting (2.1l) in (2.13), we obtain 

A(O)S[N] = S[NJ A{O) = 0, 

n = 0, 1, ... , N - 1, 

whence 
(2.14) 

[A(o)]N-n+ls[n] = s[n][A(o)]N-n+l = 0. (2.15) 

Now we rewrite (2.7) as 

S(z, w) = m~l C~o[w:~~r Rm(z) 

+ [Wm(Z)]N+lRm(Z») (2.16) 
wN+l[w - wm(z)] . 

The last term of (2.16) vanishes at z = O. Since (2.16) 
should be holomorphic in z for any nonzero value of 
w near w = 0, the quantities 

M 

s[n](z) = I [wm(zWRm(Z), n = 0, 1, ... , N - 1, 
m=l 

(2.17) 

have to be holomorphic at z = 0,8 that is, the singu­
larities in the right-hand side have to cancel out. Those 
constraints are called the cancellation conditions. 
Their explicit expressions can be written down easily.s 
From (2.16), the residues s[n] of the multiple poles 
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are given by s[n](o). (This fact is important for the 
considerations of Sec. 4.) 

In the Bethe-Salpeter formalism, it is convenient to 
introduce the Bethe-Salpeter amplitudes, which 
satisfy the homogeneous Bethe-Salpeter equation. 
When we have no degeneracy for Z :;i: 0 near Z = 0, 
we can write 

Rm(z) = 'YJmtPm(z)fm(z), (2.18) 

A(z)tPm(z) = wm(z)tPm(z), 

fm(z)A(z) = wm(z)fm(z), (2.19) 

fl(Z)tPm(z) = 1]/jlm, (2.20) 

where tPm(z) is a Bethe-Salpeter amplitude somewhat 
modified, and fm(z) is a conjugate amplitude; the sign 
factor 1]m is related to the positive or negative norm of 
the relevant bound state. 9 Let tP!::) be the coefficient 
of the leading term for z -- O. From (2.19) we evidently 
have 

Let X be the dual space of X, i.e., the totality of 
continuous linear functionals over X. For any f{! EX 
and any ip EX, ip[f{!] is a complex number. If the 
norm of ip E X is defined by 

Ilipll == sup lip[f{!]I, (3.2) 
II <pII:O::l 

X is also a Banach space. We assume that the natural 
embedding of X in the dual of X is onto, that is, X is a 
reflexive Banach space. 

Let T be a bounded linear operator. If there exists 
an operator I acting on ip such that 

(3.3) 

for any ip E X and f{! E X, then I is unique, and 
II III = II Til. Hereafter we identify I with T and make 
it operate on ip from the right: 

(3.4) 

A(O)tP~) = 0, (2.21) We always consider such operators. 

but tPiO), ... , tPCJJ are not linearly independent unless 
N = O. The number Mo of independent solutions to 

A(O)f{! = 0 (2.22) 

is in general less than M. There exist M - M o linearly 
independent supplementary amplitudes, which satisfy 

[A(OWf{! = 0, 2 S n S N + 1. (2.23) 

The latter amplitudes correspond to multipole ghosts. 
A similar consideration also applies to the conjugate 
amplitudes if. Our problem is to find M independent 
amplitudes f{!k and M independent conjugate ones ifk 
so as to express S[O] in the "standard" form 

M 

S[O] = I, Ckf{!k ifk (2.24) 
k=l 

and s[n] in terms of only those which satisfy 

[A(o)]N-n+lf{!k = 0, 

ifk[A(o)]N-n+1 = 0 (2.25) 

because of (2.15). 

3. MATHEMATICAL PRELIMINARIES 

We consider a complex Banach space, i.e., a 
complete, normed, complex linear space X. Elements 
of X are called vectors. For any f{! E X, its norm II f{!/1 is 
defined in the mathematical sense (distinguish it from 
the physical norm). Given a linear operator T on X, 
the norm of T is defined by 

/lTII == sup II Tf{!11· (3.1) 
1I<p1I ::;1 

If /lTil is finite, then T is called bounded. A bounded 
linear operator is continuous in strong topology. 

Definition 3.1: Two kinds of the ranges of an 
operator T are defined by 

VeT] == {Tf{! I f{! EX}, 

veT] == {ipT I ip EX}. (3.5) 

Duality Principle: If a proposition r is true, then 
so is its dual proposition r, which is obtained from r 
by replacing all vectors and spaces by their duals and 
by reversing the order of the operation of all operators. 

Therefore, we need not describe dual propositions 
separately. 

Definition 3.2: A projection operator P is a bounded 
linear operator such that 

p2=P. (3.6) 

The following theorem is a direct consequence of 
(3.6). 

Theorem 1: If P is a projection operator, f{! E V[P] 
if and only if Pf{! = f{!. 

It should be remarked that, given a space n c: X, 
projection operators P such that V[P] = n are not 
unique. When a subspace n is of a finite dimension, 
we denote it by dim n. 

Theorem 2: Let P be a projection operator such that 
dim V[P] = m. If f{!1,"', f{!m E V[P] are linearly 
independent, that is, if they are basis vectors of V[P], 
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then there exist uniquely m linearly independent 
vectors rpl' ... , rpm E V[P] such that 

(3.7) 

with 
(3.8) 

In particular, dim V[P] = m. 

Proof: We define m linear functionals fJI' ... , fJm 
over V[P] by 

(3.9) 

Then, according to the Hahn-Banach theorem,ll we 
can extend fJI' ... ,fJm to vectors of g (not uniquely). 
By setting 

rpk == fJkP, k = 1, ... ,m, (3.10) 
we find 

Hence rpl, ... , rpm are linearly independent. For any 
X E X, we can write 

(3.12) 

IXk being complex numbers. Then 

m 

I 'PkrpkX = I 'PkrpkPX = I I 'PkrpklX!'P! 
k=1 k k ! 

Thus we obtain (3.7). Finally, if we can also write Pas 

(3.14) 

then 

o = I 'Pk( rpk - rp~). (3.15) 
k 

Hence, rp! - rp; = 0 with the aid of (3.8). QED 

Theorem 3: Let P and P' be finite-dimensional 
projection operators. Then V[P'] C V[P] if and only 
if PP' = P'. 

Proof: Sufficiency is evident from P' 'P = PcP' 'P) for 
any 'P E X. Necessity is shown as follows. For any 
X EX, P'x belongs to V[P'], and hence P'X E V[P], 
because V[P'J C V[PJ. Therefore, by Theorem 1, we 
have P(P'X) = P'X. Since X is arbitrary, we have 
PP'=P'. QED 

Theorem 4: Let P and P' be projection operators, 
and dim V[P] = m. Then 

PP' = P'P = P', (3.16) 

if and only if there exist 'Pk and rpk' k = 1, ... , m, 
satisfying (3.8) such that 

(3.17) 

m' 

P' ~ - m':::;; m. = k 'Pk'Pk' (3.18) 
k=1 

In particular, 

dim V[P] = dim V[P'] + dim V[P - P']. (3.19) 

Proof: We have only to prove necessity. Let 
dim V[P'] = m' :::;; m. From (3.16), P - P' is a 
projection operator with dim V[P - P'] ~ m - m'. 
We take m' linearly independent vectors 'PI' ... , 'Pm' 
from V[P'] and m - m' linearly independent vectors 
'Pm'+!' ... , 'Pm from V[P - P']. Then they altogether 
are basis vectors of V[P]. We write (3.17) according to 
Theorem 2. Then (3.18) follows from P' = P'P. 

QED 

Now, we consider vectors and operators depending 
on a parameter z belonging to a domain D bounded 
by a smooth Jordan curve in the z plane. 

Definition 3.3: A vector 'P(z) and an operator T(z) 
are continuous in z at z = Zo if for any E > 0 there 
exists c5 > 0 such that, for any z satisfying Iz - zol < 
c5, we have 

II 'P(z) - 'P(zo) II < E, (3.20) 

IIT(z) - T(zo) II < E, ·(3.21) 
respectively. 

If TI(z) and T2(z) are bounded operators continuous 
in z at z = zo, then so is TI (z)T2(z). Let O(z) be a 
subspace of X depending on z. 

Definition 3.4: The space O(z) is continuous in z 
at z = Zo if for any E > 0 there exists c5 > 0 such that, 
for any z satisfying Iz - zol < c5 and for any 'P E 

O(zo), we can always find "P E O(z) satisfying 

II"P - 'PII < E II'PII· (3.22) 

Let F(z) be any of 'P(z), T(z), and O(z). If F(z) is 
continuous in z at every point of D, then F(z) is said 
to be continuous in D. If () can be chosen independently 
of Zo in D, then F(z) is uniformly continuous in D. 
If D is compact, uniform continuity follows from 
continuity in D. 

Theorem 5: If P(z) is a projection operator contin­
uous in D, then V[P(z)] is continuous in D. 
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Proof: For any Zo E D and any E > 0, there exists 
(J > ° such that for Iz - zol < (J we have 

IIP(z) - P(Zo) II < E. (3.23) 

For any Cf! E V[P(zo)], we set "I' == P(z)Cf!; then "I' E 

V[P(z») and 

11"1' - Cf!11 = IIP(z)Cf! - P(zo)Cf!11 

:::;; IIP(z) - P(zo) II • II Cf!11 < E II Cf!11. (3.24) 

QED 

Theorem 6: If O(z) is of a finite dimension and 
continuous in D, then for any Zo E D we have 

dim O(zo) :::;; dim O(z) (3.25) 

for all z in some neighborhood of Zo . 

Proof: Let dim O(zo) = m. Then there exist m 
linearly independent vectors Cf!1, .•. , Cf!m E O(zo) such 
that II Cf!kll = 1. For Cf!1' ..• , Cf!m fixed, we consider the 
totality of the quantities 11~~=1 (l;kCf!kll under the 
condition ~k I (l;kl = 1. Since it is closed and bounded 
below, it has a minimum K. From the linear inde­
pendence of Cf!1' ..• , Cf!m' we have K > 0. We choose 
E in such a way that 0< E < tK. Then there exist 
some (J > ° and "1'1"'" "I'm E O(z) such that 
II"I'k - Cf!kll < E for Iz - zol < (J. Hence, for any 
(1;1' ••• , IXm satisfying ~k I (l;kl = 1, we have 

1/ f (l;k"l'k II = II f: (l;kCf!k + f (l;k( "I'k - Cf!k) II 

> II f (l;kCf!k 11- f l(I;kl E 

(3.26) 

Thus ~k (l;k"l'k :;1= 0, that is, "1'1,' •• ,"Pm are linearly 
independent. QED 

From Theorem 6 alone, we cannot exclude the 
possibility that dim O(z) becomes lower in a closed 
subset of D, because K can become arbitrarily small 
depending on zO' In order to avoid this possibility, we 
have to introduce a somewhat ad hoc assumption. 

Assumption 1: Let 0 be an arbitrary m-dimensional 
subspace of X. Then there exist m vectors epl' ... , 
epm EO (1lepkll = 1) such that for any (Xl"'" (l;m 
(~k I (l;kl = 1) we have 

lit tt-kepk II ~ p > 0, (3.27) 

where the constant p may depend on m but it is 
independent of O. 

If X is a Hilbert space, then this assumption is 
satisfied, because if {Cf!1' ... , epm} is an orthonormal 
system of vectors in 0, then 

II f tt-kepk W = f l(I;kl
2 

II epkl1
2 

= ~ l(I;kl2 ~ 11m. (3.28) 
k 

Under Assumption 1, we can use p instead of K, and 
therefore the proof of Theorem 6 remains valid when 
z and Zo are interchanged, provided that uniform con­
tinuity is assumed. Accordingly, we obtain 

dim Q(z) :::;; dim O(zo), 

and hence dim O(z) = dim O(zo) if D is compact. 
Thus, dim O(z) (z E D) is constant since D is con­
nected. This property remains valid even if D is not 
compact, because D can be approximated by a 
sequence of its compact subdomains. Combining 
this result with Theorem 5, we have the following 
theorem. 

Theorem 7: Under Assumption 1, if P(z) is a 
finite-dimensional projection operator continuous in a 
domain D, then dim V[P(z)] is constant in D. 

4. GENERAL FRAMEWORK 

In order to formulate the theory axiomatically, it 
is not convenient to start with the resolvent F(z, w) of 
the operator A(z). We postulate the following four 
assumptions, which are related to the residues Rm(z) 
only. 

Let D be an open neighborhood of z = 0. We 
introduce M finite-dimensional projection operators 
Rm(z), m = 1,' .. ,M, defined for zED' == D - {O}. 

Assumption 2: 

R!(z)Rm(z) = (J!mRm(z), zED'. (4.1) 

Assumption 3: There exists an operator 

N m 

Rm(z) == ! z-Nm+n R~), (4.2) 
n=O 

where 

are bounded linear operators independent of z, such 
that Rm(z) - Rm(z) is continuous in D and tends to 
zero as z -+ 0, that is, 

In particular, Rm(z) is continuous in D'. 
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Assumption 4: The operator 

M 
S(z) == I Rm(z), ZED', 

Thus S is a projection operator which commutes 
with H. Furthermore, Assumption 3, together with 

(4.4) wm(z) = O(z), implies that 
m=1 

can be extended to an operator continuous in D. 

Let WI (z), ... , W M(Z) be certain given functions of z 
which vanish at z = 0 and can be expanded into 

Nm 
wm(z) = Iznw~) + o(zNm). (4.5) 

n=1 

Assumption 5: The operator 
M 

H(z) == I wm(z)Rm(z), ZED', (4.6) 
m=1 

can be extended to an operator continuous in D. 

Let 
M 

s[n1(z) == I [wm(z))"Rm(z), n = 0, 1,' .. ; (4.7) 
m=1 

then of course SC01(z) == S(z), SCl'l(z) == H(z). From 
(4.1) we have 

S£!1(Z)s[n1(Z) = s[!+n1(z). (4.8) 

In particular, 
(4.9) 

s[n1 = 0 for n ~ N + 1, (4.20) 

that is, H is nilpotent. Hence the eigenvalue of H is 
zero alone. 

In some cases, a partial sum of Rm(z), say, 

M' 

S'(z) == I Rm(z), M' < M, 
m=1 

is continuous in z at z = O. We call this case trivially 
reducible. Indeed, then the operators 

M' 
s[n]'(z) == I [wm(z)1"Rm(z), n = 1, .. " (4.21) 

m=1 

are continuous in z at z = 0 because 

s[nl'(z) = s[n1(z)S'(z) = S'(z)S[n1(z). (4.22) 

Thus, we may discuss Sfn]' (z) and S[n1(z) - Sen]' (z) 
completely separately. 

The relation between the formalisms presented in 
Sec. 2 and here is as follows. Given a bounded linear 
operator A(z) satisfying (2.8), we have 

A(z)S(z) = S(z)A(z) = H(z), (4.23) [S(Z)]2 = S(z), 

H(z)S(z) = S(z)H(z) = H(z), (4.10) from which an important relation 

that is, S(z) is a projection operator commuting with 
H(z). Furthermore, since 

s[n1(z) = [H(z)]ns(z) , (4.11) 

s[n1(z) is also an operator continuous in D. The 
cancellation conditions which follow from s[n1(z) for 
n ~ 1 are somewhat complicated,5 but those which 
follow from S(z) are simple; they read 

M 
I R<:m-N+n) = 0, n = 0, 1, .. " N - 1, (4.12) 

m=1 

where R~) == 0 for I < 0 and N == max N m . 

The multiple-pole residues s[n1 are defined by 

(4.13) 
z-+O 

From (4.7)-(4.11), they have the following properties: 
M 

S[Ol = S == lim S(z) = ! R~m), 
z-+O m=l 

S[l1 = H == lim H(z), 
z-+O 

S[n1 = HnS (= H n for n ~ 1), 
s[!ls[n1 = s[!+n1, 

S2 = S, 

SH = HS = H. 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

A(O)S = SA(O) = SA(O)S = H (4.24) 

follows, and therefore (2.14) is derived from (4.16) 
and (4.19) without recourse to (2.11). By subtracting 
(4.10) from (4.23), we have 

B(z)S(z) = S(z)B(z) = 0, (4.25) 

where B(z) == A(z) - H(z). Thus 

A(z) = H(z) + [1 - S(z)]B(z)[l - S(z)]. (4.26) 

Conversely, given an arbitrary bounded linear 
operator B(z), we can define A(z) by (4.26). Then it is 
easy to show, by means of (4.4), (4.6), and (4.1), that 
A(z) satisfies (2.8). Defining F(z, w) by [w - A(z)]-1, 
therefore, we have 

Rm(z)F(z, w) = F(z, w)Rm(z) = [w - wm(z)]-IR",,(z), 

(4.27) 

so that F(z, w) contains S(z, w) defined by (2.7).12 
Thus SCN1 , ... , sc01 are really the residues of multiple 
poles of F(z, w). 

Now, on account of (4.1) and Theorem 4, we have 

M 

dim V[S(z)] = I dm 
m=1 
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for zED', where dm == dim V[Rm(z)] is independent 
of Z in D' because of Theorem 7. Applying Theorems 
2 and 7 to S(z), we find 

iVl 

dim YeS] = dim reS] = I dm • (4.28) 
m~l 

Furthermore, (4.16) with (4.19) implies that 

V[s[n1] c YeS], r[s[n1] c reS]. (4.29) 

For simplicity of description, we hereafter assume 
dm = 1; then dim YeS] = M. 

Let.1jI be a vector such that R!;:l1jl :;t= O. If we set 
CPm(z) == Rm(z)1jI, then Theorem 2 implies the existence 
of rPm(z) such that 

Rm(z) = CPm(z)rPm(z) (4.30) 

together with rPm(z)CPm(z) = 1. From (4.3) with (4.2), 
we can write 

rP~l :;t= O. (4.31) 

Furthermore, (4.1) is rewritten as 

rPI(Z)CPm(z) = blm · 
Therefore, 

n 
'" I(kJ,/.(n-kl - b b k'PI 'I'm - 1m nNm' 
k~O 

Theorem 8: 

SR (Ol = R(OlS = R(O) 
m m m' 

HR (O) = R(O)H = 0 
m m , 

R:O)R!;:) = 0 unless 1 = m, N m = O. 

Proof: 

(4.32) 

(4.33) 

( 4.34) 

(4.35) 

(4.36) 

s[n]R!;:) = lim! [wl(zWRI(z) . lim zNmRm(z) 
z-+ 0 I z-+O 

= lim zNm ! [wl(z)rRlz)Rm(z) 
z-+O I 

= lim [wm(z)r . zNmRm(Z) 
z-+O 

= <5noR~), (4.37) 

RlO) R~) = lim zN'RI(z) . lim zNmRm(z) 
%-+0 z-o 

Proof: For n = 0, (4.39)'feduces to (4.35). Hence we 
employ mathematical induction with respect to n: 

%-+0 

%-+0 

=0. 

Theorems 8 and 9 are rewritten as 

S-I.(O) = -1.(0) 
~m 'rm' 

H-I.(O) = 0 
'I'm , 

(4.40) 
QED 

(4.41) 

(4.42) 

rP:O) cp~) = 0 unless 1 = m, N m = 0, (4.43) 

Hn+1cp<';:) = 0, rP<';:)Hn+l = O. (4.44) 

Thus cp[~ E YeS] and rP~l E reS] are mutually orthog­
onal eigenvectors of H. As pointed out in Sec. 2, 
cp~Ol, ... , cP~o; are not linearly independent except for 
the case N = O. Their linear dependence comes out 
from the cancellation conditions. SinceS[Ol(z), ... , 
S[l'-ll(z) are continuous in z at z = 0, lim%~O 
zN-ns[n1(z) for n < N has to vanish, that is,s 

'" [w(ll]nR(o) - 0 n = 0 1 ... N - 1 (4.45) k m m - , '" , 
mEl 

where 1== {m I Nm = N}. Let MI be the number of 
the elements of I. If the first derivatives w~) for all 
mEl are different from each other, then (4.45) gives 
us N independent constraints on R~l. Since R!;:) :;t= 0, 
we have MI ~ N + 1. Especially, if MI = N + 1, 
then all R!;:>, mEl, are proportional. More precisely, 
we have 

(4.46) 
together with 

S[N] = I [w~l]NR~) :;t= 0, (4.47) 
mEl 

~m == 1/ IT (w~) - w:ll). (4.48) 
IEI.I*m 

If MI > N + 1, the number of independent R~l is 
Mr - N. If some of w~l are equal, it is possible to 
have MI < N + 1. We decompose I into classes 
/ 1 , ••• , I k , in each of which w~) is common. Then 

'" R(O) = 0 J' = 1 ... k k m , " • (4.49) 
mEl; = 151m lim z2NmR m(z) 

%-+0 Therefore, the number of the elements of I j is greater 
(4.38) than one. 
QED 

Theorem 9: 

(4.39) 

Theorem 10: If there is a condition like 
L 
! O(mR~) = 0, O(m:;t= 0, 
m~l 

(4.50) 
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then the sum of the number of independent 4>~) and 
that of independent 1>~), 1 ~ rn ~ L, cannot exceed L. 

Prool"' If A.(O) '" A.(O) K < L are linearly in-'J' 'Yl' , "fJ1( , -, 

dependent, then there exist ifJI' ... , ifJI( such that 

- A.(O) - ° '!jJ1't'm - 1m' 

Hence (4.50) yields 

L 

I,m = 1,'" ,K. (4.51) 

ocl1>:O) + I ocm(ijJl4>~»~~) = 0, I = 1, ... , K. 
m=K+l 

( 4.52) 

Thus ]'(0) '" ]'(0) are expressed by 1:(0) •• , 1:(0) CPt' , tpK 'f'l(+l' , 'f'L . 

QED 

Theorem 11: If for some I and m we have 

( 4.53) 

then (i) NI ~ 1 if N m ~ 1, and (ii) NI ~ 2 if N m ~ 2. 

Proof: Since N m ¥: 0, we have (R~»2 = 0, that is, 

(RiO»2 = 0. 

(i) If NI = 0, then Assumption 2 implies 

(R\0»2 = RiO) ¥:- 0. 

This is a contradiction. (ii) For N m ~ 2, Assumption 2 
and (4.53) yield 

R~)R~) + R~)R~) = 0, 

R~)RiI) + R~)ocR~) = 0, 

ocR~)R~) + R:l)R~) = 0. 

By eliminating R~) from (4.54), we find 

RiO)RiO + R;1lRiO) = 0. 

(4.54) 

(4.55) 

If NI = 1, however, the left-hand side of (4.55) has to 
equal RiO) ¥: 0. This is a contradiction. QED 

It does not seem possible to prove NI = N m under 
(4.53) alone. 

5. DECOMPOSITION OF S 

We first state some definitions. 

Definition 5.1: An operator T is admissible if T 
commutes with H, i.e., HT = TH. 

Definition 5.2: Let P be an admissible projection 
operator. If there exists an admissible projection 
operator P' ¥:- 0, P such that PP' = P'P = P', then P 
is reducible; otherwise P is irreducible. 

If P is reducible, P is a direct sum of two admissible 
projection operators P' and P - P'. The problem 

explored in this section is to decompose S into 
admissible irreducible projection operators.13 More 
generally, we consider the decomposition of an 
arbitrary finite-dimensional admissible projection opera­
tor P instead of S.14 

Definition 5.3: If HVT ¥: ° but Hv+1T = 0, then 'V is 
called the rank of T. If HVcp ¥: ° but HV+1cp = 0, 
then 'V is the rank of cp. 

Since H is nilpotent, any operator and any vector 
have a finite rank 'V ~ N. Evidently, T has a rank v if 
and only if the maximum rank of the vectors belonging 
to V[T] is 'V. 

Theorem 12: Let CPl' ... , CPk E V[ P] and the rank of 
CPi be 'Vi . If k vectors HV;CPi ,j = I, ... , k, are linearly 
independent, then 2:=1 ('Vi + 1) vectors Hncpj (n = 
0,1," . ''Vi; j = 1,'" ,k) belong to V[P] and are 
linearly independent. 

Proof: The first statement is obvious because 
Hncpj = Hnpcpj = p(Hncpj). To show the linear inde­
pendence, we assume the contrary. Suppose that 

k Vj 

'!jJ == 2 I cjnHnCPj = 0, (5.1) 
j=1 n=O 

where complex numbers cjn are not all zero. Let cjm ; 
be the first nonzero one of CjO , Cjl' ... , cjv; (if all of 
them are zero, let mj = 'V j + 1). We set 

s == max ('Vj - m j ) 2 0. (5.2) 
i 

Since Hncpj = ° for n ~ Vi + 1, we have 

k Vj-S 

0= HS'!jJ = I 2 cinHn+sCPj 
j=l n=mj 

k 

= L Cim;Om;.v;_sHV'cpj' 
i=1 

(5.3) 

Since HV; cPj ,j = 1, ... , k, are linearly independent, 
we must have 

Cim ; = ° for mi = v} - s. 

This contradicts the definition of Cjm .. , 

(5.4) 

QED 

Hereafter, let 'V be the rank of P. We construct an 
appropriate set of basis vectors of V[P] in the follow­
ing. 

Let HVP'!jJOk, k = 1, ... , rno, be basis vectors of 
Vo == V[HVP]; of course HV+1P'!jJOk = 0. Next we 
consider a space VI defined by 

VI == {'!jJ E V[W-1p] I H'!jJ = a}. (5.5) 

Since HVP'!jJOk = Hv-lP(H'!jJo,,), we see HVP'!jJOk E VI' 
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If there exist any other independent vectors in VI' 
then we denote them by 

H V- 1ptplk, k = 1, ... , ml . 

Likewise, we consider 

V2 == {tp E V[W-2p] I Htp = O}. 

If there exist any independent vectors other than 
HVPtpOk and HV-lPtplk, we denote them by 

H V
-

2ptp2k, k = 1, ... , m2' 

We continue this procedure until we reach Ptpvk' We 
thus obtain L~=o mL vectors f{iLk == PtpLk E Yep] (I = 
0, 1, .. ; , v; k == 1, ... , mz). By definition, the rank 
of f{iZk is v - I. Furthermore, since Hv-lf{i!1, (l = 
0, 1, ... , v; k == 1, ... , mz) are linearly independent, 
Theorem 12 implies that the vectors 

H'f{iZk' I=O,I,"',v, k==I,"',mz, 

j == 0, ... , v - I, (5.6) 

belong to Yep] and are linearly independent. 

Theorem 13: Any vector tp E Yep] can be written as 
a linear combination of the vectors listed in (5.6). 

Proof" Let n be the rank of tp. If n = 0, tp is expressed 
in terms of Hv-Zf{ilk (l == 0, 1,'" ,v; k = 1,'" ,mz) 
because they are basis vectors of the space of the 
eigenvectors of H by construction. We employ 
mathematical induction with respect to n. We assume 
that any tp' E Yep] of a rank n :::;:; p is written as a 
linear combination of Hv-Hf{ilk (j = 0,1, ... ,n; 
1= 0,1,"', v - j; k z == 1,'" ,mz). Then, for any 
tp E Yep] of a rank p + 1, since the rank of Htp is p, 
we have 

P \1-; 
Htp = L LCj!Hv-Hf{i1 (5.7) 

i=O z=o 
together with 

ml 

f{i1==Lbkf{ilk' Llbkl = 1; (S.8) 
10=1 k 

that is, 

H( tp - ~: %Ci_1,IW-
H

f{iz) = i~Ci,v-if{iv-i' (S.9) 

We prove that the right-hand side of (5.9) vanishes. 
If not, letq (:::;:; p) be the smalIestj such that Ci,v-i ~ 0. 
Let 

p 

Cq,V-qX == 2Ci,V-if{iV-i' 
i=q 

(5.10) 

Then of course HqX == Hqf{iv-q' On the other hand, 
(5.9) implies that we can write X = HX' (X' E V[P)). 
Hence Hqf{iv-q is an eigenvector of H such that it can 
be written as Hq+lPx'. By construction, such a vector 

has to be expressed in terms of Hv-lf{ilk (l = 0, ... , 
v - q - 1; k z = 1, ... , m1), but this contradicts the 
linear independence of (5.6). Thus the vector in the 
parentheses of (5.9) is an eigenvector of H. There­
fore it can be written as 

v 

'" H v
-

I 
~Cl f{il' 

1=0 
(5.11) 

QED 

Thus the vectors listed in (5.6) are basis vectors of 
V[P].IS Hence 

v 

dim Yep] = 2 m1(v - 1+1), (S.12) 
1=0 

while the number of independent eigenvectors of H 
in Yep] is 2[=0 mi' 

Since (5.6) gives basis vectors of Yep], Theorem 2 
implies that there exist uniquely linearly independent 
vectors c{!lk! E PcP] (l = 0, ... ,v; k = 1, ... ,m1; 

j == 0, ... , v - I) such that 

(5.13) 

together with 

c{!lk1Hi'Tl'k' = bll'bkk,bii" 0:::;:; j, j' :::;:; 'V - I. (S.14) 

We set c{!lk == c{!kl,V-I' Then, with the aid of (5.14) and 
Hv-1+lTlk == 0, we find 

v ml v-I , 

'" '" '" ( - H1-+ i ) -= £., ~ ~ Tlk.v-I f{il'k' Tl'k'i' 
1'=010'=0 ;'=0 

Thus 
= c{!lk,v-I-i' (5.15) 

v mz v-l 

P - '" '" "'" H i - Hv
-

1
-

i 
- ~ ~ ~ f{ilkTlk (5.16) 

1=0 k=1 1=0 

together with 

Theorem 14: The projection operator P can be 
decomposed (not uniquely) into 

(S.18) 

with 
(S.19) 

where P1k is an admissible irreducible projection 
operator of a rank 'V - I such that dim V[Plk] == 
v - 1+ 1 and 

v-I 

P "'Hi - H V- I- i 
110 = ~ f{ilkf{ilk (S.20) 

1=0 
together with (5.17). 
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Proof: We have only to prove the irreducibility of 
P1k . Let P~ be an admissible projection operator such 
that P1kP;k = P;kPlk = P;k' Since P1k has a rank 
v - I, P:k [or P1k - P;k] has the rank v - I. Then there 
exists a vector cP E V[P;kl of the rank v - I. Since 
Hv-lcp #- 0, Theorem 12 implies that dim V[P(kl ~ 
v - 1+ 1. According to Theorem 4, however, we 
have 

v - I + 1 = dim V[P:k] + dim V[P Zk - P:k]. (5.21) 

Therefore, we have dim V[Plk - P:k] = 0, that is, 
~=~. @D 

Theorem 15: When P is written as a direct sum of 
admissible irreducible projection operators, we can 
always express it as (5.18) together with (5.20); and if 
there are two expressions 

v ml v ffl,' 

P = 11P1k = 11P{k' (5.22) 
I=Ok=l I=Ok=l 

then we have m1 = m; , 1 = 0, 1, ... , v. 

Proof' Any irreducible component of P of a rank 
v - I is written as (5.20) because, otherwise supposing 
it as the P of Theorem 14, we could decompose it into 
P1k . Next, for (5.22), we have 

v-n m, v-n m,' 

Hnp = ~ ~Hnplk = ~ ~Hnp:k' (5.23) 
1=0 k=l 1=0 k=l 

Hence 
v-n v-n 

dim V[Hnp] = 1mzCv - 1+ 1) = 1m;(v - 1+1), 
1=0 1=0 

n = v, v-I, ... ,0, (5.24) 

from which m1 = m; follows. QED 

By applying the above results to S, we obtain 

N-l 
S '" Hi - H N - 1-; Ik = £., CPlkCPlk , 

;=0 

(5.25) 

(5.26) 

Since 

CPlk is expressed in terms of 1><';:) (m = 1, ... , M; 
n == 0,1,'" ,Nm) as 

M N m 
'" '" (.I(Nm-n) ).I.(n) CPlk = £., £., 'Pm CPlk 'I'm . (5.33) 

m=l n=O 
Since 

and 

(5.34) 

for ° ~j ~ N - n - I because of (4.24), the expres­
sions (5.25)-(5.30) show the existence of the solutions 
to the problem posed at the end of Sec. 2. In general 
it is very difficult, however, to find CPlk and fPzk explic­
itly. In the next section, we explicitly construct them 
in terms of 1><;) and ~<;) in two special cases M = 
N + 1 and M== 2. 

6. SPECIAL CASES 

A. Case M = N + 1 (N ~ 1) 

Let us take the case of M = N + 1 (N 2 1), where 
all of wil ) , .•• ,wY} are different from each other. 
This case is the most important case in the application 
to the Bethe-Salpeter formalism.5 

From the consideration of Sec. 4, we have N m == N 
for all m and M = M[ == N + 1. The rank of Sis N 
according to (4.47), and dim V[S] == N + 1. Hence S 
is irreducible. More precisely, according to Theorem 
14, if we find a vector cP E V[S] of the rank N, we can 
write 

N 

S = 1 H1cpfPHN- 1, (6.1) 
1=0 

where fP E V[S] is a vector satisfying 

fPHncp = (JnN' n = 0, 1, ... (6.2) 
Hence 

N-n 
s[n] = 1 Hn+!cpfPHN- I• (6.3) 

1=0 

fPlkHnCPl'k' = (Jll,(Jkk,(Jn.N-l> 
N 

(5.27) From (4.46), we have 

M = 1 mieN - I + 1), 
1=0 

N-nml 
s[n] = ~ I HnSlk , 

1=0 k=l 
N-n-! 

HnSlk = ~ Hn+jcplkfPl~N-I-;, 
;=0 

N-n 

(5.28) 

(5.29) 

(5.30) 

dim v[s[n]] = dim v[s[n]] = I ml(N - n - I + 1). 
1=0 

(5.31) 

On setting 
(6.4) 

1> == HNcp, ~ == fPHN, (6.5) 
therefore, we should have 

1>~) = am 1>, 1>~) = bm1>, (6.6) 

where am and bm are certain complex numbers 
satisfying amb m = ~ m • 

From (5.32), we write 

S = 1p1> + U, (6.7) 
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where 
N+1N-l 

U == L L rp<';:)cf><:,-n), (6.8) 
m=l n=O 

(6.9) 

Because of (4.44), the rank of U is less than N. Since 
the rank of S is N, therefore, the rank of 1p has to be N. 
Hence, with the aid of HNS = HN, we find that S1p 
belongs to V[S] and has the rank N. We can therefore 
set 

q; == S1p = (cf>1p)1p + U1p. (6.10) 

Thus we have obtained N + 1 independent vectors 
Hns1p, n = 0, 1, ... ,N, in V[S] in terms of rp<;:) 
(m = 1,"', N + 1; n = 0,1,"', N).16 We note 
that, since the rank of U is less than N, we have 

(6.11) 

We can make a similar consideration in the dual 
space. With 

(6.12) 

ipS E V[S] has the rank N. According to the dual 
proposition of Theorem 12, therefore, we can write 

N 

for n ~ 1, and (6.19) has to be continuous in z at 
z = 0. From the case n = 1, we find 

N N 
Lzj(wiil - w~il). Lz-N+kR?) = 0(1), (6.20) 
1=1 k=O 

and therefore8 

wiil = w~il, j = 1,2, ... ,N - 1. (6.21) 

Then the continuity in z of s[n] for n ~ 2 is auto­
matically satisfied. We also have 

S = RiN) + R~N), 
H == S[l] = (wiN) - w~N»RiO). 

(6.22) 

(6.23) 

From (6.23), we find that there is a double pole if and 
only if wiN) =;'= w~). 8 

Now, our main task is to solve (6.18). For the 
moment, we do not consider (4.32) or (4.33). Then 
rpin) and cf>in) , n = 0, 1, ... ,N, are completely 
arbitrary Given them ,J.(n) and I(n) n = ° 1 ... . , 'f2 'P2 ' " , 
N - 1, satisfy (6.18) if and only if 

n 
rp~n) = a L( -~j + (3j)rpin-il, (6.24) 

j=O 

n 

cf>~n) = _a-l L(~j + (3j)cf>in-il, (6.25) 
j=O 

rp = L Cn ipSHn, Co =;'= 0. 
n=O 

(6.13) where a =;'= 0, ~o = 0, and ~l' ••• , ~N-l are complex 
numbers. Let 

The coefficients en can be successively determined by 
(6.2); they are expressed in terms of hn == ipHN-ns1p, 
n = 0, 1, ... , N. Indeed, rewriting (6.2) as 

(6.14) 

we obtain 

<Xl 

f(x) == L~1Xj 
j=O 

(6.26) 

with ~n = ° for n ~ N. Then a formal power series 
of a generating function, 

{I + [f(x)]2}1 = !{3jX1, (6.27) 
j=O 

In particular, 

(6.15) defines {3j; for example, {30 = 1, {3l = 0, {32 = ~~/2, 
{33 = ~1~2' .. '. The proof of (6.24) and (6.25) is 
presented in the Appendix, in which we also show that 

COl = ho = ipHN1p = cf>1p = iprp. 

B. Case M = 2 (N";? 1) 

From the continuity in z of 

(6.16) 

S(z) = RtCz) + R 2(z), (6.17) 

we obtain N = Nl = N2 and the cancellation con­
ditions 

Rin) + R~n) = 0, n = 0, 1, ... , N - 1, (6.18) 

with R!::) ¢ 0. Because of (6.17), we can write 

s[n](z) = ([wl(z)r - [w2(z)r}Rl(z) + [W2(Z)rS(Z) 

(6.19) 

(6.28) 
where 

N 

X == rp1N) - a-lrp~N) + L( -~1 + (3j)rpiN-j), (6.29) 
j=1 

N 

i == cf>iN> + acf>~N> + ~(~1 + (3;)cf>iN-;). (6.30) 
j=l 

Next, we take (4.33) into account. For 1= m = 1, 
we have N + 1 independent constraints 

n 
L cf>ik)rpin- k) = (jnN' n = 0, 1, ... ,N. (6.31) 

k=O 
Then the remainders of (4.33) are automatically 
satisfied as long as n :::;; N - 1, because rp~n) and cf>~n) 
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are linear combinations of 4>~0), ... , 4>~n) and of 
cf>~o), ••. , cf>~ n), respectively. For I = 1, m = 2, and 
n = N, Eqs. (6.24), (6.31), and (6.29) yield 

N 
o = I cf>~k) 4>~N-k) = a(l - cf>lO)x), (6.32) 

k=O 
so that 

(6.33) 
Likewise, we find 

x4>iO) = 1 (6.34) 

from the case I = 2, m = 1, and n = N of (4.33). The 
final case I = m = 2 and n = N is automatically 
satisfied under (6.33) and (6.34). From (6.33) and 
(6.34) together with cf>~0)4>~0) = 0, we find that X 
and 4>~0) (X and cf>~0» are linearly independent. Thus, 
dim V[S] = 2 = M, as it should be. Furthermore, 
from S2 = S we have 

Xx =0. 

Since (6.23) implies that 

HX = (wiN) - w~N»4>iO), 

XH = (wiN) - w~N» cf>iO) , 
we can rewrite (6.28) as 

S = rprpH + Hrprp, 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

for W~N) -:;6 w~N) by setting rp == X and rp == (w~N) -
W!:'»-lX, where 

(6.39) 

For W(N) - W(N) S is reducible into X·nO ) and ;.(O)X-
1 - 2 ' 'PI '1'1' 

7. DISCUSSION 

In the present paper, we have developed a general 
theory of the residues of multiple poles synthesized 
out of coinciding simple poles. Though we have 
introduced an infinite-dimensional space X, our 
problem is essentially of finite-dimensional nature. 
Indeed, V[S] is included in a finite-dimensional space 
Yspanned by 4><';:) (m=I"",M; n=O,I,"', 
Nm ). In order to prove dim V[S] = M, we have 
introduced an ad hoc assumption (Assumption 1), 
but it might be possible to avoid it by using the finite 
dimensionality of Y. The special cases discussed in 
Sec. 6 and some other simple examples suggest that 
dim V[S] = M would be a property which can be 
proven without using any topological concepts. 

In the Bethe-Salpeter formalism, given rp E X, its 
conjugate rp E X can be constructed immediately 
according to a general rule.9 It should be noted, 
however, that rp is not the adjoint vector of rp in the 
sense of a Hilbert space. We have to introduce a norm 
factor 'YJm (= ±1) associated with Rm(Z).9 Then we 

may define the conjugate rp of every vector 

rp == I rt.mn4><';:) E Y 

by 
m.n 

- _ "" * 1'(n) y­rp = k rt.mn'YJm'Pm E , 
m.n 

provided that any identity of the form 

I~mn4><';:) = 0 
m.n 

can hold if and only if 

L ~;"n'fJmcf><';:) = O. 
m.n 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

In particular, we have ;P<,;:) = 'fJmcf><';:). We can also 
define the conjugate of a linear operator T if V[T] c Y 
and V[T] c Y. Then S becomes self-conjugate. Thus, 
it is possible to introduce the conjugate operation in 
an abstract way, but the self-conjugate property of S 
does not seem to be very powerfulY 

Finally, we consider multiple poles on the Z plane. 
Let zm(w) be the inverse function of wm(z), and let 

T(z, w) == L Qm(w) (7.5) 
m z - zm(w) 

be the singular part of F(z, w) on the z plane. Since 

of = FdA F (7.6) 
oz dz 

instead of (2.10), we have 

(7.7) 

with A' == -dA/dzlz=o' In the same way as in (2.16), 
we find that the residues of multiple poles are given by 

T[n] == lim T[n](w) (7.8) 
w-+o 

with 

T[n](w) == I [zm(wWQm(w). (7.9) 
m 

Therefore, on setting Rm(w) == Qm(w)A' andS[n](w) == 
T[n](w)A', we find that Rm(w) and s[n](w) satisfy the 
same assumptions stated in Sec. 4. Thus all results 
presented in the previous sections are applicable to 
T[nlA'. This fact is a merit of the axiomatic approach. 
But the formulas obtained in this way are not directly 
related to the generalized Bethe-Salpeter equa­
tions4•5•9 for rrn

], which follow from 

N 
A(z)'I T[n]/zn+l = 0(1), (7.10) 

n=O 

in contrast with the theory on the w plane. 

APPENDIX: PROOF OF (6.24)-(6.30) 

We prove (6.24) and (6.25) by mathematical 
induction. For n = 0, we have 4>~0) = a4>iO) and 
I<o) = _a-11'(0) a ~ 0 from ;'(0)1'(0) + ;'(0)1'(0) - 0 'P2 'PI' r-, '1'1 'PI '1'2 'P2 - . 



                                                                                                                                    

2982 NOBORU NAKANISHI. 

Hence we assume that the cancellation conditions 
(6.18) for n = 0,1, ... ,k - 1, 1 ~ k ~ N, are 
equivalent to (6.24) and (6.25) for n = 0, I, ... , k -
1. For n = k, we have 

where 

2 k k 

I R~) = I c/>ij)i>ik- j) + I c/>~j)i>~k-j) 
m=l j=O j=O 

k 

= I c/>ij) i>ik- j) + (c/>~k) - 1p(k»i>~O) 
j=O 

+ c/>~O)( i>~k) - ip(k» + K(k), 

k 

1p(k) == a I( -OCkj + (Jj)cW-j), 
j=O 

k 

ip(k) == -a-1I(ockj + (Jj)i>ik-j), 
i=O 

k-l 
K(k) == 1p(k)i>iO) + c/>~O)ip(k) + I c/>ij)i>~k-j) 

i=l 

with OCkj = OCi for j = 0, I, ... , k - I and OCki = ° 
for j = k.1S The induction assumption implies that 

K(k) = -l~ L~ (-OCk.l - i + (Jl-i)c/>ij) 

X %(OCk.k-H + (Jk-H)i>ij)] 

k k-i 
- I I c/>ii) i>ij) 

i=O i=O 

Lemma 1: 

n 

I ( -OCp + (Jp)( OCn_p + (In-p) = bno • 
p=o 

Proof' From (6.26) and (6.27), 

00 n 

I Ie -OCp + {Jp)(OCn- p + {In_p)xn 

n=O p=o 
00 00 

= I (-ocp + {Jp)xPI(ocq + (Jq)XQ 

p=o 0=0 

= {-f(x) + [1 + (f(X»2]!} 

x {j(x) + [1 + (f(X»2]!} 

1. 

The formula of Lemma I can be rewritten as 

n 

L (-OCnp + (Jp)(OCn.n- p + (Jp) = bno , 
p=o 

because the coefficient of OCn is -2oco = 0. Therefore, 

k 

K(k) = - L c/>ii)i>ik-i). 
;=0 

For k ~ N - I, since Im R~) = 0, we have 

-a-l(c/>~k) - 1p(k»i>iO) + ac/>iO)(i>~k) - ip(k» = 0. 

Accordingly, there is a complex number OCk such that 

- a-1( c/>~k) - 1p(k» = ock c/>iO), 
a( i>~k) - ip(k» = - ocki>iO) , 

from which we obtain (6.24) and (6.25) for n = k. If 
k = N, since S = Lm R<;:), we obtain (6.28) together 
with (6.29) and (6.30) by setting 

x == _a-1( c/>~N) _ 1p(N», 

i == a( i>~N) _ ip(N». 
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In any theory of gravity in which free particles move along the geodesics of a 4-dimensional metric 
tensor, a particular class of metrics can be defined which correspond to the fields of Newton's theory of 
gravity. In these Newtonian fields the metric coefficients which describe intrinsic properties of space and 
time are clearly separated from those that describe the gravitational field. This separation suggests an 
invariance in the gravitational field which is quite similar to the usual Lorentz invariance of electro­
magnetism. The infinitesimal form of the generalized Lorentz transformation is determined by the fact 
that the 3-dimensional geometry remains Euclidean under the transformation. The finite form is deter­
mined so that the transformations form a group, and the group is found to be the usual Lorentz group. 
The transformation is then applied to fields that are not necessarily Newtonian. 

I. INTRODUCTION 

If gravity and electromagnetism are just different 
aspects of a unified field whose laws are in agreement 
with the principle of special relativity, then it seems 
reasonable to expect that there is a large-scale invari­
ance in the gravitational field comparable to the 
known invariance of the electromagnetic field in the 
special theory of relativity. In the special theory, 
the intrinsic properties of space and time are described 
in a Lorentz frame by the flat-space metric 'YJap, where 

Lorentz transformation does not leave the coefficients 
gap invariant. Most of the attempts that have been 
made to find some type of generalized Lorentz 
transformation which leaves the coefficients gap 

invariant have led to isometries, which are trans­
formations that preserve the functional form of all the 
functions gap. However, isometries are far too re­
strictive to playa role in the gravitational field similar 
to the one played by the Lorentz transformation 
in the electromagnetic field. For example, an isometry 
with as many parameters as the usual Lorentz trans-
formation exists only in a space of constant curvature, 
and therefore does not exist even in a field as simple as 

'YJap = (1) the Schwarzschild field. Clearly, it is too much to ask 
that the functional form of all the metric coefficients 
be preserved by the transformation. 

The Lorentz transformation is defined such that it 
leaves these metric coefficients invariant. The electro­
magnetic field components are not invariant under the 
transformation, but instead they obey transformation 
relations which are chosen to make the form of the 
electromagnetic field equations invariant, and in this 
way they are treated very differently than are the 
intrinsic properties of space and time. 

However, it may still be possible to preserve the 
form of some of the metric coefficients, provided that 
the remaining coefficients are allowed to transform 
in any way that is convenient. If the resulting invari­
ance is to be similar to the usual Lorentz invariance 
of the electromagnetic field, then the invariant metric 
coefficients must be those that describe intrinsic 
properties of space and time, and the remaining 
metric coefficients will be those that describe the 
gravitational field. This suggests that the first step in 
investigating the possible existence of such an in­
variance must be to find a representation of the metric 
coefficients which separates the ones that describe 
intrinsic properties of space and time from those that 
describe the gravitational field. This will be done in 
this paper by considering the simplest and most 
important metric tensors, namely, those which describe 

(2) the fields considered in Newtonian gravitational 
theory. It will be shown that for such metrics it is 

and which has the property that its geodesics are the possible to introduce an infinitesimal transformation 
paths offree particles. In general, there is no system of which keeps the intrinsic properties of space and time 
coordinates in which gap = 'YJap, and the usual invariant, following the pattern of special theory. It 

In contrast to this, most of the metric theories of 
gravity, including Einstein's theory, make no sharp 
distinction between quantities that describe intrinsic 
properties of space and time and those that describe 
the gravitational field. Instead, all of these quantities 
are combined in the metric tensor gaP' which is defined 
such that the local time dT measured by a moving 
clock is determined by the expression 

2983 
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will then be shown that this infinitesimal transforma­
tion defines a finite transformation group, and finally 
this group will be applied to a more general class of 
fields. 

II. NEWTONIAN FIELDS 

In Newtonian gravitational theory it is assumed that 
there is a single universal time variable and that 3-
space is Euclidean. In the context of a metric theory of 
gravity, this means that gap is such that there exists a 
time function, say x4 ' such that the 3-dimensional 
geometry defined by gap on the surface X4 = const is 
Euclidean. It will be convenient throughout this paper 
to adopt the notation that Greek indices run from one 
to four and repeated Greek indices are summed from 
one to four, while Roman indices run from one to 
three and repeated Roman indices are summed from 
one to three. With this notation, the metrics which 
describe Newtonian fields are those for which there 
exist coordinates Xa in which 

(3) 

where CJ ii is the identity. If g is the determinant of ga{J' 
then in these coordinates it is seen that 

g = g44 - gi3gi4' 

Let gap be defined by the relations 

gii = CJii + O/g)gi4gi4, 

gi4 = -(1/g)gi4, 

g44 = l/g, 

and it is readily verified that 

gaPg = CJa py y' 

so that gap is the reciprocal of gap' 

(4) 

In addition to the requirement that the coefficients 
gij satisfy Eq. (3), a restriction must be put on the 
remaining coefficients ga4 if the laws of mechanics are 
to be those of Newton's theory. Since the path of a 
test particle is a geodesic of gap, its equation of motion 
is 

d2Xa = _ aPe CJ (J) dxy dxo . 
dT2 g y, dT dT 

Expressing gaP in the form of Eqs. (4), we have that 
this equation of motion for oc = 4 is 

d2X4 1 dxy dxo 
-d 2 = - [giiyCJ, i) - (yCJ, 4)] -d -d . 

T g TT 

Using this relation, we can write the equations for 
oc = 1,2, 3 as 

d2Xi . dxy dxo d2X4 
dT2 = -(yCJ, I) dT dT - gi4 dT2 . (5) 

In Newton's theory it is usually assumed that a 
moving clock will measure the time coordinate, so 
that dT = dx4. To the extent that this nonrelativistic 
approximation is correct, dX4/dT = I, d2X4/dT2 = 0, 
and d2xddT2 is the acceleration of a moving particle 
relative to the coordinates Xi' To this approximation, 
then, Eq. (5) shows that the acceleration of a moving 
particle is 

dxy dxo -(yCJ, i) - - . 
dX4 dX4 

Evaluating the Christoffel symbols (YCJ, i) for a metric 
which satisfies Eq. (3) gives this acceleration in the 
3-dimensional form: 

(
Ogi4 _ Ogi4)dXj _ Ogi4 + ! Og44 . (6) 
oXi oXj dX4 OX4 2 ox; 

In Newton's theory the acceleration does not 
depend on the particle velocity dx i /dx4 and can be 
expressed as the negative gradient of the Newtonian 
potential function V. If the above expression is not to 
depend on dxj/dx4 , it must be that 

Ogj4 _ Ogi4 _ 0 
oXi oX j - , 

which is equivalent to requiring that a function {J 
exists such that 

O{J 
g;4= --. 

oXi 

(7) 

Then the acceleration given by expression (6) becomes 

~(~ 1 ) OX; OX
4 
+ 2"g44 , 

which is of the form - 0 V/oxi if 

O{J 2 
V = - - - tg44 - tc . 

oX4 

(8) 

Here the constant tc2 has been added to make V ~ 0 
at great distances from any masses, where the field is 
static, so that o{J/ox4 ~ 0, and the metric approaches 
the flat-space metric, so that g44 -- -c2• Solving 
this for g44 and combining the result with Eqs. (3) 
and (7) shows that a Newtonian field is one in which 
there exist coordinates such that gap takes the form 

a{3 
gi4 = - a-' 

Xi 

a{3 2 
g44 = -2V - 2 - - c , 

aX4 

(9) 
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where (J and V are arbitrary functions. Throughout 
this paper a metric field will be said to be Newtonian 
if such coordinates exist. In Newtonian gravitational 
theory it is further assumed that V satisfies Poisson's 
equation, but neither this equation nor Einstein's 
field equations will be assumed here. The results of 
this paper will depend on the assumption, made above, 
that the field is described by a metric whose geodesics 
are the possible paths of a free particle, but they will 
be independent of any particular system of field 
equations. 

One important case of a Newtonian field is the one 
in which V = -KM/r and (J = -(SKMr)t, where r 
is (x~ + x~ + x;)!. When these values are used in the 
metric coefficients of Eqs. (9), the associated quadratic 
form of Eq. (2) can be written in polar coordinates 
r, (), and rp in the form 

-c2 dT2 = dr2 + r2(drp2 + sin2 rp d()2) + 2(2KM/r)! 

x dr dX4 - [c2 - (2KM/r)] (dX4)2. 

If the time coordinate X 4 is replaced by a variable I 
defined by 

! 
1 = X4 _ 1. (SKMr)t + 4KM tanh-1 (2KM) , 

~ 2 ~r 

which is the Schwarzschild line element. 
As shown above, the Newtonian fields are sufficient 

to describe all known fields to the accuracy of the 
nonrelativistic approximation that dT = dX4' The 
only field in which it has been possible to verify 
the relativistic corrections to Newton's theory experi­
mentally is the Schwarzschild field, where verifiable 
corrections have been found by using the Schwarzs­
child line element in Eq. (2), which determines the 
time measured by a moving clock, and in the geodesic 
equations that determine the motion of a particle or a 
light ray. Since it is now seen that the Schwarzschild 
field itself is Newtonian, it is clear that both New­
tonian gravitational theory and all of the verifiable 
relativistic corrections to Newton's theory can be 
explained in terms of Newtonian fields if the geodesic 
equations and Eq. (2) are assumed to hold. Thus it is 
at least possible that the Newtonian fields are the only 
fields that occur in nature. 

This observation provides the motivation for the 
description of gravity that will be used in this paper. 
As is customary today, gravity will be described in 

terms of a curved metric 4-space. The metric coefficients 
determine the time measured by a moving clock by 
means of Eq. (2), and they determine the paths of 
moving particles and light rays by means of the 
geodesic equations. However, in most descriptions of 
gravity it is further assumed that the metric coefficients 
are found as solutions of a set of field equations such 
as Einstein's equations. The weakness of this pro­
cedure is that the field equations are derived as 
much from philosophical considerations as from the 
observed facts, and this lends some unnecessary 
uncertainty to any results obtained from them. As far 
as the observational evidence is concerned, about all 
that can be said for any set of field equations is that 
they yield one important class of solutions which are 
closely approximated by Newtonian fields in which V 
is at least very nearly a solution of Poisson's equation 
in the coordinates Xa' Ifit is assumed that gravitational 
waves exist, even this last qualification is questionable, 
since Poisson's equation does not lead to wavelike 
solutions. Because of this uncertainty concerning the 
field equations, the analysis of this paper will be based 
only on the assumption that many physically impor­
tant gravitational fields can be closely approximated 
by Newtonian fields. In the next two sections it wilJ be 
assumed that the field is exactly Newtonian. Then it 
will be shown that the results of these two sections 
can be applied to any set of metric coefficients, 
although the application will be physically meaningful 
only in fields which closely approximate Newtonian 
fields. 

A discussion of the physical meaning of a class of 
fields which includes the Newtonian fields has been 
given previously.1 

III. THE INFINITESIMAL LORENTZ TRANS­
FORMATION IN A NEWTONIAN FIELD 

The desired separation of the intrinsic properties 
of space and time from the properties of the gravita­
tional field is very clear in the case of Newtonian 
fields. Here the intrinsic properties of space and time 
are described by the time variable X4 and the Euclidean 
geometry in the 3-space defined by a constant value 
of X 4 • If the three spatial coordinates Xi are defined 
to be Cartesian coordinates in this Euclidean 3-space, 
as has been done in Eqs. (9), then the four coordinates 
Xa will be called a Lorentz frame. In this Lorentz 
frame, the gravitational field is described by the 
quantities ga4 given in Egs. (9). If a second Lorentz 
frame is to be defined in 'a manner that will keep the 
intrinsic properties of space and time invariant, 
folJowing the pattern of the special theory, then the 
coordinates x~ in the new frame must be chosen such 
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that the metric coefficients g;; in the new frame are 
still equal to {)ij' The coefficients g~4 may have any 
desired values and will not be specified in advance. The 
transformation can be determined from the known 
law of transformation of gap, namely, 

, ox; OX~ 
gap = gy.J o- o-· 

Xa x(J 
(10) 

In this section, Eq. (10) will be solved for an 
infinitesimal transformation, that is, for a transforma­
tion in which x~ = Xa + {)xa and g~(J = ga(J + {)gaP' 
where bXa and {)gaP are so small that only terms of 
first order in {)xa and {)g"p need to be considered. For 
such a transformation, Eq. (10) becomes 

obxy obxy 
bga/J = - gay -0 - gpy -0 . 

xp Xa 

Since gij = bij, the condition that g;; = bi; is just that 
{)gij = O. Noting that gap has the form given by Eqs. 
(9), this condition is found to lead to the following 
differential equation for the infinitesimal transforma­
tion: 

O{)Xj + o{)Xj = 0{J o{)x4 + 0{J O{)X4 . (11) 
ax; ox; OXj ax; ax} oXj 

Differentiating this with respect to X k and solving for 
02{)Xk/OX jOXj gives 

02{)Xk 02{J o{)x4 02{)X4 o{J --=----+---. 
OXjOX j oxiox j oXk OXiOXj oXk 

The condition that this is integrable for {)xk is that 

02{J 02{)X4 02{J 02{)X4 02{)X4 02{J ---- - ---- + ----
iJxioxj oxkox! oXjox! OX;OXk OXjOX j oxkox! 

02{)X4 02{J 
-----=0. 

oxiox! oxjoxk 

Obviously, one solution of this equation is 

02bx4 = O. (12) 
OXjOX j 

If it is assumed that the determinant of 02{3/0Xioxj 
does not vanish, this solution can be shown to be 
unique. In the Schwarzschild field, {3 = - (8KMr)!, 
and the determinant of 02{3/0Xiox; does not vanish 
anywhere. Since many fields of physical interest are 
small perturbations of this field, it follows that Eq. 
(12) must be satisfied by many physical fields. In the 
following analysis it will be assumed that Eq. (12) is 
satisfied. 

From Eq. (12) it follows immediately that 

(13) 

where mi and m are arbitrary functions of X4 • Then 
Eq. (11) can be rewritten as 

o 0 
- ({)x j - (Jm;) + - ({)x j - (Jm i ) = O. 
oXi oX j 

The general solution of this equation is 

(14) 

where no and ni are arbitrary functions of X4 and 
where nii = -nji . The functions mi , m, nij' and ni 
can be evaluated if it is assumed that, in the region far 
away from all masses, ga/J approaches 'YJa/J and the rela­
tion between dx~ and dx approaches the usual Lorentz 
transformation. In this region the field is static and 
gi4 --+ 0, so that o{J/oxa vanishes and the value of d{J 
associated with any dXa vanishes. If the derivatives of 
mi , m, nij' and ni with respect to X4 are denoted by a 
dot, the differentials ofEqs. (13) and (14) in the region 
far from all masses become 

d{)x4 = miX; dX4 + mi dXi + m dX 4 , 

dbxi = {3mi dX4 + liijXj dX4 + nij dXj + Iii dx4. (15) 

The infinitesimal form of the usual Lorentz trans­
formation of the special theory is 

bX4 = -C-2WiX i , 

{)xi = CijX j - WjX4' (16) 

where Cij = -cji are infinitesimal constants and Wi 
are the components of the infinitesimal transformation 
velocity. In order that Eqs. (15) be the same as 
the differentials of Eqs. (16) for all dxa , it must be that 
mj = -Wi/C2

, nij = Cij' m = 0, and li j = -Wi' The 
last two of these relations can be integrated to give 
m = 0 and nj = - WjX4' where the possible additive 
constants have been dropped for simplicity. Then 
Eqs. (13) and (14) become 

bX4 = -C-2WiX i , 

{)xi = cijXj - Wi(X4 + (J/c2). (17) 

This is the most general infinitesimal transformation 
which carries metric coefficients of the form of Eqs. (9) 
into new metric coefficients in such a way that g;; = {)ij 

and which reduces to the usual Lorentz transformation 
between the coordinate differentials in the region far 
from all masses. 

It is worth noting that, since Eq. (11) is a set of six 
equations in the four unknowns bxa , it might generally 
be expected that the {)x" would be overdetermined. 
However, Eq. (11) is soluble because of the special 
form of the coefficients gi4, which indicates that the 
fields that admit such a transformation are closely 
related to the fields that actually exist in nature. 
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IV. THE TRANSFORMATION GROUP 

To complete the analogy to the Lorentz invariance 
of the special theory, the infinitesimal transformation 
of Eqs. (17) must be extended to apply to finite 
values of the transformation parameters. It is desirable 
that the finite transformations form a group, since this 
ensures that physical phenomena predicted in anyone 
Lorentz frame do not depend on the particular se­
quence of transformations that may have been used 
to reach that frame, which is surely necessary if the 
theory is to correspond to reality. It will be assumed 
that the coordinate differentials are still related by the 
usual Lorentz transformation in the region far from 
any masses, which implies that the structure of such a 
group, if one exists, must be that of the usual Lorentz 
group. Therefore, if such a group exists, it must be 
possible to express the infinitesimal generalized 
Lorentz transformation, given by Eqs. (17), in the 
form of the infinitesimal Lorentz group, given by 
Eqs. (16). This can be done by defining a new set of 
coordinates X" by the relations 

and by similarly defining a new set of coordinates X~ 
in the new Lorentz frame by the relations 

X I - " X' - I + fJ'/ 2 i-Xi' 4 - X4 C , 

where fJ' is the transform of fJ and is an arbitrary 
function. Then, if bX" == X~ - X" and bfJ == fJ' - fJ, 
Eqs. (17) can be written as 

bX 4 - c-2bfJ = - C-
2
WiX i , 

bXi = cijX i - wiX,. 

Comparing these with Eqs. (16), we see that the 
transformation from Xa to X~ has exactly the form of 
Eqs. (16) if bfJ is defined to be zero, that is, if fJ' is 
chosen to equal fJ, so that fJ is an invariant. Then the 
coordinates X~ are given by 

X l - I X I I + fJ/ 2 i-Xi' 4 = X4 C • (19) 

Since any finite group is determined by its infinitesimal 
transformation, it is clear that, if the finite trans­
formation relating X~ to X" is assumed to form a group, 
the group must be the usual Lorentz group of the 
special theory. The transformation group in which the 
X~ of Eqs. (19) are related to the Xa of Eqs. (18) by 
the usual Lorentz transformation will be taken to be 
the generalized Lorentz transformation in a Newtonian 
gravitational field. 

Ignoring a 3-dimensional rotation, we can write 

the usual Lorentz transformation as 

X; = Xi + (y ~ 1 wiX j - YX4 ) Wi , 

X 4 = y(X, - C-
2
W i X j ), 

where the Wi are the components of the velocity 
associated with the transformation and are the 
parameters of the transformation, w2 = WiW i ' and 
Y = (1 - w2jc2)-!, Writing this in terms of xa and 
x~ by the use of Eqs. (18) and (19) gives the relations 

I (1 y-l ) x4 = Y x4 - "2 W jX j + --2- fJ . 
C . yc 

(20) 

The most general form of the generalized Lorentz 
transformation in a Newtonianfield is given by Eqs. (20) 
with the addition of an arbitrary 3-dimensional rotation. 
The coordinates x~ given by Eqs. (20) are those of the 
new Lorentz frame. 

From this it follows immediately that the defining 
equation of the generalized Lorentz transformation, 
which must hold for all dX", is 

flap dX~ dXp = flap dXa dXp 

or, from Eqs. (18) and (19), 

dx~ dx~- c2(dx~ + c-2 dfJ)2 

= dXi dXi - c2(dx4 + c 2 dfJ)2. 

Expanding, cancelling the two terms containing (dfJ)2, 
and requiring that this relation hold for all dx" give 
the relation 

where 

ofJ 
O"i4 = -;--, 

uXi 

2 ofJ 
0"'4 = -C - 2-, 

ox, 

I 2 ofJ 
0"" = -C - 2-. 

OX, 
(21) 

It is seen that the defining equation of the generalized 
Lorentz transformation is the condition that the 
quantities O"aP transform as a covariant tensor with two 
indices. 

Comparing the first three of Eqs. (21) with Eqs. (9) 
shows that gij = O"ii' gi4 = ai4 , and g44 = 0"44 - 2 V, 
so that the metric coefficients of Eqs. (9) can be 
written as 

(22) 



                                                                                                                                    

2988 ROBERT L. KIRKWOOD 

If this equation is multiplied by (oxa/ox;)(oxp/ox~) 
and it is noted that this process transforms gap into 
g;b and (ox4/oXa)(ox4/oxp) into (OX4/0X;)(OX4/0X~) 
when x~ is any system of coordinates and also trans­
forms aaP into a;b when the coordinates x~ are those 
of another Lorentz frame, it is seen that the metric 
coefficients in an arbitrary Lorentz frame can be 
written as 

(23) 

Using the fourth of Eqs. (21), we further see that 
the 3-dimensional geometry in the new Lorentz frame 
is described by the metric tensor 

~. = (yo. _ 2V OX4 OX4 . 
g"" :::I ,:::1 , uxiux j 

(24) 

The nature of this geometry becomes clear if the terms 
ox4/ox; are evaluated by differentiating the reciprocal 
of the transformation given by Eqs. (20). This re­
ciprocal can be obtained from Eqs. (20) by inter­
changing Xa and x~ and replacing Wi by - Wi' with the 
result that 

ox, 0 [ (, 1 , Y - 1 R)] - = - y x, + - W jXj + -- I-' 
OX~ OX~ c2 yc2 

• • 
= !.(Wi + Y - 1 O~). 

c2 Y ox~ 

F or transformation velocities much less than c, 
y R:; 1, and this becomes ox4/ox; R:; w;/c2, so that Eq. 
(24) is approximately 

, x 2Vw;wj 
go R:; Vij - -2 -2- . 

C C 
(25) 

It is clear that the new geometry will be exactly 
Euclidean (that is, g;j = (Y;j) only if Wi = 0, in which 
case the transformation reduces to the identity, or if 
V = 0, in which case the gravitational field vanishes. 
However, it is easily seen that the geometry in the 
new coordinates is not likely to differ from Euclidean 
geometry in any measurable way. First, the factor 
- 2 V! c2 has the value of about 4 x 10-6 at the surface 
of the sun and is much less than this throughout most 
of the solar system. It would approach unity at the 
Schwarzschild singularity, which is not known to be 
approached anywhere in nature. Second, if we consider 
the transformation to the rest frame of an observer 
who is in orbit about the sun, the maximum value of 
Jw;J/c is that associated with an observer who moves in 
a circular orbit very close to the sun, and is about 
1.4 x 10-3• Thus, the maximum achievable value of 
the last term in Eq. (25) is about 8 x 10-12 , which 

must be compared with terms of order unity in diJ. 
Finally, it must be remembered that nature does not 
provide us with the coordinates x~, so that it is not 
possible to measure the magnitude of the last term of 
Eq. (25) directly in these coordinates. Instead, it is 
necessary to measure the curvature of g;j' a process 
which requires the determination of the difference in 
the values of g;j at points which are separated by a 
distance appreciable compared with the size of the 
solar system. All of these facts considered, it seems 
unlikely that the last term of Eq. (25) is large enough 
to be detected by any measurements in the foreseeable 
future. 

V. THE GENERALIZED LORENTZ TRANS­
FORMATION IN NON-NEWTONIAN 

FIELDS 

It has been shown that, when a Newtonian field is 
described in the coordinates in which gaP takes the 
form of Eqs. (9), it is always possible to introduce an 
infinitesimal transformation which preserves the 
Euclidean nature of the 3-dimensional geometry. The 
finite transformation group associated with this 
infinitesimal transformation preserves the Euclidean 
nature of 3-space only to terms of first order in the 
parameters Wi' but the non-Euclidicity arising from 
higher-order terms appears to be too small to be 
measurable. Applying the generalized Lorentz trans­
formation to Eqs. (9) shows that the form of the 
metric coefficients in an arbitrary Lorentz frame is 
given in terms of the three functions (3, V, and x, by 
Eq. (23) and the last three of Eqs. (21). The functions 
p, V, and x4 are treated as invariants under the 
generalized Lorentz transformation, but there is one 
Lorentz frame in which the function X 4 plays the role 
of the time variable. In this frame the metric coeffi­
cients take the particularly simple form of Eqs. (9). 

The preferential treatment of this one Lorentz 
frame can be removed, at least in principle, by 
considering a slightly more general class of fields, 
namely, those in which there exists a coordinate 
system in which the metric coefficients can be expressed 
in the form 

at at 
g"'fJ = aafJ - 2V - - , (26) 

oXa oXp 

where aap is given by the first three of Eqs. (21) and 
where V, p, and t are three arbitrary functions of the 
coordinates, all of which are invariant under the 
generalized Lorentz transformation. The functional 
form of the right-hand side ofEq. (26) is the same in all 
Lorentz frames because If. and p transform as covariant 
indices, and this implies that the term -2 V(OI/OX,) x 
(OljOXp) will take the same form in any system of 
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coordinates and that (J«p will take the same form in 
any Lorentz frame. Therefore, in any Lorentz frame 
the metric coefficients of Eq. (26) can be written in 
the 3-dimensional form 

ot ot 
gij = (jij - 2V;-;- , 

UXi uX j 

g'4 = - op - 2V.£!... ~, (27) 
, oXi oX4 aXi 

g44 = _c2 _ 2 ap _ 2V(.£!...)2. 
oX4 OX4 

If the components of this metric in the coordinates X« 
of Eqs. (18) are denoted by G«p, it is found that the 
coefficients G«p have the convenient 4-dimensional 
form 

- .!~ op _ 2V~~ (28) 
G«p - 'fJ«P + c2 oXa. oXp oXa. oXp . 

If it should happen that there is one particular 
Lorentz frame XII. in which X 4 = t, then, in that frame, 
glZP will be given by Eqs. (9), and the field will be 
Newtonian. However, if there is no frame in which 
X4 = t, then no one Lorentz frame is preferred in 
principle to any other. As a result, the preferred 
position of one Lorentz frame has been removed by 
considering a class of fields that is slightly more 
general than the Newtonian fields. 

It is not difficult to consider even more general 
forms of ga.p by adding to the right-hand side of Eq. 
(26) additional terms of the form An(Oftn/oxa.)(Oftn/oxp), 
where An and ftn are arbitrary invariant functions and 
n runs from one to as many terms as may be desired. 
In this way, any metric tensor can be put in a func­
tional form which is invariant under the generalized 
Lorentz transformation. However, the transformation 
group has been defined such that it maintains the 
Euclidean nature of 3-space as closely as possible, 
and this physical motivation for the transformation 
will be meaningful only if the field closely approxi­
mates a Newtonian field. For this to be the case, the 
terms involving An and ftn must be very small, and at 
present there appears to be no observational evidence 
which indicates that these terms do not vanish 
entirely. 

VI. CONCLUSIONS 

If there is a close fundamental relation between 
gravitation and electromagnetism, it seems likely that 
there is an invariance in the gravitational field similar 
to the known invariance in the electromagnetic field, 

as given in the special theory of relativity. In the 
special theory the intrinsic properties of space and 
time are treated very differently than are the electro­
magnetic field quantities, which suggests that it is 
desirable to separate these two types of quantities and 
to treat them very differently in the gravitational field 
also. A natural way to do this is suggested by the 
Newtonian gravitational fields, in which coordinates 
XIZ exist such that ga.P takes the form of Eqs. (9). The 
intrinsic properties of space and time are the Newton­
ian time variable X4 and the Euclidean 3-dimensional 
geometry described by the metric coefficients gij' 
The remaining metric coefficients ga.4 are the quantities 
that describe the gravitational field. 

With this interpretation, the infinitesimal form of 
the generalized Lorentz transformation is defined such 
that it keeps the 3-dimensional geometry Euclidean. 
The resulting infinitesimal transformation is given by 
Eqs. (17). The finite form of the transformation is 
determined through the assumption that the trans­
formations form a group and is given by Eqs. (20), 
The structure of the group is found to be that of the 
Lorentz group of the special theory. The finite group 
does not keep the 3-dimensional geometry exactly 
Euclidean, but it seems unlikely that the non-Euclid­
icity will be detectable in the foreseeable future. 

Of all of the Lorentz frames defined by the gener­
alized Lorentz transformation, there is one in which the 
metric coefficients take a particularly simple form, 
namely, the one in which the time variable is X 4 and 
the metric coefficients have the values given by Eqs. 
(9). This preferential position of one Lorentz frame 
can be removed by considering a class of fields slightly 
more general than the Newtonian fields. These fields 
are described in a Lorentz frame by Eqs. (27), where 
p, V, and t are three arbitrary invariant functions. 
Other fields can be written in a form invariant under 
the transformation, but they do not appear to be 
needed to describe any known fields. 

All of the results obtained here are independent of 
Einstein's field equations. 
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W~ prese!1t a ne~ ~es~ription of time translations in the C·-algebraic formulation of statistical me­
chanIcs. This descflI?tlO.n IS based on weaker assumptions than the hitherto accepted ones, due to Haag, 
Hugenh?!tz, a~d Wmnmk (HH~).[Commun. Math. Phys. 5, 215 (1967)]. It is shown that these weaker 
a.ssumptl(~ns shlliead to the prmclp~l results ~f HHW for Gibbs states and, further, that our assump­
tions, unlike those of HHW, are valid for the Ideal Bose gas and strong-coupling BCS models. 

1. INTRODUCTION 

In the algebraic formulation of statistical mechan­
ics, time translations of a system have hitherto been 
described in terms of a I-parameter group of auto­
morphisms of the appropriate C*-algebra of quasi­
local bounded observables. Such a description has 
been introduced by Haag, Hugenholtz, and Winnink1 

(HHW) on the basis of assumptions concerning the 
existence of certain thermodynamical limits, which 
will be specified below. These assumptions have been 
shown by Robinson2 to be valid for a large class of 
lattice systems. On the other hand, they have not been 
substantiated for any class of continuous systems 
and, indeed, as we show in the appendices to this 
article, they are invalid in the cases of the ideal Bose 
gas and BCS models. Thus, it is desirable to weaken 
the assumptions of HHW. 

In the present paper we formulate a theory of time 
translations in statistical mechanics, on the basis of 
assumptions weaker than those of HHW. It is shown 
that these weaker assumptions have the dual merit of 
yielding the principal results of HHW for Gibbs states 
and of being valid for both the ideal Bose gas and 
strong-coupling BCS models. 

As a preliminary to formulating our theory, we first 
recall that the algebraic formulation of statistical 
mechanics has been formulated as follows (cf. HHW). 
One defines a v-dimensional Euclidean space r to be 
the physical space of the system under consideration 
and L to be the set {A} of all bounded, measurable 
open subsets of r. One then constructs a Fock­
Hilbert space :reF corresponding to CCR (for bosons) 
or CAR (for fermions). For each A E L, one con­
structs a closed subspace :reF" of :reF and a von 
Neumann algebra Ill", in :reF'" such that Ill" and 
:reF" are isotonic with respect to A, i.e., that A c A' 
implies Ill" c 1llA' and :reF" c :reFA" The algebras 
{Ill,,} are termed local algebras and are constructed 
so that Ill" corresponds to the algebra of bounded 
observables for the region A. One then defines IllL to 

be U"eL Ill", and III to be the norm closure of IllL . 
Thus III is a C*-algebra, possessing a unit element I 
and is usually termed the algebra of quasilocal bounded 
observables for the system. 

The states of the system are represented by positive 
normalized linear functionals on Ill. Of particular 
importance in statistical mechanics are the Gibbs 
states, which are constructed as follows. One assumes 
that there exists an increasing sequence M = {An} of 
elements of L, with Un An = r, such that, for each 
An E M, there exist self-adjoint operators Hn and 
Nn in :reF"n corresponding to the Hamiltonian and 
particle number for a system of the specified particles 
occupying An' subject to prescribed boundary con­
ditions. It is also assumed that, for real ft less than 
some fixed ftc (> - co), and real, positive {J, the 
operator (Hn - ftNn) is self-adjoint and lower 
bounded, and exp [-(J(Hn - ftNn)] is of trace class 
in :reF"n' for all An EM. Thus one may define a 
normal state 4>(n) on Ill"n by 

4>(n)(A) = Trn [A exp - (J(Hn - ftNn)] , 

Trn [exp - (J(Hn - ftNn)] 

V A E Ill"n' (1.1) 

where Trn denotes trace over :reFAn . It follows from 
this definition, together with the isotony of Ill", 
:reFA with respect to A, that, if A E IllL' then 4>(n)(A) 
is defined for sufficiently large n. It is now assumed 
that 

(I) lim 4>(n)(A) exists for each A E IllL . 
n-> 00 

Since IllL is norm dense in Ill, it follows from this 
assumption that there exists a state 4> on III that is 
uniquely defined by 

4>(A) = lim 4>(n)(A), V A E IllL . (1.2) 
n-+oo 

This state 4> is usually referred to as the Gibbs state of 
the system, for chemical potential ft and inverse 

2990 
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temperature fl. Since mA is a von Neumann algebra, 
cf> is locally norma1.3 

In order to formulate time translations, one starts 
by defining 'T~n) :mA" - $(JeFA,) by 

'T!n)A = U:n)A(u!n»-1 == A(n)(t), 

V A E mAn' t E R, (1.3) 
with 

u!n) = exp [i(H n - pN n)t]. (1.4) 

It is assumed that 'ltA , H n , and N n are defined so 
that {'T~n)} C Aut mAn: 

We now come to the crucial assumption made by 
HHW in their treatment of time translations. This 
assumption is that 

(II) for each A E mL and t E R, 'T~n) A converge 

normwise as n - 00. 

A direct consequence of this assumption is that, since 
mL is norm dense in 'It, there exists a I-parameter 
group h} of automorphisms of m, uniquely defined 
by 

1i'T!nIA - 'TtA\\- 0 as n - 00, 

VAEm[" fER. 

The theory of time translations in the present 
article is based on the replacement of (II) by the 
following weaker" assumptions: 

(III) lim cf>(n)(A~n)(fl) ... Aln)(tk» exists for all 
n .... 00 

(IV) 

lim lim cf>(n)(A~nl(tl) ... Aln)(tk)A~(m)(t{) ... A;Cm)(t;» 
m-+ 00 n--+ 00 

exists and is equal to 

lim cf>Cn)(A~n)(tl) ... Aln)(tk)A~Cn)(t2) ... A;Cn)(t;» 
n .... 00 

for all 

AI"'" Ak> A~,"', Ai EmL , 

t1 , ••• , tk , t~ , ... , t; E R, k, 1 < 00. 

Since (III) trivially implies (I), one should regard (Ill) 
and (IV) as the basic assumptions of our theory. The 
principal results that we derive from these assump­
tions may be summarized as follows. Let the GNS 
representation of m corresponding to the Gibbs state 
cp be a *-homomorphism 7T of 'It into the bounded 
operators in a Hilbert space Je, with cylindrical 
vector 0, such that 

cf>(A) = (0, 7T(A)O), V A E'lt. 

Then: 
(i) Time translations are represented in Je by a 

I-parameter group of automorphisms of 7T('lt)", 
implemented by a unitary group {Ot} of transforma­
tions of transformations of Je, for which Ot is strongly 
continuous with respect to t and OtO = 0, V t E R; 
on the other hand, time translations do not necessarily 
correspond to automorphisms ofm in our description. 

(ii) There is a conjugation operator J, in Je, such 
that 

and 
JO = 0, [J, Otl- = 0, V t E R, 

17T(m)"J = 1T(m)'. 

(iii) The infinite-volume two-time correlation func­
tions, appropriately defined, satisfy the Kubo­
Martin-Schwinger (KMS) boundary conditions. 

Thus we recover the main results of HHW con­
cerning Gibbs states, despite weakening the basic 
assumptions from (I) and (II) to the weaker pair 
(III) and (IV). 

Our theory will be set out as follows. In Sec. 2, we 
shall present a mathematical formalism that enables 
us to derive, from postulate (III), a representation 7T 

of m and a unitary representation of R in a Hilbert 
space Je. It will be seen that this derivation is similar 
to Wightman's field-theoretical reconstruction theo­
rem.5 In Sec. 3, we shall show that, in view of postulate 
(IV), the representation 7T of m in Je corresponds 
precisely to the GNS representation of m for the 
Gibbs state cf>; we shall then derive the results (i)-(iii) 
summarized above. In Sec. 4 we shall make some 
concluding comments on these results and their 
possible ramifications. In Appendix A, we shall 
show that the ideal Bose gas model satisfies postulates 
(III) and (IV), but violates (II). In Appendix B, we 
shall show that the BCS model violates (II), but that, 
at least in the strong coupling case, it satisfies (III) 
and (IV). 

2. MATHEMATICAL CONSTRUCTIONS 

We now present our formalism. It will be seen that 
the contents of the section depend partly on postulate 
(III), but are independent of (IV). 

We refer to the set of real numbers as D or R, 
according to whether it is equipped with the discrete 
or usual topology. The set m, when considered as a 
topological space, will always have the norm topology. 
The set of all positive integers and the field of complex 
numbers will be denoted by the usual symbols Z+ and 
C, respectively. 

A. The Space S 

For each k E Z+, we define SCk) to be the topological 
product ~lk x Dk and S to be the topological sum 
IkEz+ S(k). For each A E L, we define S~) to be the 
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subset ~~ x Dk of S(k). We then define 

SI\ = U S~) and SL = U SI\' 
kEZ+ I\EL 

Thus, SL is dense in S. 
Elements of S will usually be denoted by a, some­

times by s. :rhus, each a (E S) will correspond to an 
ordered set "(AI' ... , Ak; 11, ... , tk), with the A j E ~, 
the tj E D, and k < 00. 

We define the following operations in S: 
(i) a binary multiplication, such that if 

and 

a' = (A{, ... , A;; t{, ... , tD, 
then 

(2.1) 

and 

4>(n)(y(n)(~a» = 4>(n)(y(n)(a», V tED, a E Sl\.n' 

(2.10) 

We define the map 'YJ:~ -+ S by 

'YJ(A) = (A; 0) (ES(l», VAE~. (2.11) 

It follows from this definition, together with Eq. 
(2.2), that 

('YJ{A»* = 'YJ{A*), V A E~. (2.12) 

We define 1]t:~ -+ S by 

'YJt(A) = Vt'YJ(A), V A E~, tED. (2.13) 

aa' = (Al> ... , Ak, A~, ... , A;; Thus, it follows from Eqs. (2.1), (2.4), and (2.13) that 

II , ... , Ik' t{, ... , I;); (AI' A2 , ••• , Ak; t1, t2 , ••• , tk ) == 'YJi
l 
(AI) ... 'YJt

k 
(Ak)' 

(ii) an involution (a -+ a*) ,such that if (2.14) 

then 

a* = (At, ... , At; tk , ••• , II)' (2.2) 
and thus 

(a*a')* = a'*a, V a, a' E S; (2.3) 

(iii) a set {Vt} E Aut S, with the index set {I} = D, 
such that if 

then (2.4) 
Vta = (AI"" ,Ak; II + t,'" ,tk + t), 

where the sums (t j + t) are defined in the usual sense 
of addition of real numbers. 

It follows from Eq. (2.4) that, for each A E L, 
Vt E Aut SI\ and also that {Vi} is a I-parameter group, 
with 

~~, = ~+t" V tED, and Vo = Is, (2.5) 

where Is is the unit operator on S. Further, by Eqs. 
(2.1) and (2.4), 

Vt{aa') = (Vta){Vta'), V a, a' E S, tED. (2.6) 

For An E M (defined in Sec. I), we define y(n): SI\. -+ 

~I\ as follows: if n 
n 

then 
y(n)( a) = A~n)(t1) ... Aln)(tk)' (2.7) 

It follows from this definition and Eqs. (1.1), (2.1), 
and (2.2) that 

y(n)(aa') = y(n)(a)y(n)(a'), Va, a' E Sl\n' (2.8) 

y(n)(a*) = (y(n)(a»*, V a E Sl\.n' (2.9) 

B. The Map W:S -->- C 

It follows from postulate (III) and our definition 
of the topology of S that we may define a continuous 
map W:SL -+ C by 

W(a) = lim 4>(nl(y(nl(a», V a E SL' (2.15) 
n-+oo 

Since S L is dense in S, we may extend W to be a 
continuous linear function from S to C, uniquely 
defined by Eq. (2.15). 

It follows from Eqs. (1.I), (1.3), (1.4), (2.2), (2.4), 
and (2.15) that W possesses the following properties: 

W(~a) = W(a), V tED, a E S, (2.16) 

W(a*) = W{a) , Va E S, (2.17) 

W(a*'YJ{AB)a') = W(a*'YJ(A)'YJ(B)a'), Va, a' E S, 

A, B E~, (2.18) 

W(a'YJtU» = W(a'YJ(J» = W{1](I)a'YJ(I» = w(a),} 

and 

W(a*'I'}(I)a') = W(a*a'), 

Va, a' E S, tED. (2.19) 

Further, if a1,'" ,aN E C and a1,"', aN E SL, 
then it follows from Eqs. (2.1), (2.2), and (2.15) and 
from the positivity of the states {4>(nl} that 

N 

! t1 j akW(a1ak) 
i.k=l 
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Since S L is dense in S, it follows by continuity that 

N 

zaiakW(ajak) ~ 0, Val,"', aNE C, 
i=l 

a1 , ••• , aN E S, N < 00. (2.20) 

The restriction of W to S(k) will be denoted by W(k). 
Thus, if 

then 

We define functions p and Pt from ~l to L(K) by 

P = eo rJ, Pt = eo rJt, V tED. (2.27) 

Hence, by Eqs. (2.11), (2.13), (2.14), (2.22), (2.26), 
and (2.27), 

pt(A) = Utp(A) U -t, V A E Ill, tED, (2.28) 

and, if 

W(a) = W(k)(A 1 , ••• , Ak ; 11 , ••• ,lk )· (2.21) then 

The functions W(k) will play a role in our theory 
which parallels that of the Wightman functions in 
quantum field theory, with our equations (2.16)­
(2.20) serving the same purpose as the Wightman 
axioms. Specifically, we shall use the above properties 
of W to construct a Hilbert space representation of 
(Ill, D) by a method similar to that by which Wightman 
derived his reconstruction theorem.s In fact, the 
essential reason why one cannot directly apply 
Wightman's theorem here is that it was designed for 
cases where, for each k E Z+, there are at most a 
countable number of Wightman functions (on R4k) , 
whereas, in the present situation, III can be non­
separable (as in the case of CCR), and thus there 
could be a nondenumerable set of functions W(k)(A 1 , 

... , A
k

; .) on Dk. 

C. The Space K 

We define K to be the set of functions, from S to C, 
whose supports are finite point sets in S. Thus, with 
the usual definition of linearity, K is a linear vector 
space over C. 

Denoting the set of all linear transformations of 
K by L(K), we define e: S ~ L(K) by 

and 

supp (e( a)f) = a supp f == {aa' I a' E supp f}, 

Va E S,JE K, 

(e(a)j)(aa') = f(a'), a, a E S,JE K. (2.22) 
Thus, 

e(aa') = e(a)()(a'), V a, a' E S. (2.23) 

We equip K with a sesquilinear form 

(j, g) = Lf(a)g(a)W(a*a'), V f, g E K, (2.30) 
a,a' 

the summations with respect to a and a' being taken 
over suppfand suppg, respectively. Thus, defining w 
to be the element of K given by 

supp w = rJ(I) and w(rJ(I» = 1, (2.31) 

it follows from Eqs. (2.19), (2.22), (2.27), and (2.30) 
that 

(w, e(a)w) = W(a) and 

(e(a)w, e(a')w) = (e(a)w, p(/)e(a')w) = W(a*a'), 

Va, a' E S. (2.32) 

Further, it follows from Eqs. (2.3), (2.12), (2.16)­
(2.20), (2.22), (2.30), (2.31) and (2.32) that if f, 
g E K, tED, a E S, and A, BE Ill, then 

(2.33) 

(j, Utw) = (j, w), (2.34) 

(g,f) = Z (g, e(s)w)f(s) = (g, p(l)f), (2.35) 
s 

(j, e(a)g) = (e(a*)f, g), 

(j, p(AB)g) = (j, p(A)p(B)g), 

(j, g) = (g,J), 
and 

(J,n ~ O. 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
For 1 E D, we define Ut E L(K) by 

In view of the linearity of K, Eqs. (2.38) and (2.39) 
(Ut/)(a) = fCV-ta), V f E K, a E S. (2.24) imply the Schwartz inequality 

Thus, by Eqs. (2.5) and (2.24), {Ut } is a I-parameter 
group, with 

Utl Ut2 = Utll., V t1, 12 E D, and Uo = /K' 

(2.25) 

where / K is the unit operator in K. Further, it follows 
from Eqs. (2.22) and (2.24) that 

Ute(a)U_t = e(Vta), V a E S, 1 E D. (2.26) 

(f,J) ~ I (f, g)i2. (2.40) 

D. The Subspace Ko 

Let Ko = {h I h E K; (h, h) = O}. Then it follows 
from Eq. (2.40) that, if hE Ko, then (g, h) = 0, 
V g E K. Conversely, if this latter condition holds, then 
(h, h) = 0, i.e., hE Ko. It follows that Ko is the linear 
subspace of Kgiven by {h I h E K; (g, h) = 0, V gEK}. 
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Using this latter specification of Ko and defining the 
binary relation '"'-' in K by (J '"'-'I') == (J - I' E Ko), 
it follows that '"'-' is an equivalence relationship. 
Further, it follows from Eqs. (2.30), (2.33)-(2.36), 
and (2.38) and our definition of'"'-' that 

if 1'"'-' I' and g'"'-' g', then (f', g') = (f, g), (2.41) 

if 1'"'-' I' and a E S, then O( a) I' '"'-' O( a)/, (2.42) 

if 1 '"'-' I' and tED, then Uti' '"'-' Uti, (2.43) 

Utw ""'-' w, V tED, (2.44) 

1'"'-' p(l)/""'-' 2,/(s)()(s)w, VIE K. (2.45) 
s 

E. The Hilbert Space Je 

Let K/Ko be the quotient space corresponding to 
the equivalence relation ""'-'. We denote by J the 
element of K/Ko corresponding to the equivalence 
class of/ in K. It follows from Eq. (2.43) that we may 
unambiguously define a sesquilinear form on K/Ko by 

(j, g) = </' g), V /, g E K. (2.46) 

It follows from this definition, together with Eqs. 
(2.38) and (2.39), that K/Ko is a pre-Hilbert space, 
with inner product (1, g). The completion of this space 
will be denoted by Je. 

For tED, we define 0t:Je -+ Je by 

Ot! = Ut!, V /E K, (2.47) 

this definition being unambiguous in view of Eq. 
(2.43). Since Je is the completion of K/ Ko, it follows 
from Eqs. (2.25), (2.33), (2.46), and (2.47) that 

Ot Ot = Ot +t, V t1 , 12 E D, 1 2 1 2 

00 = 1, (2.48) 

where 1 is the unit operator in Je; and 

(11'1, 0tV'2) = (O-tV'I, 11'2), V tED, 11'1,11'2 E Je. 

(2.49) 

Thus, by Eqs. (2.48) and (2.49), {Ot} is a unitary 
representation of D in Je. Further, it follows from 
Eqs. (2.34) and (2.47) that 

OtW = W, V tED. (2.50) 

We define 8: S -+ .'B(Je) by 

~ 
8 (a)j = O(a)j, Va E S,fE K, (2.51) 

this definition being unambiguous in view of Eq. 
(2.42). It follows from this definition, together with 

Eqs. (2.32), (2.36), and (2.45), that 

W(a) = (w, 8(a)w), Va E S, (2.52) 

W(a*a') = (O(a)w, 8(a')w), Va, a' E S, (2.53) 

(8( a»* = {}( a*), Va E S, (2.54) 
and 

1 = 2,/(s){}(s)w, V IEK. (2.55) 
s 

We define maps p and Pt, from ~ to .'B(Je), by 

P = 80 1], Pt = {} 0 1]t. (2.56) 

It follows from this definition, together with Eqs. 
(2.12), (2.l8), (2.28), (2.29), (2.45), (2.47), (2.48), 
and (2.51)-(2.55), that 

p(A*) = (p(A»*, V A E \!{, (2.57) 

p(AB) = p(A)p(B), V A, B E ~, (2.58) 

piA) = OtP(A)O-;\ V A E~, tED, (2.59) 

p(l) = 1, (2.60) 

where 1 is the unit operator in Je; and if 

then 
8(a) = ptJA1) ••• ptk(Ak ). (2.61) 

3. THE REPRESENTATION 

We shall now enunciate our results in the form of 
six propositions, whose proofs will be given below. It 
will be seen that these propositions embody the 
results (i)-(iii), stated in Sec. I, and that the sub­
stance of the first proposition has been established 
in Sec. 2. 

Proposition 1: There exists a *-representation p of ~ 
and a unitary representation {Ot} of R in a Hilbert 
space Je, possessing a vector W, such that: 

(i) pel) = 1, the unit operator in Je; 

(ii) OtW = W, V fER; 

(iii) W(k)(A 1 ,"', Ak ; t1 , ••• , tk ) 

= (w, Pt
1 
(AI) ... ptk(Ak)w), 

with 

pt(A) == OtP(A)OV, V AI,'" ,Air E~, 

(iv) the set 

{~la;{}(a;)ill I {aJ E C, raj} E S, N < oo} 
is dense in Je; equivalently, the space Je may be 
generated by application to ill of linear combinations 
of all products pt

1
(A 1) ••• ptk(A k ), with AI, ... , Ak E 

~, t1 , ••• , fk E R, and k E Z+. 
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Note: This proposition is not concerned with any 
topological properties of the real numbers {t} and 
thus does not involve any distinction between D 
and R. In fact, it is not established until Proposition 5 
that {Ot} is a continuous representation of R in Je. 

Proposition 2: ,o(mL)W [and thus ,o(m)w] is strongly 
dense in Je. Hence, w is a cyclical vector with respect 
to ,o(m) , and thus ,0 is the GNS representation of m 
for the state cpo 

Proposition 3: If, for t E R, Tt is the automorphism 
of $(Je) defined by TtQ = OtQO;l. V Q E $(Je), then 
{Tt} is a I-parameter group of automorphisms of 
,0 (m)". 

Proposition 4: The functions W(2)(A, B; t, 0) and 
W(2)(B, A; 0, t) satisfy the KMS boundary conditions. 
Thus, if A, B E m, then 3 functions f and g on C such 
that: 

(i) fez) and g(z) are respectively analytic in the 
strips 1m z E (-{J, 0) and 1m z E (0, (J) and are 
continuous on their boundaries; 

(ii) f(t) = W(2)(A, B; t, 0) and 

get) = W(2)(A, B; 0, t), V t E R; 

(iii) fez + i{J) = g(z). 

Proposition 5: {Ot} is a strongly continuous repre­
sentation of R. 

Proposition 6: There exists a conjugation operator 
J, in Je, such that 

J2 = i, Jw = W, [J, OtL = 0, V t E R, 
and 

J,o(m"J = ,0 (m),. 

Proof of Proposition 1: It follows from Eqs. (2.48), 
(2.49), (2.58), and (2.59) that ,0 is a *-representation 
of m and {Ot} a unitary representation of R, in Je. 
Further, (i) and (ii) are established in Eqs. (2.60) and 
(2.50), respectively; (iii) follows from Eqs. (2.21), 
(2.52), and (2.61); (iv) follows from Eq. (2.55) and 

the definitions of K and Je (= K/ Ko). QED 

Proof of Proposition 2: Since S L is dense in Sand W 
is a continuous function on S, it follows from Eq. 
(2.53) that if a E S, then 3 a sequence {an} E SL such 
that O(an)w tends strongly to O(a)w as n ---+ 00. Hence, 
it follows from Proposition 1 (iv) that if ~ is defined 
as the set 

then ~ is dense in Je. Thus, in order to prove Proposi­
tion 2, it suffices for us to establish that if a E S L, 

then 3 a sequence {Bn} Em, such that ,o(Bn)w con­
verges strongly to (J(a)w as n ---+ 00, i.e., that 

1I,o(Bn)wll---+ II (J(a)wll as n ---+ 00 (3.1) 

and 

n .... 00 

In view of the definition of the dense set ~, this last 
equation may be rewritten as 

(O(a')w, ,o(Bn)w) ---+ «(J(a')w, O(a)w), 

as n ---+ 00, Va E SL' (3.2) 

In order to show that 3 {Bn} which satisfies (3.1) 
and (3.2), we note that, in view of Eqs. (2.7), (2.11), 
and (2.15), postulate (IV) may be expressed in the 
form 

W(s'*1)(y(n)(s»)---+ W(s'*s) as n---+oo,Vs,S'ESr" 

i.e., by Eqs. (2.53) and (2.56), 

(O(s')w, ,o(y(n)(s»w) ---+ (O(s')w, O(s)w) 

as n---+oo,Vs,S'ESL . (3.3) 

On putting s' = 1)(I) and s = a*a in Eq. (3.3) and 
using Eqs. (2.8), '(2.56)-(2.58), and (2.60), we obtain 
the formula 

II ,o(y(n) (a»wll ---+ IIO(a)wll as n ---+ 00, V a E SL' 

(3.4) 

Further, on putting s' = a' and s = (] in Eq. (3.3), 
we obtain 

(O(a')w, ,o(y(n) (a»w) ---+ (O(a')w, O(a)w) 

as n ---+ 00, V a, a' E SL' (3.5) 

Equations (3.4) and (3.5) yield the required formulas 
(3.1) and (3.2) with Bn chosen as y(n)(a). QED 

Proof of Proposition 3: The group property of 
{Tt } follows immediately from the definition of this 
set (in the statement of Proposition 3), together with 
Eq. (2.48). It remains for us, therefore, to show that 
if t E R, then Tt,o(m)" = ,o(m)". For this purpose we 
note that, by postulate (IV) and Eqs. (2.1), (2.15), and 
(2.21), 

W(3)(B*, A(n)(t), C; 0, 0, 0) ---+ W(3)(B*, A, C; 0,.1, 0) 

as n ---+ 00, V A, B, C E m L, t E R. 

Hence, by Eqs. (2.52), (2.53), and (2.56), 

(,o(B)w, ,o(A(n) (t»,o(C)w) ---+ (,o(B)w, ,ot(A),o(C)w) 

as n ---+ 00, V A, B, C E mL , t E R. 
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Thus, since P('llL)ct) is dense in Je (by Proposition 2), 
it follows that 

(w, Je) -lim p(A(n)(t» = Pt(A), V A E'll, t E R. 

This implies that Ttp('llL) C p('ll)", since the bicom­
mutant of pC'll) is also its weak closure. Hence, since 
'llL is norm dense in'll, it follows from the definition 
ofT t that T tp('ll) C p('ll)"; consequently, 

T t(p('ll)") == (T tp('ll»" C p(m)". 

Likewise T _t(p('ll)") C p('ll)", from which it follows 
that p(IN)" C Tt(p(IN)"). Thus we have shown that 
p(IN)" C Tt(p(IN)") C p('ll)", from which it follows 
that Tt(p(IN)") = p('ll)". QED 

Proof of Proposition 4: By Eqs. (2.15) and (2.21), 

W(2)(A, B; t, 0) = lim 4>(n)(A(n)(t)B) (3.6}) 

and 

n-+oo 

Using Proposition 5 (proved below) and Eqs. (1.1), 
(1.3), and (1.4), one may readily use the method of 
HHW to derive the KMS conditions for W(2)(A, B; 
t,O) and W(2)(B, A; 0, t). QED 

Proof of Proposition 5: By Eqs. (1.1), (1.3), (1.4), 
and (3.7), W(2)(B, A; 0, t) is the pointwise limit of a 
sequence of continuous functions of t, and is there­
fore a measurable function of t. Hence, as 

W(2)(B, A; 0, t) == (p(B*)w, 0tp(A)w), 

and as p('l{)w is dense in ok, it follows that Ot is 
weakly measurable. Further, as noted in Sec. 1 
(following the definition of 4», 4> is locally normal. 

This impIies6 that ok is separable and hence7 that 
Ot is strongly continuous. QED 

Proof of Proposition 6: p(IN)" is a W*-algebra, and 
therefore a C*-algebra. We define a state <P on this 
algebra by 

<p(Q) = (w, Qw), V Q E p('ll)". 

Since the algebra pC'll) contains I [by Proposition 1 (i)], 
it follows that this algebra is strongly dense in p('!{)" 
(cf. DixmierB). Hence, it follows from Proposition 4 
and our definition of <P that <P is a KMS state on 
p(IN)", i.e., that <P«TtQ)Q'), <P(Q'TtQ) satisfy the 
KMS conditions for all Q, Q' E p(IN)". 

Hence the analysis of HHW may be directly applied 
to the KMS state <P on p('!{)" to yield the required 
result. QED 

4. CONCLUSION 

We have established Propositions 1-6 on the basis 
of the postulates (III) and (IV). Thus we have shown 

that the principal results of HHW, which those authors 
derived from postulates (I) and (II), are also conse­
quences of the weaker postulates (III) and (IV). 
One may similarly show that Hugenholtz's theorem9 

of factor types from postulates (III) and (IV), 
together with the assumption that w is the only 
vector in Je that is invariant under {Ot} and that there 
is no nonzero element of p(IN)" that annihilates W. 

The advantages, from a physical standpoint, of 
basing the theory on (III) and (IV), rather than (I) 
and (II), were discussed in Sec. 1. Clearly, an essential 
outstanding problem is that of obtaining conditions 
on the interparticle forces for which an ass.embly of 
particles of a given species fulfills (III) and (IV). 

Leaving aside this very difficult problem, one may 
extend our formalism so as to include local unbounded 
observables by methods already developed by one of 
us.IO Alternatively, one might seek to extend the 
methods of the present article so as to formulate the 
properties of such observables in terms of Wightman 
functions, defined as appropriate thermodynamical 
limits (assuming that these exist) of spatio-temporal 
correlation functions between the field operators 
describing the system in second quantization. The 
construction of such Wightman functions would then 
be based on the Hamiltonian formulations of specified 
quantum-mechanical systems of particles enclosed in 
finite volumes. Thus the theory would be based on 
the well-defined nonrelativistic quantal laws for 
finite systems. Consequently, it would have a definite 
mechanistic basis, and in this respect it would be 
different from the present form of relativistic field 
theory, where the assumed properties of the Wightman 
functions are not derived from any mechanistic model. 
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APPENDIX A 

We shall now show that the ideal Bose gas model 
satisfies conditions (III) and (IV), but violates (II). 
In deriving the properties of this model, we shall 
make extensive use of the treatment of Araki and 
Woods8 (A W). 

We use the same notation as in Sec. 1 of the present 
article for the sets r, L, M, INA, and'll, with the addi­
tional specification that each An (E M) is a parallele­
piped, of hypervolume Vn , with edges parallel to the 
chosen Cartesian axis for r. We denote by I:. (resp. I:.n) 

the Hilbert space of square-integrable functions on r 
(resp. An). The subset of I:. with compact supports in 
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r will be denoted by LL' The symbols ~ and Swill 
be used in the conventional sense to denote the 
Schwartz spaces of functions on r. The Fourier 
map !F: L ---+ L will be defined by 

(:Jf)(k) == J(k) == LdXj(X)e-ik'X
, V j E L. (AI) 

Finally, the space .'F(~) will be denoted, in a usual 
way, by 3-

We shall be concerned with free particles whose 
masses, in the chosen units, are t. The Hamiltonian 
operator, in L, for a single such particle will be denoted 
by h, and the corresponding evolution operator, 
exp (iht), by ut . Thus 

(ud)(x) == [(27Trr1 L dkj(k) exp [i(k . x + k 2t)], 

VjEL, (A2) 

where v is the dimensionality of r. It follows from 
this equation that 

(i) For eachf E L, 3 operators 1p(J) and 1p*(J) = 
(1p(/»* in .reF such that 

[1p(J), 1p(g)L = 0, [1p(J), 1p*(g)L = (g,f)c' 

V f, gEL; (AS) 

(ii) .reF contains a vector OF such that 

1p(J)OF = 0, V fE L; 

(iii) if A is the algebra of all polynomials in 
{1p*(J) IfE q, then AOF is dense in .reF' 

It is useful to define self-adjoint operators F(J) 
and G(J) in .reF by the formulas 

F(J) = 1p(J) + 1p*(/), G(J) = i[1p(J) - 1p*(/»)' 

V fE L. (A9) 

The algebra13 III is then constructed in terms of these 
operators by defining IllA to be the W*-algebra 
generated by 

{exp [iF(f»), exp [iG(J)] IfE L, SUPPfE A} 

(.'Fud)(k) = et(k)(.'F f)(k) (A3) and then defining III to be the norm closure of 

with 
(A4) 

It may readily be verified12 from this last equation that 
if t ~ 0, then et(k) is not a multiplier in 3 in which 
case it follows from Eq. (A3) that if fE~~O, i.e., 
if .'FfE 3~0, then ud~~. Thus, by Eq. (A2), 

Ut(~~O) c S~~, V t ~ 0. (AS) 

We denote by hn the Hamiltonian operator, in 
Ln, for a single free particle of the same species, 
confined to An, with periodic boundary conditions, 
and we define u~ .. l = exp (ihnt). Thus, defining Kn as 
the set {k} for which eik'x satisfies the periodicity 
conditions for An and denoting the characteristic 
function on An by Xn' we have 

(u~nlf)(X) = Xn(x) L j(k) exp rick . x + k2t)], 
leEK .. 

V j E Ln' (A6) 

It follows easily from Eqs. (A2) and (A6) that, since 
!F(~) c S, then 

(s, L) -lim u:n1j = ud, V j E~. 

Hence, since ~ is a dense subset of LL' in the strong 
L-topology, it follows that 

(s,q-limu:n1j---+ud, VjELL . (A7) 
n-+oo 

In order to formulate the ideal Bose gas model, we 
construct a CCR representation of L in a Fock space 
JeF . Thus, in a usual way, we construct JeF so that: 

IllL == U IllA· 
.1eL 

Let Hn and N n be the operators in JeF correspond­
ing to the Hamiltonian and particle number for an 
ideal Bose gas, confined to An' subject to the pre­
scribed boundary conditions. Then, in a usual way, 
the evolution operator ut(nl, generated by (Hn - pNn), 
may be defined in terms of the single-particle operator 
u~nl by the formulas 

U:n1D.F = OF' u)nl1p(f)(U: n1rl = 1p(e-illtu)n1), 

"It ER,JELn. (AlO) 

Hence, by Eqs. (1.3), (A9), and (AlO), 

and 

T: n1 exp [iF(J)] = exp [iF(e-illtu)n1)], 

VtER,JELn' (All) 

T)nl exp [iG(J)] = exp [iG(e-i.utu)nlf)]; 

thus, by Eqs. (A 7) and (All), 

(s, .reF) lim T)nl exp [iF(J)] = exp [iF(e-ill/ud)], 

VtER,jELL, (AI2) 
and 

lim T)n) exp [iG(J») = exp [iG(e-illtud»). 

On applying the techniques of the Appendix of A W 
to the model and noting that ~ is a dense subset of 
L L' in the strong L-topology, it follows readily from 
Eqs. (A2) , (A6), and (All) that conditions (Ill) and 
(IV) are satisfied when restricted to A i and A~ in the 
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set {exp [iF(f)], exp [iG(f)] liE q. Hence, it follows 
from the definition of ~L that (III) and (IV) are 
satisfied absolutely. 

In order to show that the model violates condition 
(II), it suffices to show that the following statement 
is invalid: 

'T~nl exp [iF(f)] is norm convergent as n ---+ 00, 

V/E~andfixedtER. (Al3) 

Thus, we note that, in view of Eq. (AI2), the state­
ment (Al3) implies that, for all/E~, 

11'T:nl exp [iF(f)] - exp [iF(e-i/ltud)] II ---+ 0 
as n ---+ 00, 

i.e., by Eqs. (A8) and (A9), 

Ilexp [iF(e-i/lt(ud - u:nlf))] - III ---+ 0 as n ---+ 00, 

V fE~. (A14) 

Further, as is well known, it follows from the defini­
tion of F that, if g is a nonnull element of C, then 
F(g) is an unbounded, self-adjoint operator with 
continuous spectrum; thus, 

Ilexp [iF(g)] - III = 2 unless Ilglll: = O. 

Hence, Eq. (AI4) implies that if I E~, then 3 N E Z+, 
such that Ilu~n1- utili = 0, V n > N. This result 
contradicts Eqs. (A6) and (A 7), since they imply 
that u~nl/E CL and Ut/E S"'~ if IE ~"'O and t ~ O. 
This contradiction suffices to establish that the 
model violates (II). 

APPENDIX B 

In this appendix we shall show that the BCS model 
violates condition (II) and that, in the strong coupling 
case at least, it satisfies (III) and (IV). Here we shall 
make extensive use of results obtained by Thirring 
and Wehr! (TW),14 and by Thirring15 

In order to show that the BCS model violates (II), 
we note that the article of TW contains results which 
may be summarized as follows. There exists a set of 
representations, which may be designated by an index 
set S = {ex}, of the C*-algebra 'n, such that: 

(i) For each oc E S, 3 a unique faithful representa­
tion 7T" of'n in a Hilbert space Jea ; 

(ii) for each ex E S, 3 a I-parameter group {'T:} of 
automorphisms of 'n, such that 'T~ varies with ex (the 
group {T:} is implemented in JeF by a unitary group, 
whose generator is the ex-dependent Bogoliubov­
Haag Hamiltonian); 

(iii) Constructing {An} and {'T~nl} as in Sec. 1 of 

this paper, 

(s, Je,,) lim 7T,,('T!nl A) = 7T,,('T~A), V A E 'nL . (Bl) 
n-oo 

Suppose now that condition (II) were fulfilled. Then, 
in view of (i) and (ii), this would mean that, for 
A E ~L' 'T~nlA converges normwise to T:A as n ---+ 00, 

for each oc E S. This implies that 'T~ is independent of oc, 
in contradiction with (ii). Thus we conclude that the 
model violates (II). 

As regards conditions (III) and (IV), it was shown 
by ThirringlS that the model satisfies (III) in the strong 
coupling case. Further, Thirring's results imply that 
any Gibbs state 1> may be expressed as a direct integral 

1> = flTd() 1>6 , (82) 

where the index () E S and where the GNS space and 
representation (Jeo' 7T 0) corresponding to 1>0 thus 
satisfy the above properties (i)-(iii). Further, it was 
shown by Thirring that 

lim 1>(nl(A~nl(tl) ... A~nl(tk» 
n-oo 

= fIT d()1>o« 'T~IAl) ... ('T~kAk»' (B3) 

where 1>(nl is defined as in Sec. 1. It follows readily 
from Eqs. (81)-(83) that the model satisfies (IV). 
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A certain element Z of the identity component of the conformal group together with the Poincare 
subgroup generate the whole conformal group. In order to prove the conformal invariance of an S-matrix, 
only the invariance under Z has to be checked, once relativistic invariance has been established. The 
explicit form of Z for certain physically important representations of the different covering groups of the 
conformal group will be derived. The transformation Z turns out to be an integral transformation. 

1. INTRODUCTION 

The explicit form of the different irreducible 
unitary representations of the proper orthochronous 
Poincare group and its universal covering group in 
momentum space is well known.! These unitary 
transformations have the property that an "improper 
eigenstate" of the 4-momentum is transformed into 
an improper eigenstate of the same kind. However, we 
are faced with a completely new situation if we 
generalize the Poincare group to the conformal group. 
The action of the identity component (subgroup 
whose elements can be continuously connected with 
the identity) of the conformal group 800(4, 2)/C2 and 
its physically important covering groups 800(4, 2) and 
8Uo(2, 2) is, in general, an integral transformation of 
the square-integrable functions in momentum space. 
An improper eigenstate of the 4-momentum is 
smeared out into a superposition of eigenstates if 
transformed by a special conformal transformation. 

We shall give the structure of these integral trans­
formations. The reason for the appearance of integral 
transformations lies in the fact that the momentum 
space is no longer an integral over different homo­
geneous spaces of the conformal group with respect 
to certain subgroups, which is true for the Poincare 
group. More physically expressed, plane waves in 
Minkowski space, for example, are transformed into 
certain superpositions of "spherical" waves under a 
special conformal transformation. 

2. AN IMPORTANT DISCRETE SUBGROUP 
OF THE CONFORMAL GROUP 

In order to derive that, for example, an 8-matrix 
theory is invariant under the identity component of 
the spin-covering group of the conformal group, it is 
sufficient to show that it is invariant under the identity 
component of the universal covering group of the 
Poincare group2 and one further discrete transform­
ation Z, as these transformations generate the whole 
group. In Minkowski space (metric + + + -) Z is 

given by 

Y; = -Yill, Y~ = +Y4Il. 
[Expressed in homogeneous coordinates, 

xp , p = 1,2, ... , 6; (x) ':;/= 0; 

(x) ~ (AX), A> 0; 

x~ + x~ + xi - x: + x~ - x: = 0; 

x/l 
Y/l = , f-t = 1,2,3,4; 

X5 + Xs 

Z is represented by a rotation in the X 4 - Xs plane by 
an angle 7T.] The inner automorphism induced by 
Z = ei!,d P C K 4) in the Lie algebra of the conformal 
group 

[M/lV , Mpu] = i(g/lpMvU - g/lUMVP 

- gvpM/lu + gVUM/lp), 

[M/lv , Pp] = i(g/lpPv - gVPP/l)' [P/l' Pv] = 0, 

[D, M/lv] = 0, [D, P/ll = iP/l' 

[D, K/ll = -iK/l' 

[M/lv , Kp] = i(g/lpKv - gvpK/l)' 

[K/l' KJ = 0, [P/l' Kvl = -2i(g/lv D - M/lv) 

has the following form: 

Mik~Mik' Mi4~ -Mi4' Pi~Ki' P4~ -K4' 

D~-D, Ki~Pi' K4~-P4' i,k=I,2,3. 

From this inner automorphism one can see that the 
kernel z(p, q) of the integral operator Z in momentum 
space is an improper eigenvector of the operator K/l 
with the eigenvalue k/l = g/l/l,q/l' (P/l represented by 
P/l)' In the following we shall deal with two series of 
unitary irreducible representations of the group 
SOo(4, 2) and SUo(2, 2) which are of special physical 
interest. Thus, Z is an unitary operator Z+Z = 1, 
which has the property ZZ = ± 1, depending whether 
we are dealing with representations which belong to 
integer or half-integer spin. A special conformal 

2999 
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transformation, which is represented in Minkowski 
space, for example, by 

I YI' - bl'l 
YI' = 1 - 2by + b2l ' 

induces on the square-integrable functions 'IjJ in 
momentum space the transformation 

'IjJ' = Z+(e-iPl' bI'1)Z'IjJ. 

In the following we shall give the mathematical 
results concerning the transformation Z. Physical 
consequences will be published later. 

3. DISCRETE DEGENERATE REPRESENTATION 
OF 800(4,2) 

The reduction of the most degenerate unitary 
representations of the principal series of SOo(4, 2) 
with respect to the Poincare group has been dealt with. a 
The representation ofthe Lie algebra for the physically 
interesting discrete series is given by 

Ml'v = i-l(gvv,piJv' - gl'l"Pval")' 

PI' = PI" D = i(pl'al' + 2), 

KI' = pigpp,apap' + 1I2/p2) - 2gl'lt,(ppap + 2)all" 

a 
all = -, fl, 11, P = 1, 2, 3, 4, 

apll 

in the Hilbert space of square-integrable functions 

Jl'IjJ*(P)'IjJ(P)d'P « 00. 

Here 

~ = {PIl:P4 > 0, p2 « 0; or P, « 0, p2 « 0; 

for 11 = 0,1,2," .}, 

where 11 = 0 belongs already to the continuous series. 
These representations contain only massive particles 
with spin O. The kernel of the integral operator Z is 
given by 

z(p, q) = 1...i. (Jv{[a + (a 2 _ b2)!]!} 
47T aa 

X Jv{[a - (a 2 - b2)!]!}), 

a = Piqi + P4q4' b2 = p2q2, 

p2 = P; _ p! « 0, q2 = q; - q! « 0, 

p" q, > 0 or p" q, « O. 

The expression given in Ref. 4 as eigensolution of the 
KI' (for the special case 11 = I) does not satisfy the 
eigenvalue equations. 

To prove the relation 

f Z(q', p)z(p, q)d'p = O'(q' - q), 

one introduces the variables P4 ± Ipi and uses the 
completeness relation for Bessel functions. 

4. THE EXCEPTIONAL DISCRETE 
REPRESENTATIONS OF 8Uo(2,2) 

The reduction of the exceptional degenerate 
discrete series of unitary representations5 of SUo(2, 2) 
with respect to the Poincare group6.7 shows that the 
irreducible representations stay irreducible and con­
tain just representations of the Poincare group, 
which belong to mass 0 and discrete helicity A. The 
generators, which are not difficult to calculate,S are 
given by 

.-I( a a)' PI + O/aP Mik = I Pi k - Pk i + J\€ikl , 

M'l = -ipal - A~, 
P + Pa 

M'2 = -ipa2 + A~, 
P + Pa 

P + Pa 

M'3 = -ipaa, Pi = Pi' P, = p, 

D = i(Pkak + 1), 

Kl = p;V2 - 2(Pkak + l)al - 2iA(~aa - a2), 
P + Pa 

K2 = P2V2 - 2(Pkak + l)a2 - 2iA(al - ~ aa), 
P + Pa 

Ka = Pa,\,2 - 2(Pkak + l)aa 

- ~ (Pla2 - P2aI + iA), 
P + Pa 

K, = p,\,2 + ~ (PIa2 - P2al + iA), 
P + Pa 

i, k = 1,2,3, P = + (PkPk)!' ,\,2 = akak • 

Ifwe replace M'i' P4 , and K4 by -M'i' -P4, and 
- K 4 , respectively, we get the representations which 
belong to negative energy. The Hilbert space is 
defined over the square-integrable functions 

f
da 

'IjJ*(p)'IjJ(p) / « 00. 

The number A = 0, ±L ± I, ... represents the hel­
icity. The kernel of the integral transformation Z is 
given by 

z(p, q) 

= (i)2}.(P + Pa)(q + qa) + (PI - iP2)(ql + iq2»).4 
47T (p + Pa)(q + qa) + (PI + ip2)(ql - iq2) 

X J2}.{[2(pq + Piq;)]!}. 

The eigenfunctions of KI' for)' = 0 have been given in 
Ref. 9. [They are not the kernel of a transformation of 
SUo(2,2).] 
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To prove the relations 

f 
dSp 

z*(p, q')z(p, q) -; = qb3(q - q'), 

f 
dS 

z(q', p)z(p, q) : = (_1)2J.qb3(q - q'), 

one uses Graf's addition theorem, introduces the 
variables P ± Ps, and applies the completeness 
relation for Bessel functions. 
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Two-particle angular momentum states are constructed which are localized with respect to the magni­
tude of the relative position in the rest system and which have arbitrary 3-momentum dependence. The 
associated relative position operator is constructed, and a quantum-mechanical analog of the classical 
impact parameter is identified. Two-particle angular momentum states are constructed, which are also 
localized with respect to the "mean-position" of the 2-particle system, and the associated "mean-posi­
tion" operator is seen to be a generalization of the I-particle Newton-Wigner position operator. 

1. INTRODUCTION 

In the analysis of 2~particle scattering processes, 
one frequently employs a potential function to 
represent the basic interaction mechanism. Based on 
macroscopic considerations, it is apparent that such 
a potential should in some way depend upon the 
relative displacement of the two particles. Relativis­
tically speaking, however, it is not clear how the 
parametrization of such a potential by a relative 
displacement may be effected since different inertial 
observers will not, in general, agree on what is meant 
by "relative position." Intimately related to this 
question is the more formal problem of the con­
struction of a covariant relative-position representation 
of the 2-particle Hilbert space in question. 

Several nonequivalent I-particle position repre­
sentations have been investigated by Pryce,! M0ller,2 
and Newton and Wigner,S and their manifestly 
covariant generalizations have been given by Fleming.4 

Since it is based on invariance principles, the Newton­
Wigner representation seems to offer the most 
promise for generalization to the 2-particle case. The 
natural generalization of the Newton-Wigner for­
malism to the case of 2-particle states which are 
localized only with respect to the rest system relative 

position is suggested by the states 

l.Pp) = (27Trf f dSq[4wIW2r!eiP·Q l.Pq), (Ll) 

where .P = (M, 0) and q are respectively the total and 
relative momenta in the rest system and Wi = (m~ + 
q2)!, i = I, 2. The momentum states I .Pq) are taken to 
have the Lorentz-invariant normalization, given in the 
rest system by 

(Fq' I Fq) = 4W1W2b3(q' - q), 0.2) 

the over-all momentum Dirac distribution having been 
factored out. Due to the non-Lorentz covariance of the 
Newton-Wigner localization criterion,3 it is evident 
that the states of Eq. (1.1) do not transform into 
corresponding localized states of arbitrary over-all 
momentum. One notes, however, that the magnitude 
of the rest system relative momentum is a Lorentz 
invariant, given by 

q = (2M)-1{[M2 - (m! + m2)2)[M2 - (m! - m2)2]}!. 

(1.3) 

Consequently, states localized only with respect to the 
magnitude of the rest-system relative position may 
admit a direct generalization to states of arbitrary 
momentum. 
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impact parameter is identified. Two-particle angular momentum states are constructed, which are also 
localized with respect to the "mean-position" of the 2-particle system, and the associated "mean-posi­
tion" operator is seen to be a generalization of the I-particle Newton-Wigner position operator. 

1. INTRODUCTION 

In the analysis of 2~particle scattering processes, 
one frequently employs a potential function to 
represent the basic interaction mechanism. Based on 
macroscopic considerations, it is apparent that such 
a potential should in some way depend upon the 
relative displacement of the two particles. Relativis­
tically speaking, however, it is not clear how the 
parametrization of such a potential by a relative 
displacement may be effected since different inertial 
observers will not, in general, agree on what is meant 
by "relative position." Intimately related to this 
question is the more formal problem of the con­
struction of a covariant relative-position representation 
of the 2-particle Hilbert space in question. 

Several nonequivalent I-particle position repre­
sentations have been investigated by Pryce,! M0ller,2 
and Newton and Wigner,S and their manifestly 
covariant generalizations have been given by Fleming.4 

Since it is based on invariance principles, the Newton­
Wigner representation seems to offer the most 
promise for generalization to the 2-particle case. The 
natural generalization of the Newton-Wigner for­
malism to the case of 2-particle states which are 
localized only with respect to the rest system relative 

position is suggested by the states 

l.Pp) = (27Trf f dSq[4wIW2r!eiP·Q l.Pq), (Ll) 

where .P = (M, 0) and q are respectively the total and 
relative momenta in the rest system and Wi = (m~ + 
q2)!, i = I, 2. The momentum states I .Pq) are taken to 
have the Lorentz-invariant normalization, given in the 
rest system by 

(Fq' I Fq) = 4W1W2b3(q' - q), 0.2) 

the over-all momentum Dirac distribution having been 
factored out. Due to the non-Lorentz covariance of the 
Newton-Wigner localization criterion,3 it is evident 
that the states of Eq. (1.1) do not transform into 
corresponding localized states of arbitrary over-all 
momentum. One notes, however, that the magnitude 
of the rest system relative momentum is a Lorentz 
invariant, given by 

q = (2M)-1{[M2 - (m! + m2)2)[M2 - (m! - m2)2]}!. 

(1.3) 

Consequently, states localized only with respect to the 
magnitude of the rest-system relative position may 
admit a direct generalization to states of arbitrary 
momentum. 



                                                                                                                                    

3002 S. C. McDONALD 

In this paper such a relative-position representation 
will be developed. In view of the noncovariance of the 
localization criterion, it will be necessary to first 
construct a displacement-dependent momentum-space 
basis in terms of which the relative position states of 
arbitrary momentum may be defined. Toward this end, 
Sec. 2 will consist of a brief review of the canonical 
formalism of Foldys with regard to the construction of 
I-particle canonical states. In Sec. 3, 2-particIe 
canonical states will be constructed by first performing 
a relative displacement on the standard canonical states 
of Macfarlane6 and by then projecting out those states 
of sharp orbital angular momentum. Such states are 
then used in Sec. 4 as a basis for the construction of 
angular momentum states of arbitrary P = PI + P2 
which are localized with respect to the magnitude of 
the rest-system relative displacement. The cor­
responding "relative-position" operator will be con­
structed, and an "impact parameter" operator identi­
fied as the quantum-mechanical generalization of the 
classical impact parameter. In Sec. 5, 2-particle 
angular momentum states localized with respect to 
the over-all "mean position" will be constructed, and 
the corresponding "mean position" operator seen to 
be the natural extension of the Newton-Wigner 
position operator to a 2-particle theory. 

In this work, only the cases for which m1 > ° and 
m2 > ° will be considered. As usual, units will be 
chosen such that c = Ii = 1. 

2. THE CANONICAL FORMALISM 

The canonical formalism which was first developed 
by F 0ldy5 in 1956 is a prime example of the ap­
plication of group-theoretical techniques to the formal 
kinematics of noninteracting particles. As used in this 
paper, the term "particle" will be synonomous with 
"elementary system," defined by Newton and Wigner3 

to be a system described completely by states which 
transform within a given irreducible representation of 
the Poincare group. It will be recalled that the 
Poincare group is that group of transformations of the 
form (/, a) which, when acting on vectors x" in 
4-dimensional Minkowski space, yield 

(I, a):x" ....... x'l' = II'.x· + a", (2.1) 
where 

1".1/ = 15\. (2.2) 

The quantum-mechanical generators of infinitesimal 
homogeneous transformations of the form (M,O) are 
the well-known angular momentum and boost genera­
tors Ji and N i

, i = 1,2,3, respectively. On the other 
hand, the generators of infinitesimal translations (1, 
<5a) are the 4-momentum operators PI', ft = 0, 1, 2, 3. 

The commutation rules satisfied by these generators are 

[PO,Ji] = 0, [PO, Ni] = iPi, 

[Pi, Ni] = ifjiipO, [Ni, Ni1 = _i€iikJk, (2.3) 

[Ii, Ai] = i€iikA\ 

where A = P, J, or N. 
Consistent with the above commutation rules, the 

rest states Ip s ft) of a particle with mass m and spin s 
may be defined to be eigenstates of P, J2, and Jz with 
respective eigenvalues p = (m, 0), s(s + 1), and ft. 
Such states are seen to transform under a rotation 
r(ex. (3 y), with Euler angles ex., {3, and y and correspond­
ing operator 

R[r(ex. (3 y)] = exp (-i ex.Jz) exp (-i (3Jy) exp (-iyJz), 

(2.4) 
by the transformation 

R Ip s ft) = 4 D~,,.(R) Ip s ft'), (2.5) 

" 
where D8(R) is the s(s + 1 )-dimensional irreducible 
representation matrix for the rotation R, given by 
Rose? as 

D~y(R) = exp ( - i ft oc)d;'<{3) exp ( - ivy). (2.6) 

The canonical states for general momenta p are then 
defined by 

Ip s ft)c = L(p) 1ft s ft)· (2.7) 

Here, the Lorentz transformation without rotation I(p) 
is defined by McKerre118 as 

pI' = /I'v(p)p', 

l(p)Oo = pOjm, l(p)ok = l(p)ko = pkjm, (2.8) 

l(p)ij = ~ij + pipjjm(m + po) 

with the corresponding operator 

L(p) = exp (-iUj· N), (2.9) 

P being a unit vector in the P direction and , defined 
by8 

p = (m cosh "m sinh ,(sin 8 cos q;, sin 8 sin q;, cos 8». 

(2.10) 

From Eq. (2.5) and the fact that, for an arbitrary 
Lorentz transformation I, with operator L, the operator 

R(L, p) == L(l p)-l L L(p) (2.11) 

represents a rotation, the states of Eq. (2.7) transform 
in the canonical manner 

Lip s ft>c = L D~'I'[R(L, p)lllp S ft')c' (2.12) ,,' 
Furthermore, the canonical states of Eq. (2.7) satisfy 

pa Ip S ft)c = pa Ip S ft)c' (2.13) 
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3. TWO·PARTICLE ANGULAR 
MOMENTUM STATES 

In a recent discussion of I-particle localized states by 
the present author,9 a set of intermediate states is 
implicitly constructed from the general canonical 
states Ip A)c by defining for each translation (x), with 
operator T(x), the states 

Ip A; x)c == T(x) Ip A)c 

== exp Up • x) Ip A)c . (3.1) 

The states of Eq. (3.1) are elements of the rays in 
Hilbert space which have as standard representatives 
the states Ip A)c, and as such are also canonical states, 
each of which is specified by a point in the parameter 
space of the 3-dimensional translation group. In 
order to insure that the interpretation of the x's as the 
points of translation space is preserved in the con­
struction of localized states, so that such states may 
indeed be taken as a basis for a "position" represen­
tation, the states localized at x are defined as a 
superposition of the states of Eg. (3.1), with the x 
dependence contained entirely in said basis states. 
The Newton-Wigner localization criterion3 requires 
that localized states defined by 

IXA) = J d3p'¥S(p) IpA; x)c (3.2) 

be normalized, within a constant factor, to 

(X'A' I XA) = ol';.b3(x' - x). (3.3) 

If the canonical states are taken to have the non­
relativistic normalization 

~(p'A'; x' I p).; x)~ 

= o;,';.b3(p' - p) exp [-ip. (x' - x)], (3.4) 

it then follows that 'Y8(p) is a constant, and the 
corresponding localized states are the 3-dimensional 
Fourier transforms of the standard ray representatives 
of the canonical states. If, on the other hand, the 
canonical states are chosen to have the Lorentz-in­
variant normalization 

c(p').'; x' I p).; x)c = o).,;.~(p', p) exp [-ip· (x' - x)1, 

(3.5) 

where J(p', p) == 2W(p)03(p' - p) with w(p) = (p2 + 
m2)t, the localized states are seen to be given by 

Ix).) = (h)-if d
3

p (2w)! Ip).; X)c 
2w 

f d3p ! 
= (27T)-i - (2w) exp (ip • x) IpA)c, (3.6) 

2w 

a "modified" Fourier transform of the standard 
canonical states IpA)c' 

However, in the case of 2-particle states localized 
with respect to the magnitude of the rest system 
relative displacement, it is not so apparent how the 
integral transformation corresponding to that of 
Eq. (3.6) is effected so as to result in a meaningful 
interpretation of relative position. The problem of 
finding the "suitable" integral transformation which 
allows for the interpretation of a position space as the 
parameter space of a specified translation group may 
be partially resolved by fir~t finding the ray repre­
sentatives of the canonical states which are related to 
the standard canonical states by the appropriate 
translation. In the I-particle case the suitable basis is 
given by Eq. (3.1). The remainder of this section will 
hence be devoted to the construction of possible sets of 
canonical states which "carry" the displacement 
dependence. 

Starting with the direct-product state 

IPtA1; P2A2) = IpIA1)c ® Ip2}'2)c (3.7) 

for particles of mass ml and m2 and spin Sl and S2, 
respectively, and momenta PI = -P2 = q = (O,O,q), 
we may construct rest states of over-all spin S as the 
Clebsch-Gordan series 

IP SA) = L C(SlS2S I AIA2A) IhAl;P2A2), (3.8) 
Al,;'2 

where P = Pl + P2 = (M, 0) and M = (mi + q2)t + 
(m~ + q2)!. Two-particle angular momentum states 
may now be constructed by applying to the states of 
Eq. (3.8) the Wigner projection operator10 for orbital 
angular momentum I and z component m and defining 
the states 

(3.9) 

Here r = r( tpOO) is a rotation with Euler angles tp, 0, 
and 0, with corresponding operator RL(r) which acts 
only in momentum space and volume element 
dO = drpd(cos 0). 

In his construction of 2-particle canonical states, 
McKerreJI8 has defined the total angular momentum 
states in the rest system by 

IPa[Mnls)c 
! 

= (tq)!(21 + 1) L C(lsj I mAa) IPlmsA), (3.10) 
477 m.A 

which are seen to satisfy8 

R IPa[Mj]ls)c = I D:'iR) IPa'(Mj]ls)c (3.11) 
a' 

for arbitrary rotations r, with operator R = RLRs = 
RS RL which acts in both momentum and spin spaces. 
Moreover, the states of Eq. (3.10) are noted by 
McKerrells to be eigenstates of P, J., J2, V, and 8 2. 
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McKerre1l8 then obtains the states with general total 
momentum P by applying the operator L(P) of Eq. 
(2.9) to the rest states of Eq. (3.10): 

IPoc[Mj]/s)c = L(P) IPoc[Mj]/s). (3.12) 

These states are then shown to transform under an 
arbitrary Lorentz transformation L in the canonical 
manner: 

L lPoc[Mj]ls}c = L D~.,,[R(L, P)] IIPoc'[Mnls)c, 
,,' (3.13) 

where the transformation R(L, P) is the natural 
direct-product generalization of the transformation of 
Eq. (2.11). 

An alternative approach to the construction of 2-
particle canonical states is to first apply to the rest 
states of Eq. (3.9) for which the orbital angular mo­
mentum is zero a "relative displacement" of amount 
p = (0,0, p). A "relative displacement" may be 
defined in general as a transformation lex) on the 
coordinate pair (Xl' X2) with action 

l(x): (Xl' X2) - (Xl + lx, X2 - lx). (3.14) 

The quantum-mechanical operator corresponding to 
lex) is taken to be 

T(x) = T(1)(!x)T(2)(!X)-1 = T(1l(tx)T(2)( -tx), 

(3.15) 

where T(l) and T(2) are the respective I-particle 
translation operators. Due to the Abelian nature of 
the translation group, the set of lex) for all X forms a 
representation of the translation group. Such a 
representation is not, however, a subgroup of the 
direct-product representation of the Poincare group 
defined by 

A(lX2)(l, a) = A(1)(l, a)A(2)(l, a), (3.16) 

for which 
(I, a):xl' -ll'vx' + al'. (3.17) 

The effect of the relative translation rep) on the 
state IPOOsA.) is 

rep) IPOOs).) = f do.r(p)RL(r) IPsA) 

= f dO. exp (ip • q)RL(r) IPs).), 

(3.18) 
where the property 

R(1X2)(r)T(x)R(lX2)(r-1) = r(rx) (3.19) 

has been used. Here, R(lX2)(r) = R(1)(r)R(2)(r) and 

q = r(<pOO)q = q(sin 0 cos <p, sin 0 sin <p, cos 0). 

(3.20) 

The rest state of orbital angular momentum I, z 
component m, and relative displacement p is then 
given by the effect of the Wigner projection operator on 
the states of Eq. (3.18): 

IPlmsA; p) 

= J dOD!:o(R)RL(r) • rep) IPOOs).) 

= f dO. dO.' D!:o(R) exp (ip . q)RL(rr') IPsA). (3.21) 

It then follows that upon making the variable change 
r" = rr', using the plane-wave expansion 

exp (ip . q) = L (iY'(21' + l)jl,(qp)DKo*(r), (3.22) 
/' 

and using the orthogonality of the rotation matrices 

f dOD~:';.,(r)D:"nCr) = 2j 4; 1 bi'ibm'mbn'n, (3.23) 

one may perform the integral over dO' in Eq. (3.21), 
yielding 

IPlmsA; p) = 47T(i)Jl(qp) J dOD!"o(R)RL(r) IPsA) 

= 47T(i)JzCqp) IPlmsA)c (3.24) 

by Eq. (3.9). Corresponding to Eq. (3.10), the canon­
ical states of relative displacement p may then be 
defined by 

IPoc[Mnls; p) 

*(21 + 1)* . -= (lq) -- L C(/sJ I mAoc) IPlmsA; p) 
47T rnA 

= 47T(i)Jl(qp) IPoc[Mnls). (3.25) 

Moreover, since the relative momentum q is a Poin­
care invariant quantity, it then follows that the canon­
ical states of general momentum may also be defined 
via the transformation L(P) as are McKerrell's 
standard canonical states in Eq. (3.12): 

IPoc[Mj]ls; p) == L(P) IPoc[Mj]l~; p) 

= 47T(i)INqp) IPoc[Mj]ls>c. (3.26) 

Such states are clearly eigenstates of P, Jz , J2, V, and 
8 2 and are proportional to the standard canonical 
states except on a set of measure zero, that is, the 
set of zeros of the jz(qp). Furthermore, the states of 
Eq. (3.26) have the same Lorentz transformation 
properties as the canonical states: 

L IPoc[Mnls; p> = L D!,,,[R(L, P)] 11Poc'[Mnls; p) 
,,' 

(3.27) 

for an arbitrary Lorentz transformation L. The 
normalization of the states of Eq. (3.26) is seen from 
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McKerrell's results8 [Eq. (4.21)] to be 

(P'cx'[M'j']I's'; p' I Pcx[Mj]ls; p) 

= (47T)2jz(qp')jl(qp)b~,~t5i'1bl'lbs)j(M' - M)b(P', P). 

(3.28) 

More generally, the relative displacement r(p) may 
be applied to over-all rest states of Eq. (3.9) which 
have nonzero orbital angular momentum and, 
corresponding to Eq. (3.21), a set of canonical states 
defined for each 10 ~ 0 by 

IPlm(lomo)sA; p) 

== f dnDz,:o(R)RL(r) • rep) IP 10 mo S A)c' (3.29) 

By following an argument similar to that leading up 
to Eq. (3.25), the above equation may be simplified to 

IPlm(loO)sA; p) = 47T(iY6l,lo(qp) IPlmsA)c, (3.30) 

where 

6l,1o(qp) = (-yo! (it-1[C(l01l' IOOO)]2jl,(qp) 
I' 

(3.31) 
and where only states for which mo = 0 occur. In 
parallel with Eqs. (3.25) and (3.26), the corresponding 
states of total angular momentum and general 
momentum are then defined by 

IPcx[Mj]ls; 10 , p) = LCp{aq)iC
I
4: I)! 

xL C(lsj I mACX) IPlm(loO)sl; p)], 
ml 

(3.32) 
which, by using Eqs. (3.10) and (3.12), becomes 

IPcx[Mj]ls; 10 , p) = 47T(i)161,lo(qp) IPcx[Mj]ls)c. 

(3.33) 

The ray representatives of the canonical states thus 
given by Eq. (3.33) provide for each 10 a possible basis 
set for the construction of relative position states, 
localized with respect to the magnitude p of the 
relative displacement in the rest system. Of particular 
interest is the set of canonical states given by Eq. 
(3.26), which is the specialization of Eq. (3.33) to the 
case for which 10 = 0. Only for this set is the appear­
ance of orbital angular momentum states with I > ° 
due entirely to the initial relative displacement. 

4. RELATIVE POSITION STATES 

Angular momentum states localized with respect 
to the rest-system relative position may now be 
constructed by imposing the following requirements: 
(a) A complete set of such states be constructed as a 
superposition of the states of one of the sets of 
canonical states of Eq. (3.33), so that the magnitude 

of the rest-system relative displacement be taken as 
the relative position parameter; (b) the only possible 
states localized to zero relative position be those states 
of zero orbital angular momentum; (c) two states 
localized to different relative positions be orthogonal. 

Conditions (a) and (b) require that relative position 
states with definite total, orbital, and spin angular 
momenta be written as a superposition of that set of 
Eqs. (3.33) for which 10 = 0, that is, the set of which 
all canonical states are generated by the relative 
displacement rep) in the rest frame. Thus the relative 
position states are defined by 

IPp(j,u)ls) = 100 

dq'l"l(q) IP,u(Mj)ls; p) 

= 47T(i)IIOOdq'l"!(q)jz(qp) IP,u(Mj)ls)c' 

(4.1) 

where po = (P2 + M2)i and M = (m~ + q2)i + 
(m~ + q2)!. The function'l"l(q) may be determined up 
to a phase by condition (c), the "localization" criterion 
for relative position, which requires that 

(P' p'(j',u')l's' I Pp(j,u)ls) 

= bj'jbl"A'lbssb3(P' - P)p-2b(p' - p). (4.2) 

From the normalization of the states of Eq. (3.28) 
and the orthogonality property of the spherical Bessel 
functions, 

100q2dqjz(qp)jz(qp') = !7Tp-2t5(p' - p), (4.3) 

it follows that, in order for the states defined by Eq. 
(4.1) to satisfy Eq. (4.2), the functions'l"l(q) must be, 
up to a phase, 

'l"l(q) = (i)-1(47T~)-1[q3/E(q)E]t, (4.4) 

where E = (M2 + P2)! is the total energy and E(q) is 
the relativistic analog of the classical reduced mass, 
defined in the rest system by 

E(q)-l = (m~ + q2r! + (m~ + q2)-i (4.5) 

and called the invariant "reduced energy." 
The relative position states defined by Eq. (4.1) are 

then given in terms of 2-particle standard canonical 
states at time t = 0 by 

IPp(j,u)ls) = f dij(:~tjl(qP) IP,u(Mj)ls)c, (4.6) 

where dij == [q/E(q)] dq = dM is the Lorentz-invariant 
volume element, so that the corresponding "wave­
function" distribution is 

c(P',u(Mj)!s I Pp(j,u)!s) = (Pp(jft)!s I P',u(Mj)ls)c 

= [qE/7TE]!jz(qp)b(P', P). 

(4.7) 
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The relative position states of Eq. (4.6) are, like the 
canonical states, eigenstates of P, J2, J., V, and 82 
with corresponding eigenvalues P, j(j + 1), fl, 
1(/ + 1), and s(s + 1), but are clearly not eigenstates 
of the total mass M or energy E = (M2 + P2)!. The 
relative position states defined at time t are then given 
by the time-translated states 

IPp(j,u)ls)t 

= T(t) IPp(j,u)ls) 

= LXldq(!~)!uqp)eXp(-iEt)IP,u(Mj)IS)c. (4.8) 

As is the case with the Newton-Wigner localized 
states,3 the relative position states of Eq. (4.6) do not 
transform covariantly under Lorentz transformations. 
This is seen from the mass dependence of the trans­
formation matrix Di(R(L, P» given in Eq. (3.13). 

By using the orthogonality property of the spherical 
Bessel functions [Eq. (4.3)], the standard canonical 
states are seen to be related to the relative position 
states by 

IP ,u(Mj)l s)c = 27T-!(q€E)! f" p2 dpUqp) IP p(j,u)l s). 

(4.9) 

The "relative-position" operator for which the 
states of Eq. (4.6) are eigenstates is now readily found 
by first constructing the operator R2 for which 

R2 IPp(j,u)ls) = p2 IPp(j,u)ls) (4.10) 

for the states of Eq. (4.6) with fixed j, ,u, I, and s. This 
implies that the corresponding operator R2 which 
operates in wavefunction space satisfies, by Eqs. (4.6) 
and (4.7), 

R2 c(P' ,u(Mj)l sip p(j,u)ls) 

= p2 c(P',u(Mj)ls I P p(j,u)l s) 

= l(q€/7TE)!Uqp)J(P', P). (4.11) 

Upon noting that, from Bessel's equation, 

2. () ( -2 d 2 d l(l + 0) . ( ) 
P 1! qp = -q dq q dq + q2 1z qp , (4.12) 

the operator R2 is seen to be 

d d L2 
R2 = _(q€E)lq-2 _ q2 _ (q€E)-l + - . 

dq dq q2 
(4.13) 

In terms of derivatives with respect to the total mass 
M, it then follows that 

R = [R~ + q-2L2]1, (4.14) 

where the operator Ro is defined by 

Ro = _i(Eq)l~(.!L)l (4.15) 
€ dM €E 

and satisfies 

[Ro, M] = -i(qM, [Ro, q] = -i. (4.16) 

The commutation rules of Eq. (4.16) suggest that 
the operator Ro may be taken to be the "component" 
of the relative position operator R in the direction of 
the rest-system relative momentum q. In this case, the 
operator 

(4.17) 

represents the magnitude of the component of the 
relative position operator transverse to q, and so may 
be interpreted as an "impact parameter" operator in 
momentum space. This "impact parameter" operator 
corresponds exactly to the magnitude of the classical­
impact-parameter vector s in the rest system, which 
satisfies 

s • q = 0, L = s x q. (4.18) 

5. TWO-PARTICLE LOCALIZED STATES 

Two-particle angular momentum states, which are 
localized with respect to the parameter space of the 
direct-product representation of the translation group, 

t(1X2)(X): (Xl' X2) -- (Xl + X, X2 + X), (5.1) 

may now be constructed from the relative position 
states of Eq. (4.6). The set oflocalized states is defined 
at the origin by 

IOp(j,u)ls)L = f d3PIf/(P) IPp(j,u)ls), (5.2) 

and such states satisfy the Newton-Wigner3 postulates 
of symmetry, localization, and continuity if the 
functions !fJ!(P) are chosen such that, if 

Ixp(j,u)ls)L = T(1X2)(x) IOp(j,u)ls)L 

then 

= f d3Pq}(P) exp (iP . x) IPp(j,u)ls), 

(5.3) 

L(X' p'(j',u')l's' I xp(j,u)ls)L 

= ~j'A"I'~I'/)S'8P-2~(p'. - p)~3(X' - x). (5.4) 

Upon applying this "localization" criterion to the 
states of Eq. (5.2) and using Eq. (4.2), it follows that 
the functions !fJ! must be constants and up to a phase 
chosen to be (27T)-i for correct normalization. Hence, 
the 2-particle angular momentum states which are 
localized with respect to both the overall "mean 
position" X and the magnitude of the rest-system 
relative position p are given by 

Ixp(j,u)ls)L = (27Tri f d3p exp (ip. x) IPp(j,u)ls). 

(5.5) 
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In terms of the 2-particle canonical states, it follows 
from Eq. (4.6) that 

t 
Ixp(jft)ls)L = (21T)-i f d3p dij(!~) Uqp) 

x exp (iP • x) IPft(Mj)ls)c' (S.6) 
where 

c<Pft(Mj)ls I xp(jft)ls)L 

= (qf.E/21T4)tUqp) exp (iP. x). (S.7) 

The 2-particle localized states of Eq. (S.6) are 
clearly eigenstates of J2, Jz , V, and S2 in addition to 
the rela!ive position operator R = (R2)t of Eq. (4.14). 
Furthermore, these states are eigenstates of a "mean 
position" operator Xi, i = 1, 2, 3, corresponding to 
the wavefunction operators for which 

Xi c(Pft(Mj)Is I xp(jft )ls)L 

= Xi c<Pft(Mj)ls I xp(jft)ls)L, (5.8) 

where, from Eq. (S.7), it follows that 

. 1 ( a Pi) 
X' = - i aP

i 
+ 2E2 . (S.9) 

This position operator is of the same form as the 1-
particle Newton-Wigner position operator in its 
canonical representation,9 and satisfies the commuta­
tion rules 

[Xi, Xi] = 0, [Xi,pi] = _ibii . (S.10) 

6. SUMMARY AND CONCLUSIONS 

In this paper an infinite number of sets of 2-particle 
canonical 'states have been constructed by first 
considering the effect of a relative displacement of 
rest-system standard canonical states and by then 
projecting out of these transformed states their 
respective orbital angular momentum components. 
Of particular interest was that set of states which were 
generated from canonical rest states with zero orbital 
angular momentum, for which the resultant orbital 
angular momentum was seen to be due entirely to the 
initial relative displacement. 

By then postulating that a complete set of states 
localized to a zero relative position contains only zero 
orbital angular momentum components, a set of 
states localized with respect to the magnitude of the 
rest-system relative position were constructed, as was 
the corresponding relative position operator. Lastly, 
2-particle angular momentum states were localized 
with respect to the "mean position" of the 2-particle 
system, and the corresponding position operator was 
seen to be similar in form to the I-particle Newton­
Wigner position operator in its canonical form. 

The relative-position states discussed herein are to be 
distinguished from the relativistic impact-parameter 

states constructed by Chang and Raman.ll In their 
case, impact parameter space is taken to be the param­
eter space of the 2-dimensional translation group 
which, in the rest system, acts in a plane which is or­
thogonal to the direction of the overall 3-momentum. 
The impact parameter states defined by Chang and 
Ramanll in the rest system are 

IbK) = (21Trl f d2kl4wlw2rt exp (ik t • b) IPq), (6.1) 

where k
t 

is the transverse (relative) momentum, K is 
the z component of the relative momentum, and the 
impact parameter vector b is orthogonal to the 
direction of the over-all momentum. Such states may 
be thought of as the transverse projections of the 
localized states of Eq. (1.1) in the rest system. In the 
particular case for which the P direction is along 
the z axis, it follows that 

(bK I Pp) '"" eiKP 'o2(Pt - b), (6.2) 

where Pt is the transverse component of the relative 
position vector p in the rest system. 

On the other hand, the relative position states 
given by Eq. (4.6) are, in the rest system, the angular 
momentum components of those states of Eq. (1.1) 
upon which an integration of the form 

f dcp d(cos O)Yz m(O, cp) 

has been performed. Such states are, as in the 
case of Fq. (6.2), eigenstates of p = (b2 + p~)t. 
Whereas the relative-position states defined in the rest 
system by Eq. (1.1) do not readily admit a covariant 
generalization to arbitrary momentum P = PI + P2' 
it is believed that the procedure followed in this work 
has provided a meaningful relative-position repre­
sentation for systems of arbitrary momentum. 

An interesting feature of this development is that a 
quantum-mechanical analog of the classical impact 
parameter has arisen in a natural way as a consequence 
of localization with respect to the magnitude of the 
rest-system relative position. As opposed to the 
impact parameter interpretation given by Chang and 
Raman,ll the impact parameter operator given by Eq. 
(4.17) has as its classical limit the magnitude of that 
component of the rest-system relative position which 
is orthogonal to the relative momentum. Indeed, it 
appears that, if one requires that the correspondence 
principle be satisfied, it is unlikely that the corre­
sponding impact parameter "vector" operator S 
arises directly via a Newton-Wigner3 type of localiza­
tion procedure in the rest system. Accordingly, one 
would expect S to be a nonlocal operator, in the 
sense that [Si, S1] ~ O. 
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We compare the dynamical characterization of pure thermodynamical phases as extremal KMS states 
and their characterization as extremal time- or space-invariant states. We find that, for a class of Weiss­
Ising models with periodic potentials, the extremal KMS states coincide exactly with the solutions of the 
self-consistency equations familiar from molecular field methods. We show that the models considered are 
not 1)-asymptotically Abelian in time. We conclude that the characterization of pure thermodynamical 
phases as extremal KMS states is the only correct one for these models. We pay special attention (in 
particular, in the decomposition of an arbitrary KMS state into its extremal KMS components) to the 
fact that the time evolution is not an automorphism of the C*-algebra of the quasilocal observables. 

1. INTRODUCTION 

The Kubo-Martin-Schwinger (KMS) boundary 
condition, first discovered as an analyticity property of 
thermal Green's functions,! was introduced in the 
C*-algebraic approach to statistical mechanics by 
Haag, Hugenholtz, and Winnink.2 This condition has 
proved itself to be such a useful and elegant tool that 
many speculations have since appeared about its inter­
pretation in this formalism. 3 

The aim of the present paper is to confront these 
speculations-and, more specifically, the dynamical 
characterization of thermodynamical pure phases as 
extremal KMS states4-with what actually happens in 
some exactly solvable models which exhibit a phase 
transition associated with a spontaneous symmetry 
breaking. 

We consider for this purpose a slightly generalized 
version of the Weiss theory of ferromagnetism and 
antiferromagnetism, which we define precisely and 
treat with the conventional methods of statistical 
mechanics in Sec. 2. Everything which could possibly 
be said about the didactic value and pitfalls of this 
type of naive model has been repeatedly expounded 
in the literatureS; we shall henceforth not come back 
to this and just accept these models as concrete ex­
amples on which one can test more abstract theories. 

Since, on the one hand, we want to check, for the 

explicit models, whether the thermodynamical pure 
phases can be characterized as extremal KMS states 
and since, on the other hand, the KMS condition in­
volves in an essential way the time evolution, we first 
have to define the time evolution in the limit where 
infinite systems are considered. Our Sec. 3 is devoted to 
this preliminary question, which we answer ill three 
successive steps: The first one involves a convergence 
assumption which we later prove to hold true for 
the KMS states of our models; to avoid circular 
reasoning, the second step bypasses this assumption; 
the third step is concerned with the particular case of 
time-invariant states. The class of potentials for which 
these results are obtained contains, in particular, the 
case discussed in Sec. 2. 

The time evolution obtained in Sec. 3 happens to be 
of a slightly more general type than that allowed by 
the usual assumptions of the C*-algebraic approach; 
specifically, the time evolution in the van der Waals 
limit is no longer an automorphism of the C*-algebra 
of the quasi local observables. In Sec. 4 we make the 
necessary accommodations to take this fact into ac­
count, and we establish in this context the essential 
properties of KMS states as well as their decomposi­
tion into extremal KMS states. A complete characteri­
zation of extremal KMS states is also obtained in this 
section in the form of self-consistency equations which 
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mechanics in Sec. 2. Everything which could possibly 
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type of naive model has been repeatedly expounded 
in the literatureS; we shall henceforth not come back 
to this and just accept these models as concrete ex­
amples on which one can test more abstract theories. 

Since, on the one hand, we want to check, for the 

explicit models, whether the thermodynamical pure 
phases can be characterized as extremal KMS states 
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volves in an essential way the time evolution, we first 
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assumption which we later prove to hold true for 
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time-invariant states. The class of potentials for which 
these results are obtained contains, in particular, the 
case discussed in Sec. 2. 

The time evolution obtained in Sec. 3 happens to be 
of a slightly more general type than that allowed by 
the usual assumptions of the C*-algebraic approach; 
specifically, the time evolution in the van der Waals 
limit is no longer an automorphism of the C*-algebra 
of the quasi local observables. In Sec. 4 we make the 
necessary accommodations to take this fact into ac­
count, and we establish in this context the essential 
properties of KMS states as well as their decomposi­
tion into extremal KMS states. A complete characteri­
zation of extremal KMS states is also obtained in this 
section in the form of self-consistency equations which 
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we then compare to those obtained in Sec. 2, thus 
establishing the desired connection between thermo­
dynamical pure phases and extremal KMS states. 

Section 5 contains our conclusions and some poss­
ible extensions of our methods. Six short appendices 
deal with the more technical computations and proofs 
which would otherwise unnecessarily disrupt the main 
line of the argumentation. 

2. VARIATIONS ON A THEME BY KAC 

In his Brandeis lectures6 (see also Refs. 7), Kac 
showed that the molecular field method gives the cor­
rect thermodynamical behavior of the Weiss model. 
The elegance of his proof is based on the observation 
of an elementary property of the exponential function 
with square argument. We show in Appendix A that 
Kac's observation can actually be generalized quite 
simply to the case where the argument of the ex­
ponential is a positive quadratic form, thus enabling, 
by a method paralleling closely that of Kac, treatment 
of the case of a periodic Weiss-Ising interaction. We 
also compute the higher equilibrium space correla­
tions. These natural generalizations of Kac's idea 
constitute the material of this section and are thus 
derived in the most orthodox spirit of traditional 
statistical mechanics. All results are obtained, without 
approximations, in the thermodynamical limit. 

Let N = {a, 1, ... ,N - I} be a lattice, each point 
of which is occupied by a spin ai . The energy of a 
configuration {.u} is 

We assume Yij(N) to be symmetric [Yij(N) = Yji(N»), 
real, translation-invariant [Yi+n.i+n(N) = yii(N) with 
cyclic boundary conditions] so that yii(N) = YIi-iI(N), 
and periodic ofperiodp [Yn+v(N) = Yn(N)]; for sim­
plicity, we write N = pZ, where Z is an integer. To 
keep the energy per particle finite in the thermo­
dynamical limit (Z -+ (0), we assume further Yn(N) = 
!(n)/Z. We define P = {a, 1," . ,p - I} and the 
sublattice observable Mi for each j in P as 

We can then write 

E(N, {.un = -B L Mi - L MiY;;(N)M j • 

iEP i.iEP 

We assume finally that the matrix (hj) of rank p, de­
fined above from the interaction yij(N), is positive. 

Using the lemma of Appendix A, we see that the 

partition function for our system is 

Q(B, fl, Z) = L e-PE1N.{p}) 

{Il} 

= !1 (2flZAi/27T)1 1:00 

dtl ... 1:ao 

d,p 

x {exp ( -fJ fr ti};jt j) 
x !J 2 cosh [p( B + 2 ~};jtj)Jr 

(where the Ai are the eigenvalues of the matrix hj)' As 
the thermodynamical limit (Z -+ 00; p, B, and fl 
fixed) is approached, the integrand becomes more and 
more peaked, and the familiar steepest descent method 
gives an asymptotic expansion of the partition func­
tion, the first term of which is proportional to 

2'PZZ'P/2 maxl'l ..... 'v) {exp (-fl.L t;./~jti) 
'-JEP 

X IT cosh [fJ(B + 2 2,};jtj)~}Z' 
.€p JEP ~ 

The position of the stationary points of the integrand 
is then obtained in an implicit form, as the self-con­
sistency equations 

Bi = 2 IJij tanh [fJ(B + B;)], 
jEP 

where we write 

These self-consistency equations, considered by 
themselves, only determine the stationary points of the 
integrand, whereas only the maxima of the integrand 
with greatest magnitude contribute to the leading 
term of the integral. Due to the transcendental char­
acter of the expression at hand, the selection of these 
maxima from among the multiplicity of the solutions 
of the self-consistency equations might turn out to be 
a somewhat cumbersome task in the general case; we 
shall therefore assume that this selection (always 
possible in principle when an explicit choice of hj is 
made) is achieved, and we shall use the index set 
A(B, P) to label the maxima corresponding to the 
largest value of the integrand. 

We now notice that the trick used above to compute 
the partition function can be used all the same for the 
computation of the expectation value of any local 
observable An in the thermodynamical canonical 
equilibrium state. Since these observables are finite 
linear combinations of observables of the form An = 
IIiEQ Ai, it is sufficient to compute the expectation 
value of the latter. For those observables, one finds, 
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in the thermodynamical limit, 

(An)B.p = L (Xl (An);. , 
).E!I.(B.P) 

where (x;. corresponds to the relative weight of the 
maximum A, as determined by the steepest descent 
method, 

and 

(Ai);' = ( L ef!<B+Bi';')I')-l L eP(B+Bi.;')1' A;(,u). 
I'=±l I'=±l 

Consequently, we recognize (B + Bi •l ) as the 
effective magnetic field acting at site i to give 

(,ui)l = tanh [PCB + Bu)]. 

Since the Bi,}, only depend on A and on the sublattice 
{i + mp}, we write 

mi = lim Z-lMi , 
z~C() 

and then (mi );. = (f-li);' is the magnetization of this 
sublattice, characteristic of A E A(B, (3). We then have 

Bu = 2 Lh;(m j );., 
jEP 

and we can rewrite the self-consistency equations in the 
familiar form of the usual equations of state relating 
the applied magnetic field B and the sublattice mag­
netizations (mi);': 

(mi)l = tanh [f3( B + 2 ~hj(mj)l)l 
From this expression we see that the free energy per 

site, defined as 

-f3f(B, P) = lim (pZt1ln Q(B, Z), 
z~oo 

can be written as 

with 

-pfj = In 2 - tf3B j(m j) - tin (1 - (mj)2), 

which is the same for every A E A(B, Pl. 
The relations obtained in this section show that a 

natural extension of Kac's trick6 allows us to establish, 
in the thermodynamical limit, the exact validity of the 
molecular field method for a periodic Weiss potential. 
In particular, we can interpret A(B, (3) as labeling the 
pure thermodynamical phases, the prescribed mixture 
of which constitutes the canonical equilibrium state. 
In this respect, we might mention that all the pure 
thermodynamical phases which are obtained from one 
another by translation (Bj ~ Bi+n) or, when B = 0, by 
flip-flop (Bj ~ - Bj ) naturally occur in the canonical 
equilibrium state with the same weight since the inte­
grand of the partition function is invariant under 
these transformations, thus reflecting in the canonical 

equ!librium state the symmetry of the original Hamil­
toman. 

3. TIME EVOLUTION 

In the classical treatment presented in Sec. 2, we 
c?uld ignore the fact that, at each site j of the lattice, 
SitS a full spin OJ and not only a "classical spin" 
0";. This reflects the fact that the time evolution plays 
no role in this classical treatment of Ising-like models. 
However, in view of the fact that the emphasis in the 
present paper is on a dynamical characterization of 
pure thermodynamical phases, we should be prepared 
to allow for situations where the above simplification 
is not allowed any more. 

We first consider the time evolution for a finite 
system. To define the time evolution in the van der 
Waals limit (i.e., infinite volume, infinitely long-range 
and infinitely weak interactions), we proceed in three 
successive steps. In the first step we consider a partic­
ular case where the van der Waals limit can be carried 
out explicitly, leading to a Hamiltonian, the inter­
pretation of which provides a rigorous basis for the 
~olecular ~eld m.ethod; we show, under the assump­
tIOns of thiS partIcular case, the existence of a mean 
free field acting at each point of the lattice. This field 
is due to the collective action of all the other spins on 
the la~tice. To free ourselves from the necessity of 
assummg the conditions under which this first step can 
be carried out, we introduce in a second step a 
mathematically legitimate construct (the generalized 
mean PI) which properly allows us to define a time 
evolution; this construction, however, suffers from 
the physical disadvantage of lacking the uniqueness 
we would expect from a model as simple as that con­
sidered here. The third step, carried out after the 
material of Sec. 4 has been expounded, is contained in 
Appendix D, where we prove, using this intermediary 
step, that the assumptions of the first step are indeed 
justified and that, consequently, the ambiguity intro­
duced in the second step disappears in the final result. 
This section ends with a discussion of the time-in­
variant states. 

The physical system we consider is therefore an 
infinite lattice, each site of which is occupied by a 
quantum spin OJ. For the sake of simplicity in the 
notation, we assume this lattice to be 1 dimensional 
although this restriction can be trivially lifted; let u~ 
henceforth index the sites of our lattice by j in Z, 
where Z is the set of all integers. With each site j on the 
lattice, we associate the algebra A(j) of all complex 
2 x 2 matrices, i.e., 
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where 0'0 is the identity matrix and 0'\ i = 1, 2, 3, are 
the three Pauli matrices. The algebra A(O) of all local 
observables associated with a finite region 0 c Z is 
then obtained as the set of all finite linear combina­
tions of all finite tensor products of the form @iECl Ai 
with Ai in A(j). A structure of C*-algebra is imposed 
on A(O) by the usual rules of addition, multiplication, 
Hermitian conjugation, and norm of finite-rank 
matrices. With the canonical embedding 

Ai -+ ... @ I ® I ® Ai ® I ® I ® ... , 

A(Ol) is clearly a sub-C*-algebra of A(02) whenever 
0 1 is contained in O2 ; this property is referred to as 
"isotony." "Locality" is then expressed by 

which makes sense via the canonical embedding of 
A(Oi) into A(Ol U O2), The algebra A of all quasilocal 
observables of our system is finally defined, via the 
canonical embedding defined above, as the completion 
with respect to the norm of the union of all A(O): 

A = U A(O). 
ClcZ 

This last step, referred to as the C*-inductive limit, 
has been expounded with great mathematical pre­
cision by GuichardetR

; the naive description given 
above will, however, already suffice for our purpose. 

We next define the time evolution via the following 
limiting process. With every finite region 0 c Z, we 
associate H(O) E A(O): 

H(O) = -B ~ 0': - ~ 1'JO)O'~O'j, 
iECl i.iErI 

where, for the time being, we only assume that the 
1';;(0) are real couplings depending on 0, with 

1'ii(O) = 1'ii(O), 1'ii(O) = 0. 

Since the Hamiltonian H(O) is bounded, it defines a 
time evolution on A, via the formula 

(Xt(O) = ~ ~ L(Ot, 
"=0 n! 

where the Liouville operator L(O) , acting on A, is 
defined by 

L(n)[A] = -i[H(n), A] for all A in A. 

We now observe that the action of (Xt(O) on A is 
entirely determined by its action on the various Az E 

A(l,), since, first, (Xt(n) is an automorphism of A and, 
second, A is generated, as a C*-algebra, by the A z' 

On those particular elements, (Xt(O) takes the following 

simple form (for lEO): 

00 tn 
(Xt(O)[Azl = ~ - Lz{O)"[Azl, 

n=O n! 

where the local Liouville operator Lz(n), acting on 
A:, is defined by 

LI(O)[A] = -i[HI(O), A], for all A in A, 

in which enters the local Hamiltonian 

we use in the sequel the abbreviation 

BI(O) = 2 I 1'z,;(O)O'j. 
jEri 

We now eliminate the volume dependence 0 in the 
time evolution by passing to the limit 0 -+ 00; to do 
this, we need some further restrictions, the strength of 
which will be discussed later. 

We first assume that the couplings 1'ii(O) are such 
that for each i in Z there exists a positive constant Ci 

such that 

for all finite subsets 12 of Z containing i; we further 
assume that 

lim 1'ilO) = 0, for all fixed i, j E Z. 
Cl-+O'J 

These assumptions (which we will refer to, respectively, 
as the "stability condition" and the "van der Waals 
condition") are rather benign in the context of mean 
free field methods; the first of these assumptions 
implies that, for every i in Z, IIB;(O) II ~ Ci for all 
finite 0 containing i, with Ci independent of O. 

We now restrict our attention to the study of those 
particular representations 7T of A for which Bz.,,(O) == 
7T(Bz(O» converges strongly as 0 goes to infinity; this 
restriction means that we assume the existence of a 
bounded linear operator BZ.1T acting on the representa­
tion space .le1T , such that for every € > 0 and 1jJ in .le" 
there exists a finite integer N( €, 1jJ) such that 

I!(BZ•1T (O) - B1.,,)1jJ1! ~ € 

for every finite interval 0 = (l - N, I + N) with 
N';2:. N(E, 1p). 

The fact that B z." is obtained as the strong limit of 
B1.l1(n) in 7T(A) implies first of all that B1•1T belongs to 
7T(A)"; furthermore, together with the "van der Waals 
condition," this implies that Bz." commutes with all 
7T(Ak) (k E Z) and hence belongs to 7T(A)'. Hence, 
Bz." belongs to the center 7T(A)" n 7T(A)' of 7T(A)". 
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Under these conditions we prove in Appendix B 
that, for every local quantity A E A(Oo) with 0 0 arbi­
trary finite subset of Z and every fixed time t, 
7T(O(t(O)[A]) (with 0 :2 0 0) converges in the strong 
operator topology, as 0 --.. 00, to an element O(~ [7T(A)] 
of 7T(A)". We further show that 0(; preserves the norm 
of 7T( A) and can hence be extended to 7T( A); finally, we 
show that, for every finite subset 0 c Z, the mapping 
O(~ is unitarily implemented from an effective Hamil­
tonian 

Ha.i oo) = - 2(B + B1•1T)7T(aD 
lEa 

[belonging to 7T(A)"] which therefore generates the 
actual time evolution (in the van der Waals limit) of 
any local quantity A E A(O). Whereas 

U~ ... == exp [- iH a.i 00 )t] 

clearly belongs to 7T(A)", the global GNS U!, con­
structed in Appendix C, does not belong to 7T(A)"; 
this is in agreement with the results of Haag, Hugen­
holtz,and Winnink (Ref. 2; see especially p. 233). 

For mathematical convenience we now want to 
generalize the preceding discussion to the cases where 
BI.,,(O) does not necessarily converge strongly as 
0--.. 00. To achieve this, we consider the C*-algebra 
C(Z) of all bounded functions on Z, equipped with the 
sup-norm; let Cv(Z) be the linear manifold of all 
f E C(Z) for which 

vz[f] == lim 22 Vl;(O)j(j) 
n .... 0() jEa 
0"1 

exists; V z is then clearly a positive bounded linear 
functional on Cv(Z). By the Hahn-Banach theorem, 
we can then extend it to a positive bounded linear 
functional VI on C(Z). This extension is evidently not 
unique, but we shall see that this nonuniqueness 
actually neither hampers our discussion nor alters the 
generality of our final results; indeed, we shall prove 
the KMS states have a time evolution which is actually 
determined by VI and therefore unique, since all 
quantities entering its definition belong to Cv(Z), For 
every representation 7T of A and every fixed observ­
able A E B(C2), we define vl.,,[A;] in 7T(A)" n 7T(A)' by 

(<P, VI." [Aj]'Y) == vz[(<P, 7T(A;)'Y], for all <P, 'Y E:Ie". 

In particular, we then write BI." = vI.,,[a:], and we 
notice that this new B I • 1T coincides with the operator 
designated previously by this symbol whenever B 1•1T (Q) 
converges strongly as Q goes to infinity. 

We then generalize our previous local Hamiltonian 
Ha.1T ( 00) by replacing in it our previous B I •1T by their 
generalized versions, just defined. As before, these 
Hamiltonians generate a time evolution for all local 

observables A belonging to the corresponding 7T(A(O». 
We denote by O(~ this evolution, which again maps 
each 7T(A(O» into 7T(A)". 

The mathematical structure of the time evolution, as 
developed up to this point, differs in several ways 
from that postulated in the usual algebraic approach. 
First, the time evolution 0(; is defined for each repre­
sentation separately. Second, 0(; is locally unitarily 
implemented. Third, whereas the domain of O(~ is 
restricted to the (quasi-) local observables, its range 
cannot be shown, in general, to be restricted to 7T(A) 
but only to 7T(A)", and it is therefore not an automor­
phism of A. We shall see later that these differences 
cannot be due to a faulty or awkward approach to the 
thermodynamical limit, but are indeed strongly linked 
to the existence, in the van der Waals limit, of several 
different thermodynamical phases. 

We now want to show that, in the case of time­
invariant states, the time evolution can be extended to 
an automorphism of 7T(A)". 

Given any state 4> on A, we denote by 7T the GNS 
representation associated to it and by ~ the canonical 
extension of 4> from A to 7T(A)" defined by 

<~; A) = (<P, A<P), for all A in 7T(A)", 

where <P is the cyclic vector in Je1T corresponding to 4>. 
We now say that a state 4> on A is time invariant 
whenever <~; 0(; [7T(A)J) is a constant in t for every 
(quasi-) local observable A in A. Although this con­
dition is weaker than the usual one, we can still prove 
(see Appendix C) that there then exists a unitary 
operator V; on :Ie". [not to· be confused with the 
various VA." defined by the local Hamiltonians 
Ha.,,(oo)]: (i) V;<P = <Pand (ii) oc;[A] == V;AV;t, for 
all A in 7T~)", is an extension of 0(; to an automor­
phism of the von Neumann algebra 7T(A)". 

4. KMS STATES 

We now want to check whether the dynamical 
characterization of pure thermodynamical phases 
suggested in a previous paper4 makes sense in the 
specific model studied in Sec. 2 by means of traditional 
methods. 

We recall that, in order to get a consistent theory of 
symmetry breaking (including crystallization), we 
were led4 to assume that pure thermodynamical phases 
are to be identified, in the C*-algebraic approach to 
statistical mechanics, as extremal KMS states. In view 
of the character of the time evolution, as discussed in 
the previous section, we rephrase the fundamental 
Kubo-Martin-Schwinger boundary condition familiar 
in the treatment of thermal Green's functions as 
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follows: A state 1> on the algebra A of quasilocal 
observables is said to be KMS for the natural tempera­
ture f3 = (l/kT) if the two-time correlation functions 
associated with it satisfy the condition 

I dtfP(t)(~; 7T(C)ex~[7T(A)]) 
= I dtfo(t)(~; ex~[7T(A)]7T(C» (4.1) 

for all finite subsets 0 and 0' of Z, all A and C in 
A(O) and A(O'), respectively, and all f of the form 

f).(t) = I dw!(w)e-i",CHiY), y = 0 or f3, 

where J runs over the space of all infinitely differenti­
able functions with compact support. 

Although this version of the KMS boundary con­
dition is slightly weaker than the usual one (see, for 
instance, Ref. 4 and references quoted therein), it still 
keeps the essential strength of the latter. We indeed 
first notice that 1> KMS on A (in the present sense) 
implies by the usual argument (e.g., via Bochner's 
theorem on measures obtained as Fourier transforms 
of continuous, bounded functions of positive type) 
that 1> is time invariant (in the sense of Sec. 3); in 
conjunction with the last results of Sec. 3, this is 
sufficient to show that ~ is KMS (in the usual sense) 
on 7T(A)" with respect to ii! and that a KMS state 'If 
on A (in the present sense) is extremal KMS if and 
only if 7T(A)" is a factor. 9 

In view of these results, we can now immediately 
compute the extremal KMS states for our model. We 
recall that B I •1T , as defined in Sec. 3, belongs to the 
center of 7T(A)" and that this center is trivial whenever 
7T is the GNS representation associated with an ex­
tremal KMS state 'If on A; let us denote by BI .1p the 
value of the c-number BI •1T , thus associated to every 
extremal KMS state 'If on A. Since BI .1p is a c-number, 
ex! is not only an automorphism of the von Neumann 
algebra 7T(A)" associated with 'If, but moreover its 
restrictions to 7T(A) and to 7T(A(O» (where 0 is any 
finite subset of Z) are also automorphisms of these 
C*-algebras. We now recall that A(O) is the algebra 
of all bounded operators on a finite-dimensional 
Hilbert space, so that all its representations are faith­
ful; ex; hence defines an automorphism of A(O) which 
is generated by the Hamiltonian 

Ho..kXJ) = - L(B + BI.1p)a~. 
lEn 

Every state on A(O) is normal since A(O) is finite 
dimensional; this is in particular true for the restriction 
'lfo. of 'If to A(O). Furthermore, 'lfo. is KMS with 
respect to the time evolution generated by Ho../ (0) 

on . A(O); finally, A(O) is irreducible. The density 
matrix representing 'lfo. is then uniquely determined, 
and so is, therefore, 'lfo.; we can thus conclude that 'If 
extremal KMS implies the following for each A in 
A(O): 

('If; A) = Tr p(O)A, (4.2) 

where 

p(O) = {Trexp [-f3Ho..1p(OO)]}-1 exp [-f3Ho..II,(oo)]. 

This implies immediately the following four conse­
quences [Eqs. (4.3)-(4.6)]: 

'If is not extremal time-invariant (4.3) 

since we can, for instance, write 'If = AI 'lf(1) + A2'1f(2) , 

where 'If(1) and 'If (2
) are again product states defined 

respectively by 

with 

and 

('lfCil; AI) = {('If; AI)' 1:;6 j} 
Tr pC.')A. 1 =}. 

1 1 ' 

j arbitrary, but fixed in Z, 

Al = HI + tanh [f3(B + B1.1p)]}' 

A2 = HI - tanh [f3(B + BI.1p)]}; 

hence,lo the time evolution is not asymptotically 
Abelian, as can also be explicitly seen from 

with 

A = aL B = af, and C = 1 + ia~. 

whenever 

A E A(O), C E A(O'), 0 n 0' = 1>, 

so that 'If is a product state and hence satisfies the 
strongest possible cluster property; 

('If; aD = 0 = ('If; a!), 
('If; aD = tanh [f3(B + B1,1p)]' (4.6) 

B1.1p = 2iil [('If; a;)]. 

The above three equations determine 'If; they appear 
here as formal generalizations of the self-consistency 
equations of Sec. 2, and we check in Appendix D that 
the above relations actually reduce to those of Sec. 2 
in the particular case considered there. 

The equations determine only the stationary points 
of our integrand; this implies that not all extremal 
KMS states occur in the decomposition of the Gibbs 
state cp. We illustrate explicitly this feature in Appendix 
E for periodic potentials of period p = 2. In this simple 
case, one can already exhibit as many as nine solutions 
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to the self-consistency equations. Among these, at 
most two occur in the decomposition of rp: those 
corresponding to absolute maxima of our integrand, 
i.e., the absolute minima of the free energy; the 
remaining solutions are then either relative minima, 
saddle points, or maxima of the free energy, so that 
these extremal KMS states can at best be interpreted 
as metastable or unstable pure thermodynamical 
phases. 

We now want to examine the question of the de­
composition of an arbitrary KMS state rp in its extre­
mal KMS components 1p and the related problem of 
consistency between the definitions of the time 
evolution in the representations respectively associated 
with rp and the various 1p entering in the decomposition 
of rp. 

Many of the results proved above for extremal 
KMS states carryover to any general KMS state rp; 
we already noticed that rp is time invariant and that, as 
a consequence (see Sec. 3), ex;", is unitarily imple­
mented in the GNS representation 7T1/> associated with 
rp and extends to an automorphism ii~ of 7T/A)" with 
respect to which the extension f> of rp to 7T ,/A)" is KMS 
in the ordinary sense. Due to the fact that the time 
evolution is not an automorphism of A, the analysis 
of the decomposition of a KMS state into its extremal 
components, as carried out in our Ref. 4, needs some 
refinements. Under the assumptionll that 

(i) there exist p's finite such that 

IJI![J] = vl+P[f], 

for alII in Z and allfin Cv(Z), and 
(ii) l, the characteristic function of the sublattices, 

{i = np + kin E Z}, with k in P, belongs to C.(Z), 
we prove in Appendix F that rp KMS can actually be 
written as a discrete statistical mixture of extremal 
KMS states satisfying Eqs. (4.2)-(4.6) and that the 
time evolution defined on 7T ",(A)" is consistent (in a 
sense which will be made more precise in Appendix F) 
with that defined on each 7T1jJ(A)". 

5. CONCLUSIONS 

Our main results, for a class of Weiss-Ising models 
with periodic potentials, are that: (i) The thermod y­
namical pure phases are extremal KMS states; (ii) the 
set of extremal KMS states is exactly given as the mani­
fold of solutions of (a slight extension of) the usual 
self-consistency equations of the molecular field 
methods; (iii) every KMS state (and, in particular, 
the Gibbs state in the thermodynamical limit) can be 
written uniquely as a discrete statistical mixture of 
extremal KMS states. 

The model analyzed here allows a comparison 
between the various definitions of pure thermody­
namical phases which have been suggested in the 
past4.14-16 and points to the fact that the definition 
chosen in Ref. 4 is the most appropriate. First, the model 
is not asymptotically Abelian in time so that the pure 
thermodynamical phases which are extremal KMS 
states are not extremal time invariant, a fact which we 
exhibit explicitly in Sec. 4. Hence the characterization 
of pure thermodynamical phases as extremal time­
invariant states is not appropriate in general situations 
where the time evolution is not asymptotically Abelian. 
Secondly, since a breaking of the translation invari­
ance Z of the lattice is involved in the phase transition 
occurring here, a characterization of pure thermo­
dynamical phases as extremal Z-invariant states is 
awkward. We notice in this connection that our pure 
thermodynamical phases 1p are invariant with respect 
to a proper subgroup ZIjJ of Z; since, on the one hand, 
the local structure of our system implies that the 
translations act in an asymptotically Abelian manner 
and since, on the other hand, the representations 7T1jJ 

are primary, it follows that 1p are extremal ZIjJ-invariant 
as ZIjJ acts in an asymptotically Abelian manner, the 
set 6 zIjJ of all ZIjJ-invariant states is a simplex, and the. 
decomposition of a ZIjJ-invariant state (as is the Gibbs 
state) in its extremal ZIjJ-invariant components is 
unique; the multiplicity of left-over extremal ZIjJ­
invariant states which cannot be interpreted as pure 
thermodynamical phases is, however, appalling, so 
that even a third characterization of pure thermo­
dynamical phases as extremal ZIjJ-invariant states 
would be far too permissive. Moreover, we showedl 7.4 

that this type of characterization is altogether inad­
equate when the initial group of invariance of the 
Hamiltonian is P, the Euclidean group in three 
dimensions. 

The proposed dynamical characterization of ther­
modynamically pure phases involves the technical 
problem of the proper definition of the time evolution 
for an infinite system. We chose to define it for each 
representation separately and then particularized this 
definition successively to the representations associated 
with time-invariant states, with extremal KMS states, 
and with general KMS states. In the latter two cases, 
we showed that this definition could be made in an 
unambiguous manner, whereas this is not the case for 
more general representations. For extremal KMS 
states we proved that the time evolution is actually an 
automorphism of the C*-algebra 7T(A) whereas, al­
ready for general KMS states, it can only be shown to 
be an automorphism of the von Neumann algebra 
7T(A)". 
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Since the algebra A of the quasilocal observables on 
our physical system is simple, every representation of 
A is faithful, so that the time evolutions obtained for 
each extremal KMS state can be lifted up separately to 
continuous families of automorphisms of A. These, 
however, do not coincide, and this feature is linked 
to the existence of several thermodynamical pure 
phases. The necessity for this generalized definition of 
the time evolution of an infinite system is simIlar to 
that encountered by Thirring and Wehrlls in their 
study of the Bes model (these authors, however, 
were not concerned with the KMS condition) and has 
also been met by the general frame proposed by 
Dubin and Sewe1119 (who assume the existence of the 
Gibbs state in the thermodynamical limit, define the 
time evolution for this state, and then prove that 
the KMS boundary condition is satisfied). We surmise 
from these results that, in the type of models consid­
ered here, the time evolution cannot be assumed to be 
given by a single family {oct} of autQmorphisms of A, 
but could at best be defined as a family of automor­
phisms of the enveloping von Neumann algebra20 of 
j{;, although this mathematical device does not seem 
to shed any light on the physical properties of the 
systems considered; we therefore preferred to attack 
the technical problem of the definition of the time 
evolution along the lines presented here. 

Finally, we might remark that whereas our investi­
gation was carried out explicitly for periodic Weiss­
Ising interactions (where the comparison with tradi­
tional methods is particularly easy), the framework 
developed in Secs. 3 and 4 allows the treatment of 
general Kac potentials of the form 

Vii = lim yf(y Ii - j\) 

such as those studied by Lebowitz and Penrose12 and 
Gates and Penrose13 ; the analysis of the latter authors 
is carried out for continuous gas models, whereas ours 
applies primarily to the lattice-gas .translation of the 
magnetic models we considered; for the ordinary 
Weiss lattice gas the pure thermodynamical phases 
can, as usual, be interpreted as liquid and gas. 
The Gibbs states follow the actual isotherms, including 
the Maxwell plateau. 
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APPENDIX A 

Lemma: Let W = (w ij ) be a strictly positive, sym­
metric, real n x n matrix and Jet Xl'" xn be n 

independent variables. Then 

exp (~X;W;iX;) 
'.J = [IT (..&)J1 r+'" d'l . " r+"'d'n 

, 27T 1-00 1-", 

where Ai are the eigenvalues of W. 

Proof' We first notice with Kac6 that, from 

(27T)-t fXJoo d'YJ exp (-i'll) = 1, 

it follows (upon substitution of 'YJ by , - 21a) that for 
any real a 

exp a2 = (27Tr1 L+oooo d, exp (_g2 + 2f a') 

and then, for every real al ••• an and YI ... Yn' 

exp (t a~y~) = [(27T)-fr L+oo(1) d'l ... r-: d'n 
x exp (-i f ,; + 2f ~;aiYi'i)' 

From our assumption on W, the quadratic form 
~i XiWiiXi can be diagonalized to the form of the lhs 
of the above equality (with ai = At > 0). With the 
substitution 'i = aiXi, we get 

X exp ( -i t a;x~ + 2f t a;YiX} 

the rhs of which we can change, by an orthogonal 
transformation, to 

thus proving our lemma. 

APPENDIX B 

Let L1.,,(Q) and L I." be the local Liouville operators, 
acting on B(Je,,), respectively associated with the local 
Hamiltonians HI ... (Q) == 7T(HI(Q) and HI.,,' These 
two Liouville operators clearly generate two families of 
automorphisms IXl",(Q) and oct". We first show that 
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for each IE Z 

From 

and 

s-lim ocl.,,(O)[ ?T(AI)] = ocL,,[ ?T(AI)]' 
n .... OO 
(031) 

s-lim Bl,,,(O) = BI.1T 
n .... OO 

(03/) 

IIB/jO)11 < C/, 

we conclude that for each n E Z 

From 

s-lim [B + Bl.,,(O)t = (B + Bz.,,)'" 
0 .... 00 

({l3T! 

[BI."cO), ?T(AI)] = 0 

and (B2), we have also 

[Bl.,,' ?T(AI)] = O. 

From (B5) and (B6), respectively, we get 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

L~.,,(O)[?T(AI)] = (l~,,[?T(AI)][B + BI.,,(Q)t, (B7) 

L~lT[?T(Al)] = (l~,,[?T(AI)](B + B1.,,)n, (B8) 
with 

(ll.,,[ ?T(AI)] = - i[?T( O'~), ?T(AI)]' (B9) 

We notice that 

(B1O) 

From (B4), (B7), (B8), and (BlO), we conclude that 

s-lim L~.lT(O)[?T(AI)] = L~.1T[?T(AI)]' (Bll) 
n .... oo 
(n311 

(BI) now follows from (Bll) and from the fact that 
the exponential series 

00 tn L - L"[A] = oct[A] 
n=O n! 

converge in norm. 
For every finite 0 0 c Z, every finite sequence 

{/l ... 1m} s:; 0 0, and every 0 :2 no, we define 

oc;(n)[?T(AZl ® ... (-9 AzJ] 

= OCil.,,[ ?T(All)] ... oc~m.,,[ ?T(Alm)] (B12) 

which extends then by linearity to A(Oo). This evi­
dently coincides for all 12 ;2 no with the ?T(IXt(n)[AJ) 
where oct(n)[A] is defined in Sec. 3. We then define 
in the same manner oc;[?T(A)] for all A in A(no). Since 

lIoc;.,,(Q)(?T(Azm = 1\?T(Az)1\ = II OC:. l1 [?T(A;m , (B13) 

we can conclude from (BI), (B12), and (B13) that 

s-lim ?T(oct(n)[A]) = oc;[?T(A)], for all A in A(no). 
0 .... 00 

(O:!no) 

This is trivially extended to every A and .:It. 

Since BI ." belongs to ?T(A)' and since every element 
A(no) of A(no) can be obtained as a finite linear com­
bination of finite products of the A I with I E no, we 
see that for each A E A(no) 

where Ln." is defined by 

[Ln.", A] = -i[L(B + BZ•l1 )aL AJ. 
lEn 

APPENDIX C 

With the notation of Sec. 3 and ~ time invariant, 
we now construct the operator ut on the dense linear 
manifold 

{?T(A)<I> I A E A(Q); n c Z} 
of Je" as 

V;?T(A)<I> = V&.,,?T(A)Vn~l1<I> 

for all A in A(n), where 12 runs over all finite subsets of 
Z. Due to the isotony property, U; is clearly linear on 
its domain of definition. The time invariance of ;;; 
implies 

II V; ?T(A)<I> II = II?T(A)<DII, 

so that U; can be extended in a unique manner to a 
unitary operator on Je". We notice that this operator 
satisfies the following two properties: 

V;<I>=<P, 

U! ?T(A)U;t = oc;[ ?T(A)], for all A in .:It. 

Since the mapping C -+ U;cu;t is weakly continuous 
on $(Je,,), oc; extends to a spatial automorphism 

a;[A] = U;AV;t, for all A in ?T(A)", 

of the von Neumann algebra ?T(A)". This important 
result can also be obtained as follows: Since 

(?T(A)") , = ?T(.4:)' = n ?T(j{;(n»', 
{lCZ 

we have, for all Q c Z, all A in A(n), and all X in 
?T(A)' , 

o = [X, U;(n)?T(A)U;\Q)] 

= [X, U!?T(A)U;t] = U~[U;tXV!, ?T(A)]V;t, 

which again implies u;tXU; belongs to ?T(A)'. This 
implies that the natural extension ii; to ?T(A)", defined 
by 

ii![A] = U;AU;t, for all A in ?T(.i{;)", 

maps ?T(A)" onto itself and is then a spatial auto­
morphism of this von Neumann algebra. 
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APPENDIX D 

To show that the results of Sec. 3 and 4 contain 
those of Sec. 2 in the particular case considered there, 
we must check first that the ambiguity introduced 
when we extended VI and VI actually disappears in the 
final results and second that the time evolution tX; is 
indeed the limit of the time evolution for the finite 
system. 

We notice that, when Vij(.o) is periodic in Ii - jl 
with period p, then the linear functional VI defined in 
Sec. 3 satisfies 

VI[J] = vl+P[f], for all fin ev(z), 

so that the natural consistency requirements impose 

Vl[f] = vl+'P[f], for all f in e(Z). 

Consequently, BI.'I' = BI+'P;'I" and hence (VJ; ()"~> is 
periodic of period p in j so that, with the assumptions 
of Sec. 2, 

Bi,~' = 2vl [(VJ; ()"~>] = 2 '2.h/VJ; ()"~> 
iEP 

= 2 '2. hi tanh [(1(B + Bi,'I')]. 
iEP 

This establishes our first claim. To substantiate the 
second, it suffices (see Sec. 3) to show that BI ,ll(.o), 
which is uniformly bounded, converges strongly to 
BI,'I' on a dense domain of the representation space 
:Ie" of the GNS representation 1T associated with VJ 
extremal KMS. To prove this convergence, we con­
sider, for any arbitrary but fixed finite subset.oo of Z, 
any fixed A in A(.oo), and all .0 ~ .00 , 

II L~V;;(n)1T(a~) - Bi ,"]1T(A)'Y II 

~ II i~oVi;(n)a~ 11111T(A)'Y 11 

+ II [iE~noVii(n)1T(a~) - Bi ,"]1T(A)VJ II· 

As .0 -+ 00, the first term tends to zero. Upon using 
the facts that VJ is a product state, that Bi ," is a c­
number, and that (VJ; a~> is periodic inj, we see that 
the square of second term in the above relation tends, 
as .0 -+ 00, to 

(VJ; A*A>{Ivii(.o)(VJ; a~> - Bi''I'}2 
iEn 

which also tends to zero by construction of Bi,'I" 

APPENDIX E 

We now analyze further the meaning of the self­
consistency equations in the case p = 2 and 'external 

field B = O. When we denote In = 122 = a and 112 = 
b, we find for the free energy (per site)/of a state with 
mean free field Bl at the even sites and B2 at the odd 
sites: 

I = -a tanh «(1Bl)2 - 2b tanh «(1Bl) tanh «(1B2) 

- a tanh «(1B2)2 + Bl tanh «(1Bl ) + B2 tanh «(1B2) 

- kT In 2 cosh «(1Bl) - kTln 2 cosh «(1B2). 

One finds then indeed that the extremal points of this 
function are determined by the self-consistency equa­
tions 

2a tanh «(1Bl) + 2b tanh «(1B2) = Bl , 

2a tanh «(1B2) + 2b tanh «(1Bl) = B2 • 

To be specific, let us consider the case -a < b < 0, 
and define the temperatures Tr and Tn, respectively, 
by Tr = 2(a - b) and Tn = 2(a + b); hence, Tn < 
Tr . The following solutions are obtained readily: 

(i) For T> Tr , only the solution Bl = B2 = 0 
exists; this solution corresponds then to an (absolute) 
minimum. 

(ii) For Tn < T < Tr , one has the three solutions 
(a) Bl = B2 = 0 which is then a maximum, 
(b) and (c) Bl = -B2 = ±Br, in which Br is solu­

tion of 2(a - b) tanh «(1Br) = Br; these solutions are 
absolute minima. 

(iii) For T < TIl, one has always five solutions, 
namely, 

(a) Bl = B2 = 0 (maximum), 
(b) and (c) Bl = -B2 = ±B1 (absolute minimum), 
(d) and (e) Bl = B2 = ±Bu in which Bn is solution 

of 2(a + b) tanh «(1Bn) = Bn. 
All these solutions have the property that, when 

T -+ Tr (respectively Tn), one has Br -+ 0 (respectively 
Bn -+ 0); therefore, they can be obtained by linear­
izing the self-consistency equations. It turns out, 
however, that there are still some peculiar solutions 
that cannot be obtained in this manner. Let Tnr be the 
solution of T cosh2 [(1Bn(T)] = a-b. Graphical 
methods (for instance) show that Tnr < Tn and that 
four new solutions to the self-consistency equations 
exist when T < Tm , which are of the form Bl = 
±BiH

, B2 = ±B~II. When T tends to TIll, one has 
that Bin and B~II tend to BlI ;i: O. Together with the 
extra solutions occurring at T = TIll' one has that 
the status of the solution (iii.c) changes from saddle 
point to relative minimum. 

APPENDIX F 

We define, for every KMS state ¢ on .it, the GNS 
representation 1T", of .it, the time evolution ii~ of 
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7T.p(A)" and the canonical extension if> of 1> to 7T.p(A)" 
which is KMS with respect to oc~ (see Secs. 3 and 4). 
We know then4 that if> can be uniquely decomposed 
into states 1jJ on 7T.p(A)" which are extremal KMS with 
respect to IX~. We then construct the representation 
7T1j! of 7T.p(A)" the weak closure of which is then9 a 
factor. This implies that 7T1j!(BI .".p) is a c-number. From 
this we conclude, as in Sec. 4, that the restriction tp of 
1jJ to A is a product state of factor representations. 
From this it follows8 that the GNS representation 7T Ij! 

of A is also a factor. Since, on the other hand, tp is 
KMS on A with respect to the time evolution defined 
from 7T1j!(B I .".p)' we conclude9 that tp is extremal KMS 
on A with respect to that time evolution. We now want 
to show that the latter coincide with the time evolution 
defined from tp alone in Sec. 4. To this end, it is suffi­
cient to show that 

(Fl) 

which we shall now prove. 
We recall4 that fl, is the central measure associated 

with if> and that to every fl,-measurable set F corre­
sponds an element DF in 7T.p(A)" () 7T.p(A)' such that 

(if>; ADF) = L(1jJ; A) dfl,(tp), for all A in 7T.p(A;)". 

(F2) 

From the definition of BI •1f .p we have, upon using (F2), 

fF(1jJ; BI.1f.p) dfl,(tp) = (if>; BI'1f.pDF) 

= 2v'z[(if>; ajDF)] 

= 2y{fF(tp; aj) dfl,(tp)} (F3) 

As we already saw, the periodicity of Yl implies that 
the extremal KMS states occurring in this decomposi­
tion are periodic with period p. Let Sp be the closed 
set of all states tp on A such that (tp; Ai+p) = (tp; Aj) 
for allj in Z and all A in A(;).Since fl, is concentrated 
on the extremal KMS states, which are all in Sp, we 
have that the support of fl, is contained in Sp. For 
these states, 

Yl'p; aj) = !.fz.k(tp; a~), (F4) 
keP 

where Iz.k = 'V1(Xk) (the existence of the latter limit is 
part of the assumptions made at the end of Sec. 4). 
We can therefore interchange the mean Yl and the 

integral in the rhs of (F3) to get 

L(1jJ; Bl.1f.p) dfl,(tp) = t2YI(tp; aj) dfl,(tp) 

= L BI.1j! dfl,( tp). (FS) 

Since this holds for every wmeasurable F and since 
the integrands of both the lhs and the rhs of (FS) are 
w*-continuous in if> [the rhs because of (F4)], we con­
clude that 

(1jJ; BI.1f.p) = Bl.lj!' (F6) 

from which (Fl) follows since 7T1j!(BI.1f ) is a c-number. 
Finally, we notice that, since the.p self-consistency 

Eqs. (4.6) admit only a finite number of solutions, the 
decomposition of 1> into its extremal KMS components 
is actually discrete; furthermore, the same reasoning 
as used in Appendix D leads to the strong convergence 
of BI •1f/O) whenever 1> is KMS. 
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The Kohn-Hulthen variational principle for the phase shifts, as well as the Rayleigh-Ritz principle 
for the binding energies, are used to determine the derivatives of 81 = 8(V, E, /, m, h) and E = 
E(V, /, m, h) with respect to the listed parameters. A similar treatment utilizing Hamilton's variational 
principle leads to the corresponding classical results. The relation between the quantum mechanical 
and the classical expressions is examined. In particular, it is found that the quantum-mechanical binding 
energy corresponds to a certain path average of the classical energy. Some applications of resulting 
formulas are briefly reviewed. This work is an extension of ideas originated by Fock and Demkov. 

I. INTRODUCTION 

Variational principles are certainly among the most 
powerful tools at the disposal of the theoretical 
physicist. They are widely used in almost every branch 
of theoretical physics. It is therefore quite surprising 
that one of its most natural applications, namely, the 
calculation of derivatives of the stationary quantity 
with respect to the parameters of the system, seems to 
be overlooked. In fact, if one uses as trial functions 
the correct functions for a slightly different system 
(different mass, different force, etc.),one is bound to 
get the derivative of the stationary quantity with 
respect to the varied parameter. This process could be 
almost trivial but for the fact that the varied functions 
must usually satisfy some normalization or boundary 
conditions. The way to overcome this difficulty is to 
perform a change of scale-a technique devised by 
Fock and utilized by Demkov.1 

We shall begin our discussion with scattered states. 
The derivatives of the phase shifts, as well as those of 
the complete scattering amplitude, will be obtained. 
Next, we shall consider the bound states, where the 
stationary quantity is the energy. Finally, we shall turn 
to classical mechanics and secure the corresponding 
derivatives for the action integral. 

In examining the correspondence between the 
quantum-mechanical (q.m.) results and the classical 
(cl) results, we shall see that the q.m. binding energy E 
corresponds to -(L)av' where (L)av is the time average 
of the Lagrangian. This is to be expected on the basis 
of the WKB approximation. However, there is a more 
striking correspondence due to a purely classical 
result, namely, -(L)av = (Eol ), where (Eel) is a certain 
path average ofthe classical energy. This is, of course, 
reminiscent of Feynman's path integral method.2 We 
shall also see, in passing, that even the simplest 1-
particle classical problem has divergences built In 

which necessitate a careful limiting process. 

Finally, a word concerning the novelty of the results. 
Many of the results derived here are well known. They 
have been derived, however, using diverse methods 
and thus are not as widely known as is warranted. 
This article should be regarded, therefore, at least in 
part, as a review. 

II. QUANTUM MECHANICS 

A. Scattered States 

We shall start with the Kohn-Hulthen variational 
principle for the phase shifts !5 z ,3.4 where !5 z = 
!5(V, E, I, m, Ii). The principle reads 

k!5 z = 100 

Ut(r)LUlr) dr + k!5t + O«Uz - Ut)2) , (1) 

where UtCr) is a trial function satisfying the boundary 
conditions 

UtC0) = 0, Ut(r) '" sin (kr - !11T + !5t), (2) 
r"OO 

!5t being the trial phase shift and Uz(r) the solution of 
the radial equation 

( 
d2 2 l(l + 1) 2m ) 

LUz(r) == -2 + k - 2 - -2 VCr) Uz = ° 
dr r Ii 

with the boundary conditions 
(3) 

Uz(O) = 0, Uz(r) '" sin (kr - ll1T + 15/), (3') 
r->oo 

1. Changing the Potential 

Let Ut = Uz(V + 6.V, r) be a solution of (3) with a 
potential V + 6. V. Then, to first order we have 

k!5tCV) = k!5z(V + 6. V) 

+ roo Uz(V + 6.V)(L _ 2~ 6.V + 2m 6.V) 
Jo Ii 1i2 

X Uz(V + 6.V) dr. 
3019 
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Hence, using Eq. (3), 

~<51 = - 2;: ('" U~(V, r)~ V dr. 
Jj k Jo 

wavefunction as V t = Uz(m + ~m, rl(l + E», with 
E = ~ml(2m), and proceeding exactly as in Sec. II.A.2, 

(4) we obtain 

In particular, if V depends on a parameter oe, 

0<51 2m fo'" 2 oV -=-- Ul(oe,r)-dr. 
ooe 1i2 k 0 ooe 

(4') 

2. Changing the Energy 

Let Ot = Vl(k + Ek, r) be a solution of (3) with a 
wavenumber (1 + E)k, where E is an infinitesimal 
constant. (The corresponding change in E is ~E = 
2EE.) Asymptotically 

Ot 1"'-.1 sin [(1 + E)kr - ilrr + <5,(E + ~E)]. 
Since the last equation violates the boundary con­
dition (2), Ot cannot serve as a trial function. How­
ever, if a change of scale is performed, namely, 

V t = Ok/(l + E» = V,((1 + E)k, rl(l + E», . 
the boundary condition (2) is satisfied. Inserting V t 

into Eq. (1) and changing the variable of integration 
from r to r' = rl(1 + E), we obtain 

k<5I(E) = k<5,(E + ~E) 
+ (I + E)-lL"'dr'Vz((1 + E)k, r') 

X (~ k2(1 E)2 _ l(l + I} 
d ,2 + + ,2 r r 

- (I + E)2 2m VCr' + Er'») Uz«1 + E)k, r'). 
Jj2 

Finally, utilizing Eq. (3), we secure 

o<5z = (Jj2krl roo U~r dV dr. (7) 
om Jo dr 

5. Changing Planck's Constant 

Since m and Ii enter all expressions only through the 
combination ~ = 1i2/(2m), we can immediately obtain 
(if only for mathematical curiosity) 

0<5, 0<5, o~/oJj 
-=-
oli om (o~/om) 

= _ 2m ('" U~r dV dr. (8) 
Jj3k Jo dr 

The derivatives (4)-(8) should vanish as the 
potential vanishes. This is obvious for Eqs. (4), (5), 
(7), and (8). It is also true for Eq. (6), since for 
V--+- 0, VI --+- krjl(kr) and the following mathematical 
relations holds: 

fo
'" 2 i'" J:+!(x) t rr 

dxiz(x) = trr dx -- = -- . 
o 0 x 21 + 1 

Before commenting on the significance of Eqs. (4)­
(8), let us write down the corresponding relations for 
the complete scattering amplitude. These can be 
achieved by use of Kohn's variational principle3 

Tktki = T:tki + <4>k,tl H - E l"Ptt) 
+ second-order terms, (9) 

and proceeding along the same lines as in Sec. II.A.I-5. 
In Eq. (9) Th is the trial scattering amplitude, "P~t 
is the trial wavefunction satisfying the boundary 

- = - U (k r) 2V + r - r. 0<5, k fo'" 2 ( dV) d 
oE 2E2 0 I' dr 

(5) condition 

3. Changing the Angular Momentum 

Let V t = U1(r) be a solution of (3) with an angular 
momentum i = I + ~l, where I is regarded as a 
continuous parameter. Asymptotically 

V t ,...., sin (kr - thr + <51 - !rr~l); 

hence, bt = bl+LlZ - lrrM. Inserting V t into Eq. (1) 
we obtain 

~~ = trr - (21 + l)k-1 roo Uir- 2 dr. 
01 Jo (6) 

4. Changing the Mass 

Changing the mass from m to m + D.m and keeping 
the energy E = 1i2k 2/(2m) fixed causes the wavenumber 
k to change by D.k = k~ml(2m). Choosing the trial 

"Ptt,......, eik
•
r 

- [2ml( 4rrJj2)]eikr;r . T:rk' (10) 

where kr = r Ikl/lrl, and 4>;t* = 4>\t is an independent 
trial function satisfying Eq. (10) with k replaced by 
-k. One obtains 

(11) 

(11') 

OTfi - V 1 + 2E aE =-Tfi -("P,12V+r. V "Pi)' (12) 

OT'i -I V 1 +) 2m - = -3T,i - <"P, r· V "Pi , 
om 

(13) 

OT'i - + Ii - = 3Tfi + (1p,1 r • VV l1pi ), 
ali 

(14) 
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where the notation has been slightly simplified. In 
these expressions the 1Jl± are exact solutions of the 
SchrOdinger equation. Equations (4), (5), (7), and (8) 
follow from (11)-(14), if one assumes a spherically 
symmetric potential. 

We shall now turn to discuss the results for the 
scattered states. Equation (11) is (under the most 
general conditions) an immediate consequence of the 
Gell-Mann-Goldberger transformation.5 Let T(V) 
and 1Jl±(V) denote the scattering amplitude and wave­
functions (with outgoing or ingoing spherical waves) 
for the potential V, and let X denote a plane wave. 
Then by the Gell-Mann-Goldberger transformation 

T,lV + AV) = (1Jl,(V) I V IXi) 

+ (1Jl,(V) I AV l1Jlt(V + AV». 

Since T/i(V) = (1Jl;(V)1 V IXi)' we have to first order 

ATf;(V) = (1Jl,(V)1 AV l1Jlt(V». 

Curiously enough, it appears as if this result has 
never been stated in its present general form. See, 
however, Sugar and Blankenbecler,6 Austern and 
Blair,? and Spruch.8 

A special case of Eq. ( 11 a) is of some interest. If we 
put V(r, ex.) = ex.V(r) and integrate Eq. (l1a) between 
IX = 0 (no potential) and ex. = 1 (full potential), we 
obtain [since Tn (ex. = 0) = 0] 

T'i s: T'i (ex. = 1) = f dex. (1Jl'(ex.V)1 V l1f't(ex.V». (15) 

This exact representation for the scattering amplitude 
has been used to discuss the validity of the high­
energy l\pp~Qxityla~ion for medium energies.9 

An intere~rtg application of Eq. (4), namely, the 
derivation of the phase equation, has been discussed 
by Spruch.8 Let 

Vr(r') = V(r') , r' < r, 
= 0, r' > r, 

and let Uzr(r') and I5 z(r) denote the radial function and 
phase shift for this potential. Using Eq. (4) with 
AV(r') = VrH.r(r') - Vr(r'), we have 

I5z(r + Ar) - I5z(r) 

= _ 2m roo U~r(r')[Vr+Ar(r') _ Vir')] dr' 
/i2k Jo 

(16) 

Now for r' ~ r, i.e., outside the range of the potential' 
V,(r'), the radial wavefunction is a linear combination 
of the spherical Bessel functions 

Uzir') = ex.z(r)kr'jz(kr') + f3z(r)kr'n z(kr'). 

Comparison with the asymptotic form (3') yields 

ex.z(r) = cos I5 I (r), pz(r) = -sin I5z{r). 

Inserting these coefficients into Eq. (16), we obtain the 
phase equation10 

dbz(r) = _ 2m V(r)(kr)2 
dr /i2k 

x [cos t5z(r)j,(kr) - sin t5,(r)nz(kr)t (17) 

It has been suggested8 that the same procedure may be 
used to obtain a similar differential equation for the 
complete scattering amplitude Tn. Unfortunately, this 
is not possible, the reason being that the form (10) 
for the wavefunction 1f't is correct only for r -+ 00 

and not for any r outside the range of the potential. 
Equation (4') is also interesting from a calculational 

point of view. It can be used to facilitate the numerical 
search for the parameters of the potential needed to 
reproduce the given scattering data. 

Equations (5) and (12) have been deriveq by Dem­
kov.1 They are called virial theorems after their 
classical counterpart. The physical significance of 
ol5/iJE was discussed by Wignerll who showed that 
liol5z/oE is the time delay of the lth-partial scattered 
wave in the potential well. 

The first derivation of Eq. (6) is apparently due to 
Newton.12 As an immediate consequence of (6) we 
have (for real V) the inequality 

and hence 
(18) 

(19) 

a result first derived by ReggeP The inequality (18) 
has a simple semiclassical interpretation.12 The WKB 
phase shift satisfies14 

() = 2 ol5 z 

01 ' 
(20) 

where () is the classical scattering angle corresponding 
to an energy E and an angular momentum lei = 
/i(l + i)· Hence, semiclassically, Eq. (18) states 
simply that () ~ 1T. 

No immediate application of Eqs. (7) and (8) seems 
to suggest itself. However, Eq. (8) could be used, 
presumably, for further investigations of the classical 
limit of quantum mechanics. 

B. Bound States 

We shall begin our discussion by assuming a 
spherically symmetric potential. Later on this restric­
tion will be removed. The Rayleigh-Ritz variational 
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principle for the binding energy E = E(V, I, m, Ii) is 

where Vt(r) is a normalized trial function, i.e., 

1
00 

V~(r) dr = 1 (22) 

and Vk) is a normalized solution of the radial 
equation 

HrVICr) == (- !{!f + !{ 1(1 + 1) + VCr») VI 
2m dr2 2m r2 

(23) 

100 

V~(r) dr = 1. (24) 

The derivation of the analogs of Eqs. (4)-(8) is essen­
tially unchanged. There are, however, two new 
features, both of which will be illustrated in the 
derivation of the virial theorem. The first of these is 
connected with the normalization condition. In order 
to fulfill Eq. (22), any change of scale must be 
accompanied by a corresponding change of normaliza­
tion. The second difference stems from the fact that 
the energy is no longer a parameter of the stationary 
quantity. Nevertheless, we shall see that a vi rial 
theorem does exist. 

(a) Changing the potential: We obtain 

LlE = 100 

V~LlV dr. 

In particular, if V depends on a parameter ex: 

aE = roo v~ aV dr. 
acx:./o acx: 

(b) Changing the scale: Let 

Vt(r) = (1 + e)!VI((1 + e)r), 

(25) 

(25') 

where VI(r) is a normalized solution of Eq. (23). The 
factor (1 + e)i is introduced in order to preserve the 
normalization. Indeed, 

1
00 

V~(r) dr = (1 + e) 100 

V~«(1 + e)r) dr 

= 100 

V~(r') dr' = 1. 

Inserting V t into Eq. (21) and changing the variable 

of integration from r to r' = (1 + e)r, we obtain 

E = (1 + e)2 roo VI(r')(- !{ ~ + !{ 1(1 + 1) 
Jo 2m dr'2 2m r'2 

+ (1 + e)-2V(r' - er'») VI(r') dr'. 

Finally, utilizing Eq. (23) we secure 

2E = 100 

v~(r)( 2V + r ~~) dr. (26) 

(c) Changing the angular momentum: We obtain 

aE 1i
2 100 

V2 - = -(21 + 1) ~dr. (27) 
al 2m 0 r2 

(d) Changing the mass: This leads to 

aE (2 )-1 (OOV 2 dV d 
am = - m Jo Ir dr r. 

(e) Changing Planck's constant: This results in 

aE = 1i-11°OV2 dV d 
ali 

Ir r. 
o dr 

(28) 

(29) 

The limitation to spherically symmetric potentials is 
really not necessary. Utilizing the Rayleigh-Ritz 
variational principle 

E = (V'tl H lV't> + second-order terms (30) 

(with normalized trial functions), we obtain 

LlE = (V'I LlV IV'), 

aE av 
- = (V'I-IV'), 
aex: aex: 

2E = (V'12V + r· VV IV'), 

aE () 1 am = - 2m- (V'lr,VVIV'), 

aE 1 
ali = Ii- (V'I r • VV IV'), 

(31) 

(31') 

(32) 

(33) 

(34) 

where V' is the exact normalized solution for the bound 
state. 

Equations (25) and (31) are well known from first­
order nondegenerate perturbation theory. For the 
degenerate case, however, Eq. (31) and perturbation 
theory give different results, the difference being of 
second order in the perturbing potential. [The use of 
Eq. (31) amounts to neglect of all off-diagonal 
elements of the perturbing potentiaL] 

As in the scattering case, Eq. (25) can be used to 
facilitate the numerical search for the potential needed 
to bind a particle in a given level. 

The virial theorems (26) and (32) are due to Fock.15 

(See also Ref. 1.) 



                                                                                                                                    

USE OF VARIATIONAL PRINCIPLES 3023 

Since by Eq. (27) oE/o[ > 0, we have the well­
known result that the energy of a state with a given 
number of nodes is a monotonic increasing function 
of the angular momentum. The restriction to a given 
number of nodes is essential since states with different 
number of nodes have separate E(l) curves. 

III. CLASSICAL MECHANICS 

The variational principle underlying classical me­
chanics is Hamilton's principle for the action 1= 

I(q2t2' qltl)' It reads 

I(q2t2, ql tl) =i\(qt, ift) dt + O([q(t) - qtCt)]2), 
t1 

(35) 

where q(t) is the physical trajectory which passes 
through the points ql and q2 at times tl and t2, and 
qtCt) is an adjacent path going through the same end 
points at the same times. [For convenience of notation, 
we have lumped together all generalized coordinates 
into one vector q(t).] 

Without loss in generality, we can limit our dis­
cussion to motion in a central field. In fact, we shall 
treat only the radial equation, assuming that the 
angular momentum I is given. The Lagrangian for 
such a system is 

L(r, f) = tmf2 - VCr) - [2j(2mr2) == T - U(r). 

(36) 

The action I depends, in turn, on the parameters V, I, 
andm. 

It is convenient to reverse the order of presentation. 
We shall first discuss the bound states and then turn to 
examine the scattered states. 

A. Bound States 

(a) Changing the potential: Let rt = rCU + flU, t) 
be the correct orbit for the potential U + flU. (At 
the risk of repetition, we assume that,unless otherwise 
stated, all trial orbits go through the same end points 
at the same times.) Inserting r( U + flU, t) into Eq. 
(35), we have 

it2 
leU) = [L(r(U + flU, t), f) - flU + flU] dt 

11 

I
t2 

= I(U + flU) + flU dt. 
t1 

Denoting the time average of F(t) by 

(F)av == (t2 - t1)-1 t2F dt, (t2 - t1) ---->- 00, (37) 
Jt1 

we obtain 

(38) 

In particular, if the potential U depends on a param­
eter (x, we have 

(38') 

(b) Changing the scale: Let rt(t) = (1 + E)r(t) 
where E is an infinitesimal constant. Note that rt(t) 
does not go through the end points r 1 , r 2 • 

OJ = it2 (OL I5r + o~ M) dt 
t1 or or 

= {t2(OL _ !l OL)l5r dt + oL I5rl12 
1 or dt of of II 

= oL 15rlt2 
of t1' 

Since I5r = Er, I5f = d, we obtain 

(t2(r oL + f O~) dt = r o~lt2. (39) 
1 Or Or Or t1 

Dividing by (t2 - t1) where (t2 - t1) ---->- 00, we have 
(since the motion is bounded) 

I oL . oL \ I dU \ 

\
r- + r~1 = \-r- + 2TI = O. 

or or av dr av 

Finally, using the relations 

dU dV 2T = 2E - 2U and 2U + r- = 2V + r-, 
dr dr 

we obtain the virial theorem 

I dV\ 
2E=\2V+r-I' 

dr av 
(40) 

(c) Changing the angular momentum: We have by 
Eq. (38') 

< 
oL\ I - -I = - (r- 2

) • ot ::IV m av 
( 41) 

(d) Changing the mass: Inserting rt(t) = rem + 
flm, t) into Eq. (35), we have 

I(m) =it2[icm + flm)f~ _ ~(rl) ____ [2 __ 

t1 2(m + flm)r~ 
- 21.l.mr - --- dt 1.'\ ·2 flm [2 ] 

m 2mr2 

tl.m [to = I(m + flm) - - (E - V) dt. 
m .,t1 

(42) 

Dividing by (t2 - 11) and using the virial theorem (40), 
we secure 

I _ oL \ = -(2m)-llr dV\ . 
\ omlav \ dr lav 

(43) 
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The present derivation of the virial theorem [Eq. 
(40)] has been suggested by Fock and Krutkov.16 

B. Scattered States 

Since in a scattered state the particle eventually 
leaves the field of force, time averages like Eq. (38) 
are useless even if they exist. We shall, therefore, 
express our relations in terms of time integrals rather 
than time averages. 

(a) Changing the potential: From (38) and (38') we 
have 

i
t2 it2 
AL dt = - AU dt, 

tl tl 

(44) 

-dt = - -dt. i
tDoL itDou 

tl O!1. tl O!1. 
(44') 

(b) Changing the scale: As (t2 - t1) -+ 00 Eq. (39) 
diverges. However, by subtracting 2£ = 2T + 2U = 
mv~ (vo being the magnitude of the initial velocity) 
from both sides of Eq. (39) we obtain a relation which 
remains finite for all times: 

- 2U + r - dt = - 2V + r - dt i tD( dU) it2( dV) 
It dr tl dr 

= mvr - mv~tl::. (45) 

For t -+ 00, v = Vo and r = vot + s. By choosing the 
time scale such that the closest approach occurs at 
t = 0, we obtain a symmetric orbit satisfying r( -t) = 
ret). Letting 12 -+ 00 and 11 -+ - 00 in Eq. (45), we 
have 

-2100 

(2V + r ~~) dt 

= lim ([mvo(vot + s) - mv~t] 
t .... 00 

Hence 

- - = (2E)-1 2V + r- dt. s 1°O( dV) 
Vo 0 dr 

(46) 

The quantity s has a simple physical interpretation.1 

It is the distance by which the scattered particle over­
takes a free particle which starts at I = 0 from the 
origin and moves with a speed Vo' 

(c) Changing the angular momenlum: By Eq. (41) 
we have 

(II aL dt = _l (tsr- 2 dt. (47) 
Jit 01 m Jtl 

(d) Changing the mass: Using Eq. (42) and the 
virial theorem (45), we obtain 

(OO((}L _ E) dt _ tsvo = (2m)-1 (00 r dV dt. (48) 
Jo am m Jo dr 

IV. DISCUSSION 

A glance at the results of Sec. lIB and Sec. IlIA 
reveals that the quantum-mechanical binding energy 
corresponds to minus the time-average of the classical 
Lagrangian. This is to be expected on the basis of the 
WKB approximation. Indeed, the WKB approxima­
tion for 1p(r, t) = exp [(-i/n)EI]cfo(r) isl7 

1pWKB(r, t) = A exp [(i/n)W(r, t)], 

where W(r, I) is a solution of the Hamilton-Jacobi 
equation 

oW at + (2m)-I(VW)2 + VCr) = O. (49) 

A complete solution of Eq. (49) is given by1S 

W(r, t) = fL[r(t) , r(t)] dt == (L)av' t, 

where ret) is the physical trajectory passing through r 
and ro at times t and I = O. Comparing the logarithmic 
derivative of the exact 1p with that of 1p WKB, we have 

:t (E . t) ~ - ! «L)av . t). (50) 

It is worthwhile to pursue Eq. (50) a little further. 
Using our previous notation, we have the well-known 
classical resultl8" 

o 0 it2 . 
- /(r2t2' rl tl ) == - L(r, r) dt ot2 ot2 tl 

= -E(r2t2' rl t1). (51) 

Integrating the last equation between t~ = 10 and 
I~ = 12 ,we have (to > 11) 

In particular, let 10 = 11 + E, where E > 0 is an 
infinitesimal quantity. The quantity /(r2t1 + E, r1t1) 

diverges as E -+ 0+, since the speed of the particle 
must increase indefinitely in order to go a finite 
distance Ir2 - r11 in an infinitesimal amount of time. 
However, it diverges in a well-defined manner: 

(53) 
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Substituting Eq. (53) into (52) and dividing both 
sides by (t2 - til, we obtain 

We are thus led to the definition of a new kind of 
average, namely, the path average of the classical 
energy. By definition, it is the average of the energy 
over all classical paths traversed by a particle as the 
end time t~ ranges between tl and t 2 • However, in 
order to secure a finite result, the limiting process 
described in Eq. (54) must be followed. It is this path 
average of the classical energy which corresponds to 
the quantum-mechanical binding energy: 

Eq •m. ~ (Eel). 

We turn now to examine the correspondence be­
tween the classical and quantum-mechanical results 
for the scattered states. This can be best understood 
using the framework of the WKB approximation. 

we obtain 

(56) 

abe = -ro + r~(~ - 1) dr 
ok Jo k(r) 

= -ro - i~(V - Vol dt, (57) 

(58) 

L~ ~~ = -[be - C~I)~eJ/ n. 
be = f7T + tl7T - kro + [k(r) - k] dr, (55) 

TO 
The last two equations can be reduced to our normal 

The WKB phase shift isI4 

(60) 

where 

k = (2mE/n2)t, 

k(r) = [2mjn2(E - V - n2(1 + t)2j(2mr2))]t, 

and ro satisfies k(ro) = O. In Eq. (55), 15 and ro depend 
parametrically on (x, E, I, m, and Ii. However, when 
taking the derivatives of Eq. (55) with respect to a 
parameter ~, the quantity ro can be treated as a 
constant. This is true because 

oro oro 
-k - - [k(ro) - k] - = o. 

o~ o~ 

By differentiating Eq. (55), we obtain integrals of the 
form f;:; F(r)k(r)-I dr. These quantities are closely 
related to the classical time integrals. In fact, if we 
associate with the quantum-mechanical angular 
momentum iii a classical angular momentum lei 
satisfying lei == Ii(l + t), we have 

i~ Ii i~ F(r)k(rri dr = - F(r(t» dt, 
TO m 0 

where r(t) is the classical orbit of a particle with 
energy E and angular momentum lei. Performing the 
differentiations with respect to the listed parameters, 

form, namely, that of Eqs. (7) and (8). The first step 
is to rewrite Eq. (55) as 

be = f7T + tl7T + iT k(r) dr - kr, r ---+ 00. 
'0 

Converting the last integral into a time integral over 
the classical path and using r = vot + s as well as 
Eq. (45), we obtain 

i
~ dU 

Ml = ilel7T + r - dt, 
o dr 

or, using Eq. (58), 

0151 i~ dV lib/ = Ie) - + r - dt. 
01 0 dr 

Finally, inserting the last equation into (59) and (60), 
we secure 

obe = (2mlir1 r~ r dV dt, (59') 
om Jo dr 

015 = _ii-dOOr dV dt. (60') 
ali Jo dr 

Equations (56)-(60) are the semiclassical counter­
part of the results derived in Sec. IIIB. It was men­
tioned earlier that the quantity liob/joE = (obx/ok)/vo 



                                                                                                                                    

3026 Y. TIKOCHINSKY 

[Eq. (5)] can be interpreted as the time delay of the 
lth scattered partial wave in the potential well. Com­
paring with the classical result Eq. (45), we should 
expect the correspondence obzlok +-+ -so This is 
indeed the case as can be seen from Eq. (57). For 
t -+ OJ, 

-ro - f(V - vo) dt = vot - r(t) = -so 

Hence, in the semiclassical limit 

obi 
-= -so 
ok 

The interpretation of Eq. (58) has already been 
discussed. [See Eq. (20).] 

Finally, we shall use Eqs. (59) and (59') to derive a 
semiclassical limit on the phase shifts. From Eq. 
(59') we see that obdom is positive for an attractive 
force and negative for a repulsive force. Also, bz is 
positive or negative according to the force being 
attractive or repulsive.s Using this fact in Eq. (59), we 
have in either case 

~>dbl. 
(l + t) - bl 

Integrating the last inequality, we obtain 

bl < 21 + 1. 
b -o 

V. SUMMARY 

(61) 

Using a technique developed by Fock and Demkov, 
variational principles have been applied to calculate 
the derivatives of the stationary quantities with respect 
to the parameters of the system. The method is by no 
means limited to the variational principles employed 

in this article. Comparison of the quantum-mechan­
ical results to the corresponding classical results 
leads to the introduction of a new kind of classical 
average, namely, the path-average of the classical 
energy. In view of the resemblance of this concept 
to Feynman's path integral method in quantum me­
chanics, it is felt that further investigations along 
these lines could be worthwhile. 
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A method is developed for labeling G.-internal states and for finding the matrices representing 
G.-generators. The simple Lie algebra G. is embedded into A., whose representation spaces are labeled 
by Gel'fand patterns. For a given irreducible finite-dimensional representation 'I"(G.) of G., an 
optimal representation <Il(A.) ::> 'F(G.) is chosen, and a lemma is formulated which enables us to select 
the subspace R('Y) from the representation space R{<Il). 

I. INTRODUCTION representation space of (] its subspace in which an 
One of the problems frequently encountered in irreducible representation of subgroup G acts. Unlike 

applications of simple Lie groups and their finite- the method of elementary factors, our approach 
dimensional representations to nuclear and elementary enables us easily to find an explicit form of the matrices 
particle physics is to distinguish (label) different representing G by making use of the Gel'fand and 
vectors (internal states) of a basis in a representation Tsetlin results.1.2 

space and to find matrices representing elements of the To facilitate the use of our method it appears 
corresponding group. One natural labeling makes use advantageous to consider each exceptional simple 
of the weights. Unfortunately, their multiplicities are Lie group separately. Because there is a one-to-one 
often higher than one so that they label subspaces of correspondence between a simple Lie algebra and its 
the representation space which are not, in general, connected Lie group and also because the represen-
1 dimensional. tation spaces of the algebra and the group obviously 

The state-labeling problem has been solved for coincide, we consider the Lie algebras and their 
important particular cases: the groups of unitary,1 representations only. 
orthogonal,2 and symplectic3 matrices. In the first two The purpose of this paper is to solve the state­
cases the matrix representations were found explicitly. labeling problem and to find explicitly matrix repre­
The solutions are based on the possibility of finding, in sentations of the simple Lie algebra G2 • Our method 
each case, a chain of subgroups G; =:> G;_I, i = requires only a standard use of Gel'fand patterns. 
1,2, .. " such that any irreducible representation There are two possible ways to proceed in the case 
<1> (G;) , when reduced to <1>(G;_I) = 'F\(G;_I) ttl of G2 • Indeed, the lowest-dimensional representation 
'Y2(G;_I) ttl ... , contains each irreducible component of G2 is orthogonal,6 so that one can choose either A6 
'Yj (G;_I) at most once. However, similar chains of or B3 7 as the simple Lie algebra containing G2 • Accord­
subgroups do not exist for the five types of exceptional ing to that choice, the G2-states will be labeled either 
simple Lie groups. Therefore other methods are needed by Gel'fand patterns of A6 or B3 • Our choice is A6 
in these cases. because it has a particularly simple structure of the 

One such labeling method that has been used in patterns needed in our problem [cf. (16)] and because 
special cases4 was recently generalized5 to apply, in other exceptional simple Lie algebras can be conven­
principle, to any compact simple Lie group. It iently embedded into an algebra of type An. 
describes the basis vectors of the representation space Section II contains some mathematical prelimi­
as products of certain elementary factors. Practically, naries. In Sec. III an embedding of G2 into A6 is 
however, the use of the method is limited to rather explicitly specified by finding a projection of A6-root 
low-dimensional representations of groups of low space onto the root space of G2 • For a given repre­
ranks. The difficulties here are in finding the elemen- sentation 'Y(G2) an optimal choice of representation 
tary factors necessary to label different representations <l>(A6) =:> 'Y(G2) is made. Section IV contains the state­
and in elimination of certain unwanted states. labeling lemma and linear transformations deter-

The idea of our method is very simple. For complete mining the matrices of generators. In Sec. V two 
labeling of representation spaces of a simple Lie examples are considered. In the last section the relation 
group G, it is sufficient to embed G into a suitable between the completely labeled states of G2 and the 
classical group (] which has all representation spaces corresponding states of each simple subalgebra of 
labeled completely and to select out from the G2 is given explicitly. 

3027 
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II. MATHEMATICAL PRELIMINARIES 

Let us first make several conventions and recall a 
few facts about simple Lie algebras. So that we can 
refer to this section in considering other cases, we do 
not restrict ourselves by the algebras of types As and 
G2 only. 

Suppose that a system of simple roots {lXi }, i = 
1,2, ... ,n, has been chosen for any simple Lie 
algebra G and the roots are numbered as in Fig. I of 
Ref. 7. Let the system {IX;}, which forms a basis in a 
real Euclidean space R(G), be normalized by the 
condition (IXmax, IXmax) = 2, where IXmax is the 
longest simple root of G and (,) denotes the scalar 
product in R(G). 

It is convenient to use as well another basis {Vi}' 
i = 1,2, ... , n, in R(G), related to {IX;} by 

~ (lXi' lXi ) 1 
lXi = 2...:::. --- Vi and by (IX;, Vi) = 2(1X;, lXi)b;i' 

i=1 (lXi' lXi) 

(1) 
The coordinates ai and ai of a vector 

n n 

M = L a;v; = L a;lX; E R(G) 
;=1 ;=1 

are related as 

a; = _2_ (M, IX;) = _4_ i (IX;, lXi) a i . (2) 
(IX;, lXi) (IX;, IX;) i=1 (lXi' lXi ) 

In particular, the weights of a representation of G are 
vectors of R(G) with integer coordinates a;. 

Let us now restrict ourselves to the simple Lie 
algebras of type An. 

A Gel'fand pattern1 

••. mn+l.n+l 

(g) = 

If M is the highest weight of <I>(An), integers m1Jq in (3) 
take their maximal values m1JQ = m 1J .n+1 for any 
p ~ q ~ n + 1. Therefore, instead of (5), one has 

n 

M = L vi(m;.n+1 - mi+l.n+1) 
;=1 

LIX; Lmk.nH - -- L mk.n+1 • 
n (n + 1 _ i ; i n+1 ) 

;=1 n + 1 k=1 n + 1 k=i+l 

III. EMBEDDING OF G2 INTO Ae 
(5') 

In this section the embedding of G2 into As is 
specified by an explicit projection f* of the 6-dimen­
sional root space R(Ae) onto the 2-dimensional 
R(G2). For any given irreducible representation 'F(G2), 

we find the lowest-dimensional representation <I>(Aa) 
such that 

<I>(Aa) :::> <I>(G2) = 'F(G2) EEl 'FI (G2) EEl 'F2(G2) EEl ... , 

(6) 

where <I>(G2) is the reducible representation of G2 

induced by <I>(Aa) and the 'F;(G2), i = 1,2, ... , are 
other irreducible components of it. Few details of the 
calculation are given because it is a particular case of a 
general method. 7 

Let us denote the simple roots of G2 by {Jl and {J2' 
and the basis of R(G2) conjugate to {{JI' {J2} by fTI' T2}' 
According to (1), we have 

Tl = 2{Jl + 3{J2 and T2 = {Jl + 2{J2' (7) 

To find the projection f*(R(Aa}) = R(G2) one has to 
insert the weights 

Ml = T2, M2 = Tl - T2, 

M4 = 0, M5 = Tl - 2T2, 

Ma = -Tl + 2T2, 

Ms = -Tl + T2 (8) 

of the lowest-dimensional representation of &2 into 
the Table I of Ref. 7. From that table one has imme­
diately 

f*(v1) = tf*(va) = tf*(v4) = f*(va) = T2, 

f*(v2) = f*(vs) = Tl' (9) 

where m1JQ are arbitrary integers such that 

m1J.q+l ~ m1JQ ~ m1J+1.Q+1' and mn+1.n+l = 0, 

(3) 
Thus a vector ME R(Aa) is projected as follows: 

(4) f*(M) = Tl(a2 + as) + T2(a1 + 2aa + 2a4 + a6) 

is a vector of the space R(<I>(An» in which an irreduc­
ible representation <I>(An) acts. It is also a weight 
vector of <I>(An) with weight M given by 

n { ;+1 i ;-1 } 

M = LVi - L mk.i+1 + 2Lmki - L mk,i-l 
;=1 k=1 k=l k=1 

n {; i n+1 } 
= LlXi Lmki - -- L mk.n+l , 

i=1 k=1 n + 1 k=l 
(5) 

as can be verified, for instance, by comparing the set 
of patterns (3) corresponding to the same irreducible 
representation <I>(An) with the weight system of <I> (An). 

= {Jl(a2 + as) + {J2(al + a3 + a4 + as), (10) 

where the coordinates ai and ai are related by (2). 
According to Theorem 0.11 of Ref. 8, we have 

f*{~[<I>(A6)]} = M<I>(G2)], (II) 

where M<I>(G)] is the weight system of the representa­
tion <I> of G, and also 

(gllI) = (gl*W», (12) 

where M and f*(M) indicate weights of (g). Con­
sequently, the same pattern (g), which is a weight 
vector with an A6-weight M E ~(<I>(Aa» given by (5), 
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is also a G2-weight vector corresponding to the weight 
f*(M) E ~«(I)(G2»' 

The remaining problem to be solved in this section 
is to find for any given irreducible 'Y(G2) a representa­
tion (I)(A6) such that (6) holds. Obviously, many 
representations of A6 satisfy that requirement. There­
fore, it is a matter of convenience to choose from them 
the one of lowest dimension and simplest structure of 
its Gel'fand patterns (3). Our choice is made by the 
following: 

Lemma 1: Let 'Y(G2) and (I)(A6) be irreducible 
representations of G2 and A6 with the highest weights 

N" = at'TI + a27'2 and M" = a2vl + a1v2, (13) 

respectively. Then: 
(a) (I) (A 6) =:> 'Y(G2); 
(b) if also O(A6) =:> 'Y(G2), then the dimension of 

O(A6) is not lower than that of (I)(A6); 
(c) patterns (3) form a basis in R«(I)(A6» provided 

mij = ° for any i ~ j 
and i = 3,4,5,6, and 7, (14) 

m17 = a1 + a2 and m27 = a1. (15) 

Proof: Assertion (a) follows immediately from (9) 
and (11). Assertion (b) is verified by calculating the 
dimensions of all eight nonequivalent A6-representa­
tion whose highest weights M(i), i = 1, 2, ... , 8, 
satisfy f*(M(i) = N". Any other representation 
which has M(i) in its weight system but not as the 
highest weight is obviously of higher dimension than 
«l>(A6)' Finally, (c) follows from the form (13) of the 
highest weight M" and from (4). 

Because in the following we shall deal only with 
patterns satisfying (14) and (15), we can save con­
siderable space by rearranging their nonzero elements 
and rewriting them as 

(
a1 + a2 m16 m15 ma m13 m12 mll) 

. (16) 
a1 m26 m25 m24 m23 m22 

We shall omit also the first column containing co­
ordinates of the highest weight whenever this leads to 
no ambiguity. The A6-weight M of (16) is given by (5). 
The G2-weight N of (16) follows from (5) and (10): 

N =f*(M) = 71( -mu + i~/2mj2 - mj3 

- mj4 + 2mj5 - m j6») 

+ 7'2 (2mll +j!(-3m j2 + 2mj3 + 2mj4 

- 3m js + 2m j6) - 2a1 - a2). (17) 

IV. LABELING STATES AND CONSTRUCTING 
MATRIX REPRESENTATIONS 

We start with the representation «l>(A6) found in 
Sec. III for any given irreducible representation 
'Y(G2), and with its representation space R(<<l» spanned 
by patterns (16). First, we express the G2-generators 
as linear combinations of generators of A6 • Since all 
matrix representations of the latter algebra have been 
found explicitly, 1 we have thus obtained explicitly a 
(reducible) representation «l>(G2). In order to find the 
subspace R('Y) of R«(I) , which is irreducible with 
respect to the given representation 'Y(G2) , we first find 
one vector (g,,) E R('Y). Applying linear transforma­
tions from «l>(G2) to (g,,), one can generate the whole 
subspace R('Y). In addition, this procedure auto­
matically selects from the reducible representation 
«l>(G2) its irreducible component 'Y(G2). 

Following the notation of Gel'fand and Tsetlin,1 
the A6-generators as represented in (I)(A6) are matrices 
Iii and Iii - IHl.i+1' where i ~ j and i,j = 1,2, ... , 
7, with the following commutation relations: 

[/ik,lkP ] = liP' i~p, 

[Iik' Iki ] = Iii - Ikk' 

[/ik' I pi ] = 0, if k:;f:. p, i ~ j. 

The coefficients of linear transformations lij(g) are 
known explicitly for all patterns (g) and all values of 
the indices. 1 Consequently, the matrices lij are known. 

It can be verified, e.g., using the commutation 
relations, that the representation «l>(G2) of G2-

generators is 

Hpl = 122 - 133 + IS5 - 166 , 

Hp2 = l(1n - 122 + 2133 - 2155 + 166 - 177), 

E_pt = 132 + 165 , 

E-P2 = J"3 (121 + J2 143 + ..}2ls4 + 176 ), 

1 --
E-P1- P2 = ..}3 (-131 + ..}2142 - ..}2164 + 175), 

1 r -
E-Pl-2P2 = ..}"3(-..;2141 + 163 + 152 - ..}2174), 

E-Pl- 3P• = -151 + 173 , 

E-2Pl-3P. = 172 + /61 , 

(18) 

and the generators Eflt , Ep2 ' ... , etc., corresponding 
to positive roots, are obtained from E_P1 ' E_P2 ' ... , 
etc., by permutation of indices of each l ij . 

Our solution of the G2-state-labeling problem is 
contained in the following: 
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Lemma 2: Let 'I' (G2) be an irreducible representa­
tion of G2 with the highest weight NIL = a1T 1 + a2T 2' 

Then a basis in the representation space R('Y) consists 
of the vector 

(19) 

and all linearly independent vectors 

(20) 

where i(k) = 1 or 2 and 1 ~ k ~ lOa1 + 6a2 • 

Proof: Let us first show that (gIL) E R('Y). According 
to our convention (16), (5'), and Lemma 1, the Aa­
weight MIL = a2'V1 + a1'V2 of (gIL) is the highest weight 
of Cl>(Aa). Its multiplicity is just one, and it is the only 
weight of ~(Cl>(Aa» which is projected by f* into NIL' 
Then, from (12), one concludes that (gIL) must belong 
to R('Y). The linear transformations E_p and E_p are 
explicitly given by (18) and Ref. 1. E1ach oper~tor 
E_p; subtracts the simple root Pi' i = 1, 2, from the 
weight of the pattern. The assertion of the lemma then 
follows from Theorem 0.5 of Ref. 8. The maximal 
value of k is equal to the maximal number of simple 
roots Pi' i = 1, 2, which can be subtracted from the 
highest weight NIL' Its value may be found, for 
instance, in Ref. 6 or 8. 

In fact, we have already solved also the second part 
of our problem, i.e., we have found the matrix elements 
of G2-generators in the representation'Y(G2). Indeed, 
the matrix elements are obtained by applying the 
linear transformation (18) to the vectors (19) and (20) 
of R('Y). 

Suppose (g) is one of the basis vectors (19) and (20). 
Then the generators in the representation'Y(G2) are 
effectively given by the linear transformations 

Hp1(g) = (-mn + ±(2m :l2 - mj3 - mj4 
i-I 

+ 2mj5 - mis») (g), 

Hp.(g) = !(2mn +i~(-3mj2 + 2mj3 + 2mj4 

- 3m j s + 2m j a) - 2a1 - a2)(g), 
2 

E1h(g) = ! [a~a(g~a) + a~s(g~a)], 
i-I 

2 

E_p/g) = ! [bi2(g~2) + b~5(g~5)], 
i-I 

Ep.(g) = J3 (a~2(g~2) + j~ [./2 a~4(g~4) 

+ ./2 als(g15) + a:7(g~7)])' 

E_psCg) = J3( b~tCg~l) + i~ [./2 b1a(g1a) 

+ ./2 bt4(gt4) + b4a(g4s)]). (21) 

Here (gL1,k) denotes a vector obtained from (g), 
where in each pattern m i ,k-1 has been replaced by 
mi.k-l + 1. Similarly, (g:' k-1) is obtained from (g) 
by substituting m i ,k-l - I' for mi ,k-1 in each pattern. 
~f such. ~ replacement should contradict the defining 
mequalitIes (4), the corresponding pattern would be 
zero. The coefficients a~q and b~1J are given in Ref. 1. 
For the remaining generatbrs one can either write the 
linear transformations using (18) as above or find the 
corresponding matrices by commutation of E±Pl 
and E±P •. 

V. EXAMPLES 

To illustrate our method, we consider two examples. 

(1) Let NIL = T2. Then, from (13), MIL = 'VI and 
both 'Y(G2) and Cl>(Aa) are 7 dimensional.B Conse­
quently, the state labeling is trivial: Both spaces 
R(Cl» and R('Y) have common orthogonal basis 
consisting of patterns 

( ) = (m1a m15 ... goo . . . 

The matrix representation of generators is obtained 
when (22) is used in (21). 

(2) Let NIL = Tl' Then from (13), MIL = 'V2 and the 
dimensions of 'Y(G2) and <l>(As) are 14 and 21, 
respectively.s The basis of R('Y) is spanned by vectors 

(
111111) 

(gl) == (gIL) = 11111 ' 

(
111111) 

(g2) = E-P,(gh) r-J 11110 ' 

(ga) = E_ (g2) r-J (111110) + /2(111111) 
P. 11110 y 11100 ' 

(g4) = E_ (ga) r-J fi(111110) + (111111) 
P. 11100 11000" 

(
111110) 

(g5) = E_P.(g4) r-J 11000 ' 

(ga) = E_ ( ) r-J 12(111100) + (111111) 
Pi g4 Y 11100 10000' 
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( ) = E_ ( ) '"" (111100) + (111110) 
g7 Pl gs 11000 10000' 

( ) = E ( ),....,,2(111100) gs -Po g6 11000 

(
111110) + (111111) 

+ 10000 00000' 

(glO) = E_P.(g7) ,....., E_p.(gs) 

""' ..12(111000) + (111110) 
11000 00000' 

(gll) = E_P.(g9) '" E-P(glO) 

""' ~2 (111000) + (111100) 
10000 00000' 

( ) = E ( ) '"" (110000) + f2 (111000) 
g12 -Po gll 10000 ..; 00000 ' 

( ) = E ( ) '"" (110000) g13 -Po g12 00000' 

(g14) = (:). (23) 

Because the vectors (20) are not normalized, we have 
omitted common factors in (23); ,...." denotes propor­
tionality. As in the first example, the matrix repre­
sentation of generators is obtained when (23) is used 
in (21). 

VI. SIMPLE SUBALGEBRAS OF G2 

It is in the nature of problems in physics that we are 
often interested not only in a particular group but also 
in some of its subgroups. Therefore it is useful to 
know not only a complete basis in R('Y) but also its 
relation to representations of a subalgebra G contained 
in '¥(G2). Once again one can repeat the embedding 
procedure of Sec. III for G c G2 , find the corre­
sponding projectionf* of R(G2) onto R(G), and refer 
to Dynkin's theorem in order to conclude that G2-

weight vectors are also weight vectors for G. Below, 
only results of such calculations are given (see the 
general method in Ref. 7), i.e., the G-weights of 
As-patterns (16) used for labeling of G2-states. 

There are five different simple subalgebras in G2 • 9 

In order to specify completely each subalgebra, its 
type and index9 •10 ja are indicated in each case. 

(1) Subalgebra A 2 ; ja = I; Yl and Y2 are the simple 
roots, and {O'l' 0'2} is the basis conjugate [cf. (1)] to 

{Yl' Y2}' Then 

f*h) = 0'1 + 0'2 and f*h) = 0'2' (24) 

and consequently 

f*(N) = 0'1 [ -mu + 2(m12 + m22) - (m13 + m23) 

- (mu + m24) + 2(mlS + m2S) 

- (m16 + m26)] + 0'2[mU - (mu + m22) 

+ m13 + m23 + mu + m24 - (m15 + m2S) 

+ m16 + m26 - (2a l + a2)], (25) 

where N is given by (17). 
(2) Sub algebra AI; ja = I; Y is the simple root. 

Then 
f*h) = Y and f*h) = tY. (26) 

Using (17) and (26), one has 

f*(N) = ty(m12 + m22 + mlS + m25 - 2al - a2)· 

(27) 

(3) Subalgebra AI; ja = 3; Y is the simple root. 
Then 

f*h) = fy and f*h) = y. (28) 

Using (17) and (28), one gets 

f*(N) = iy(mu + m13 + m23 + m14 + m24 + m16 

+ m26 - 4al - 2a2). (29) 

(4) Subalgebra Al;ja = 4; Y is the simple root 

f*h) = 2y and f*(72) = y. (30) 

From (17) and (30), one has 

f*(N) = y(m12 + m22 + m15 + m25 - 2al - a2). 

(31) 

(5) Subalgebra (principal) AI; ja = 28; y is the 
simple root 

f*h) = 5y and f*h) = 3y. (32) 

From (17) and (32) one gets 

f*(N) = y(mu + m12 + m22 + m13 + m23 + m14 
+ m24 + m15 + m25 + m16 + m26 - 6al - 3a2). 

(33) 
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Multiple-scatter and shadowing effects are included in an extended theory of high-frequency 
scattering from a surface rough in one dimension. The single-scatter probability of slopes relation, 
corrected for shadowing, is an immediate consequence for any stationary random process. The 
double-scatter contribution (shadow corrected) is derived as well, and it provides a significant correction 
for surfaces with appreciable rms slope. The total power scattered by a perfectly reflecting rough surface 
is numerically evaluated as a test of energy conservation; the results show that the double-scatter 
formulation is substantially more accurate than the conventional single-scatter, unshadowed theory, 
particularly in the cases of large angles of incidence or very rough surfaces. 

1. INTRODUCTION 
The current interest in remote sensingL2 has 

focused attention on the interaction of radiation 
with surfaces. The classical theories3•4 have dealt 
with surfaces of regular shape. The applications to 
the irregular, "rough" surfaces more appropriate to 
ocean and land, however, are usually based on 
assumptions tailored for computational ease. In 
particular, the Kirchhoff, or physical-optics, boundary 
conditions are used5 to provide an expression for the 
angular scattered intensity which, upon subsequent 
ensemble averaging, reduces to a mathematically 
tractable form. The popular basis for the Kirchhoff 
approximation is that the surface curvature be 
negligible in a wavelength, but it is more instructive to 
view it as a "local" approximation. Thus, it is a valid 
representation when only the surface region in the 
immediate vicinity is responsible for the field at a 
surface point.6 On the other hand, this approximation 
will give rise to serious errors when the nonlocal 
effects of shadowing and multiple scatter are prevalent. 
These latter effects are especially important near 
grazing incidence or for general angles of incidence on 
irregular surfaces with appreciable rms slopes. 

The physical-optics theory provides. some freedom 
in the choice of wavelength, but the additional 
restriction of geometrical optics yields an exceptionally 
simple angular distribution of scattered energy. Only 

those portions of the surface which can connect the 
incident and final directions by specular scatter take 
part in the scattering process. For a random rough 
surface, the average scattered intensity is proportional 
to the probability density of these specular slopes. 
This result has lo'ng been evident for normally dis­
tributed surfaces,7 but Barrick8 has extended the 
result to any stationary random process. Again, the 
theory is in error because of the neglect of multiple 
scatter and shadowing. Indeed, it is easy to show that 
energy is not conserved. The objective of this paper 
is a geometrical-optics theory of scatter from a 
I-dimensional surface which contains all double­
scatter corrections as well as a consistent formulation 
of shadowing. The vehicle for comparison with the 
single-scatter, un shadowed theory will be the energy­
conservation integral. Though the choice of cylindrical 
symmetry is hardly physical, the results will certainly 
provide estimates of the severity of multiple scatter 
and/or shadowing as well as the critical range of 
angles for both effects. 

The procedure is to make use of the incoherent 
nature of the scattering in the geometrical-optics 
realm and simply sum the scattered intensities from 
every (planar) surface element. We construct a ray 
trace, in principle, for each surface element and seg­
regate the elements in classes according to the 
number of intersections the incident ray makes with 
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1. INTRODUCTION 
The current interest in remote sensingL2 has 

focused attention on the interaction of radiation 
with surfaces. The classical theories3•4 have dealt 
with surfaces of regular shape. The applications to 
the irregular, "rough" surfaces more appropriate to 
ocean and land, however, are usually based on 
assumptions tailored for computational ease. In 
particular, the Kirchhoff, or physical-optics, boundary 
conditions are used5 to provide an expression for the 
angular scattered intensity which, upon subsequent 
ensemble averaging, reduces to a mathematically 
tractable form. The popular basis for the Kirchhoff 
approximation is that the surface curvature be 
negligible in a wavelength, but it is more instructive to 
view it as a "local" approximation. Thus, it is a valid 
representation when only the surface region in the 
immediate vicinity is responsible for the field at a 
surface point.6 On the other hand, this approximation 
will give rise to serious errors when the nonlocal 
effects of shadowing and multiple scatter are prevalent. 
These latter effects are especially important near 
grazing incidence or for general angles of incidence on 
irregular surfaces with appreciable rms slopes. 

The physical-optics theory provides. some freedom 
in the choice of wavelength, but the additional 
restriction of geometrical optics yields an exceptionally 
simple angular distribution of scattered energy. Only 

those portions of the surface which can connect the 
incident and final directions by specular scatter take 
part in the scattering process. For a random rough 
surface, the average scattered intensity is proportional 
to the probability density of these specular slopes. 
This result has lo'ng been evident for normally dis­
tributed surfaces,7 but Barrick8 has extended the 
result to any stationary random process. Again, the 
theory is in error because of the neglect of multiple 
scatter and shadowing. Indeed, it is easy to show that 
energy is not conserved. The objective of this paper 
is a geometrical-optics theory of scatter from a 
I-dimensional surface which contains all double­
scatter corrections as well as a consistent formulation 
of shadowing. The vehicle for comparison with the 
single-scatter, un shadowed theory will be the energy­
conservation integral. Though the choice of cylindrical 
symmetry is hardly physical, the results will certainly 
provide estimates of the severity of multiple scatter 
and/or shadowing as well as the critical range of 
angles for both effects. 

The procedure is to make use of the incoherent 
nature of the scattering in the geometrical-optics 
realm and simply sum the scattered intensities from 
every (planar) surface element. We construct a ray 
trace, in principle, for each surface element and seg­
regate the elements in classes according to the 
number of intersections the incident ray makes with 
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the surface. The average of the single-scatter intensity 
yields another general derivation of the probability of 
slopes theory, though it is automatically corrected for 
shadowing. The averaging of the double-scatter 
intensity is also carried through under the assumption 
of negligible correlation between the two surface 
scattering points. The result is complicated analytically, 
but it represents no difficulty to the computer. The 
integration over all physical angles of the scattered 
intensity yields the energy integral. A numerical 
evaluation for the double-scatter theory demonstrates 
energy conservation. 

2. PARTIAL-SURFACE REPRESENTATION 

We consider radiation of unit intensity and beam 
width So incident on an irregular surface described by 
z = ,(x, y) = '(x). The incident and scattered rays 
are contained in the (x, z) plane, and the sense of 
the angles is clockwise (Figs. 1 and 2). We restrict the 
wavelength to the geometrical-optics limit; i.e., the 
wavelength is small compared to all surface parameters. 
The scattering process is incoherent in this limit as each 
surface element si~ply specularly reflects the incident 
radiation. 9 The radiation arriving at any surface 
element may come not only from the incident beam 
but also from prior scattering by another surface 
element. Also, a given surface element may be shielded 
from the incident beam if the illumination direction is 
non normal. These two effects of multiple scatter and 
shadowing must be accounted for in a proper sum­
mation of scattered intensities from each surface 
element. 

We imagine a ray trace for each surface element, 
and we will include that element in one of a number of 
classes depending on the character of that trace. 
Initially, we divide the total surface into two parts, 
~ = 0 + Of, where every surface element in 0 is 
visible to the incident beam with direction ko. The 
elements in Of are shielded from the incident beam, 
and their ray traces have zero weight. The illuminated 
subset is now split into two parts, 0 = 0 1 + O~, 
where every element in 0 1 is characterized by a 
specularly scattered ray kl which does not intersect 
the surface elsewhere (Fig. 1). For every element of the 

A _x 

FiG. 1. The scattering configuration for a surface element in r.h. 

FIG. 2. The scattering configuration for a surface element dSl in 02' 

subset O~ = O2 + O~, the ray kl does intersect the 
surface again, but now O2 is defined as a smaller 
subset with the property that the follow-up ray k2 
does not intersect the surface elsewhere (Fig. 2). We 
continue this bookkeeping until we achieve an empty 
subset, say On+! (a maximum of n surface scatterings): 

(2.1) 

The ray trace associated with any surface element 
in 0 begins with the incident beam and follows all the 
subsequent surface interactions. The initial polari­
zation is taken as either vertical or horizontal, and the 
scattered radiation will retain this polarization because 
of the cylindrical symmetry. The incident power 
intercepted by a surface element dS1 in 0 is unit 
intensity times the elemental area projected onto the 
incident wavefront, i.e., (- i{o • 01) dS1 • If the re­
flectivity is r(i{o • 01) (for either vertical or horizontal 
polarization), then the power leaving dS1 in direction 
i{1' due to the excitation by the incident beam, is 

dp(xl ) == dP1 = r(i{o • 01)( - i{o • 01) dSI • (2.2) 

If dSI is an element of 0 1 , then dpl leaves the surface 
for good. The probability that dPl is visible' to an 
observer oriented at angle 0 isPn1(O) = CJ[O - 01(X1)], 

where 01 = - 00 - 2 tan-l Sl by Eq. (A3). Here Sl is 
the surface slope at point Xl' Thus, the power reflected 
into 0 from a dSl E 0 1 is POI (0) dpl, and the total 
power reflected into 0 from 0 1 is 

SOYIce, eo) == r dSl ( - ko • ol)r(ko • 01) JO I 

x CJ[O - 01(00 , 51)]' (2.3) 

If the element dS1 does not belong to 0 1 , it belongs 
to O~, and the infinitesimal column bearing dPl 
intersects the surface about some point x2 , cutting out 
an element of area dS~. The prime is to emphasize that 
this area is dependent on the size and orientation of 
dS1 • The power leaving dS~ in direction k2' due to the 
excitation of dS1 by the incident beam, is 

(2.4) 
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If dS l E O2 , dp~ leaves the surface. The probability of 
reflection into a given observation angle ° is PnP) = 
15[0 - 02(X2)], where O2 = (17 + (0) + 2(tan-1 Sl -
tan-l S2) by Eqs. (A3) and (A 7). The total power 
reflected into ° from O2 is then 

SOY2(0, (0) == r dSl ( - ko • ol)r(ko • ol)r(kl • 02) In. 
x 15[0 - °2(°0 , Sl, S2)]' (2.5) 

We can generalize the above for n scatterings. The 
scattering effect of the rough surface on the incident 
radiation can then be written as 

n 

SorCe, (0) == So 1 ri(O, (0) 
i=l 

= r dSI cos (ocl)rld(O - (1) J01 

+ r dSl cos (OCl)rlr2d(0 - (2) + ... J0 2 

+ r dS l cos (OCl)rlr2 ... r ,,15(0 - 0n), Jan 
(2.6) 

where (-ko • 81) == cos OCl' and an obvious abbrevia­
tion for the reflectivities has been introduced. Now, 
cos otl must be positive, for all the OJ lie in the il­
luminated subset. Also, the reflectivities are positive, so 
that each term in Eq. (2.6) is positive. Thus, by taking 
just the first m terms as an approximation, we have a 
lower bound to the scattered intensity. 

The total scattered power is found by integrating 
Eq. (2.6) over all observable angles -117 < ° < 117. 
Since the OJ in the 15 functions are restricted to the 
observable range by the partial-surface construction, 
we have 

So ril1 
dO yeO, (0) lilT 
= r dS l cos (ocl)rl +f dSl cos (otl)rlr2 

JOl 02 

+ ... + r dS! cos (OCl)rlr2 ... r". (2.7) JOn 
Again, each term is positive, so that the retention of 
the first m terms provides a lower bound to the total 
scattered power. There is no absorption for a perfectly 
conducting surface, and so the right-hand side of Eq. 
(2.7) must equal the incident power when r = 1. From 
Eqs. (2.1) and (2.7), we have 

i! .. d() r [0,00 ; r = 1] = SoIl dSl cos OCl = 1, (2.8) 
1" a 

for the projected area of the illuminated subset must 
make up the beam front. This statement of energy 
conservation provides a useful standard for testing the 
validity of a theory of rough-surface scattering; in 
particular, it provides a basis for comparison of Eq. 
(2.6) with the uncorrected single-scatter theory. 

3. ENSEMBLE AVERAGE OF SCATTERED 
INTENSITY 

As it stands, Eq. (2.6) appears to be no more than a 
formal device for keeping track of the final destinations 
and magnitudes of the incident rays. However, the 
application of this equation to the problem of scatter 
from random surfaces permits the replacement of 
deterministic surface classes by known probability 
functions. We will view ~(x) as one of an ensemble of 
possible surfaces generated by a stationary random 
process and calculate the ensemble average of yeO, (0)' 

We can convert the integrations over the OJ into 
integrations over the entire surface ~ by defining two 
functions which take on only the values of zero and 
unity. Thus, we introduce an illumination function 
~(x; ko), which has value unity if the surface point at x 
is illuminated from ko and which has value zero if that 
point is shadowed. In addition, we define vex, k i ) to 
have value unity if the specularly scattered ray which 
leaves point x in direction k; intersects the surface at 
some other point, whereas it has value zero if k i does 
not intersect the surface again. With these definitions, 
we can now write Eqs. (2.3) and (2.5) as 

SOrl«()' (0) = i dSl cos (otl)r(cos OCl)~(Xl; ko) 

x [1 - v(xI ; kl)]d[O - 0l(Sl)]' (3.1) 

SOr2(0, (0) = idSl cos (ocl)r(cos ocl)r(cos OC2) 

X ~(Xl; ko)lI(Xl; k1) 

x [1 - 1I(X2; k2)]o[O - ()2(Sl, S2)]' (3.2) 

Here, X2 is the point of intersection of the ray kl' and, 
as such, it depends on the initial illumination point Xl' 
The integrands are independent of the y coordinate 
because of the cylindrical symmetry. 

It is a trivial matter to average Eq. (3.1). The surface 
element is dSl = (I + si)i dXl dYl and cos OCl is 
dependent on Xl only through the slope Sl [Eq. (A4)]. 
Thus, Eq. (3.1) depends on Xl only through s(xl ), 

~(XI)' and V(Xl)' For any stationary random process 
there are no preferred points, so that the probability 
distribution P(SI' €l, VI; Xl) [= P(SI' €l' VI)] is in­
dependent of Xl' Therefore, the averaging process 
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leaves a trivial coordinate integration: 

So(yiO, ( 0» 

= L:,dYl f~dX1L: dSl 

1 1 

X! ! P[Sl' ~iko), 'JI1(k1)]fI(Sl) 
£1=0 Vl=O 

X £1(1 - 'JI1)15[0 - 0iS1)] 

= (2L)(21:) L: dslP [Sl' £l(ko) = 1, 'JI1(k1) = 0] 

X lis1)15[0 - 0iS1)], (3.3) 
where 

(3.4) 

The segments along the x and y axes cut out by the 
incident beam are taken here as 2L and 2L', res­
pectively, so that, in these terms, So = (2L')(2L) cos 00 , 

The ray k1 must intersect the surface if 1011 > !7T 
(Fig. 2). Thus, P ['JI1(k1) = 1] = 1 for 1011 > !7T, and 
P (Sl' £1 = 1, -''I = 0) must vanish for this range. 
For 1011 < 17T, the probability that the ray k1 does not 
intersect the surface elsewhere is equivalent to the 
probability that the point Xl is illuminated by the ray 
-k1. By use of Eq. (A3), Sl(Ol) = -tan [HOo + (1»), 
we can change the integration variable in Eq. (3.3) to 
01 : 

(Y1( 0, ( 0» 

= sec Ooil»' dOl I ds1(01) I P [Sl(Ol), £l(ko, -kl ) = 1] 
-~". dOl 

X fI( Sl)15( 0 - ( 1) 

= sec 00 I d~~O) I P [SiO) = -tan (0
0

: 0) ] 

X P [€lko, -k) = 1 1 sl(0)]/1[Sl(0)]. (3.5) 

The conditional probability in Eq. (3.5) is the prob­
ability that a surface point is illuminated from both 
the incident and final directions, given that the slope 
at the point is the specular slope. Equation (3.5) can 
be checked against the familiar result for normal 
statistics by the assumption of full illumination and 
the use of Eqs. (3.4) and (A4) and the identity 

(
00 + 0) (Sin 0 + sin 00 ) tan -- = . 

2 cos 0 + cos 00 

(3.6) 

The conditional probability of Eq. (3.5) has been 
the subject of several theoretical investigations, each 
with somewhat different results. The formulation by 
Sancer,10 which combines techniques of both Smithll 

and Wagner,12 seems to be the strongest theoretically, 
and it yields the best numerical results by far for the 
energy-conservation calculation in Sec. 6. We list his 

results for a normal random process: 

P[€(Oo,O) = Ils1(0)] 

= [1 + 2(B + BO)]-l == S(O, (0), 

= (1 + 2Bo)-1 == S(Oo), 

= (1 + 2B)-1 == S(O), 

where 

-!7T < () < 0, 

0< 0 < 00 , 

00 < 0 < !7T, 

(3.7) 

B = [4(7T)lV]-1[exp (- V2) - (7T)lV(1 - erf V)], 

(3.8) 

V = [15 I tan 011-1, (3.9) 

(3.10) 

The quantity Bo follows from B by replacement of 0 
by 00 , The rms slope of the surface is So. 

An approximation must be made in carrying out 
the averaging process for Eq. (3.2). The integrand 
depends on Xl and X2(X1) through s(x1), s(xJ, €(X1) , 
V(X1)' and V (x2). Therefore, for a stationary random 
process, the appropriate probability density depends 
on IX2 - xII. We will neglect this dependence and 
assume no correlation between the random variables 
at points 1 and 2. Though this might seem to be a 
severe restriction at first, it actually makes con­
siderable physical sense. As the angle of observation 
must lie in the physical range 101 < !7T, the double­
scatter process, 00 to 01 and 01 to 0, will almost always 
consist of a pair of slopes Sl and S2 which are ap­
preciably different in value. But the slope of a random 
surface changes appreciably in a correlation distance 
T. Thus, we expect IX2 - xII ~ T for the typical case, 
and the correlation effects will then be perturbations. 
With this assumption, the coordinate integration is 
again trivial and, from Eq. (3.2), the average intensity 
takes the form 

SO(Y2(0, ( 0» 
~ L:,dY1L:dX1L:dS2L:dSl 

1 1 1 

X! ! I P[Sl' S2, €l(ko), 'JI1(k1), 'JIlk2)] 
£1=0 Vl=O v.=o 

X 12(Sl, S2)€1'J11(1 - 'JI2)15[0 - 02(Sl, S2)] 

= (2L)(21:) L: dS2 L: dSl 

X P [Sl' S2' €l(ko) = 1, 'JII(k1) = 1, 'JI2(k2) = 0] 

X 12(Sl, S2)15[0 - 02(Sl, S2)], (3.11) 
where 

12(Sl' S2) = (1 + s~)l[cos Ot1(sl)]r1(sl)r2(sl, S2)' (3.12) 

Once again the probability density must vanish if 
1()21 > !?T, for the probability that k2 intersects the 
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surface at some further point Xa is then unity. For 
1021 < t7T, the probability that k2 does not intersect 
the surface elsewhere is equivalent to the probability 
that point 2 is illuminated by - k2 • It is clearly 
advisable to change variables in Eq. (3.11) from (S2' Sl) 
to (02, S~), where the equations of transformation are 

, si tan [HOo - ( 2)] - 1 (13) 
Sl = Sl' S2 = . 3. 

s; + tan [t(Oo - ( 2)] 

The last equation is derived in the Appendix [Eq. 
(AS)]. The new integration ranges are -7T < O2 < 7T, 
- 00 < s~ < 00; for every s~ in the infinite range can 
be coupled with some S2 to reach a fixed O2 by multiple 
scatter. On the basis of the preceding remarks on the 
probability density, Eq. (3.11) now takes the form 

(Y2(0; ( 0» 

= sec OoJ
l

17 d02Joo dSl \ OS2(Sl, ( 2) I 
-1" -co 002 

X 12[Sl, SlSl' (2)]b(0 - ( 2) 

X P [Sl' S2(Sl, ( 2), tiko) = 1, 

El-k2) = 1, 'JI1(k1) = 1] 

= sec OoJoo dSl \ osg I 12(Sl, sg) 
-00 00 

X P [Sl' sg, E1(ko) = 1, E2( -k) = 1, 'JI1(k1) = 1], 

(3.14) 

where 

and 

I 
osg I = ~ (1 + s~) sec

2 
[t(00 - 0)]. (3.15) 

00 2 {Sl + tan [!(Oo - O)W 

By comparison with Eq. (3.5), we see that both the 
simple linear combinations of incident and final angle, 
(00 + 0) and (00 - 0), must enter for an accurate 
description of the scattering. It remains to express the 
fifth-order probability density in terms of known 
functions. We now specialize to normal statistics. 

4. DOUBLE-SCATTER PROBABILITY DENSITY 

We will simplify the notation slightly and replace 
the statements Elk;) = 1 and VI (k1) = 1 by the 
symbols liCk;) and 112(k1), respectively. The probability 
density of Eq. (3.14) can be broken up and written as 
the product of five probability functions, four of them 
conditional: 

P[Sl' sg, I1(ko), 112(k1), 12( -k)] = P(Sl)P1P2PaP4 , 

(4.1) 

where 

PI = P[I1(ko) lSI], 

P2 = P[I12(k1) I Sl, I1(ko)], 

P3 = P[sg lSI' I1(ko), 112(k1)], 

P4 = P[I2( -k) I Sl' Sg, I1(ko), 112(k1)]· 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The quantity PI is simply the probability that a 
surface point with given slope Sl is illuminated by the 
incident beam. For normal statistics, it has the 
form10 

PI = S(Oo)u(cot 00 - Sl), (4.6) 

where S(Oo) was defined in Eq. (3.7) and u is a step 
function with value unity for positive argument and 
value zero for negative argument. 

The function P2 is the probability that the ray k1 
intersects the surface at point 2, given the slope and the 
fact of illumination at point 1. If 1011 > t7T, this 
probability is exactly unity. For 1011 < t7T, P2 can be 
recast exactly in terms of mono static and bistatic 
illumination probabilities. By the argument used 
previously in Sec. 3, we have 

P2 = P [V1{k1) = 1 lSI' h(ko)] 

= I - P [v1(k1) = 0 lSI' 11(ko)] 

= I - P[/1( -k1) lSI' 11(ko)], 1011 < t7T. (4.7) 

But, P[/1(ko, -k1) lSI] = P[h(ko) I sl]P[/1(-k1) lSI' 
11(ko)], so that, for the entire angular range of 01 , 

P2 = I - P[/1(ko, -k1) I Sl]IP1, 1011 < t7T, 
P2 = 1, 1011> t7T. (4.S) 

The shadow functions are expressed mathematically in 
Eqs. (3.7) and (4.6). 

Approximations must be made for the probabilities 
P a and P4 • We note, first, that the explicit condition Sl 

can be suppressed in both since the two conditions 
II (ko) and 112(k1) are sufficient to determine the slope 
at point 1 from Eq. (A3). In words, P a = P[sg I 11 (ko) , 
112(k1)] is the probability density for the slope at the 
intersection point 2, given that point 1 is illuminated 
by the source and given that the specular ray k1 does 
intersect the surface at point 2. The condition 11 Cko) is 
important for 01 equal to and somewhat larger than 
the incident angle (P2 vanishes for 0 < 01 < (0), for, 
here, the requirement that ko not intersect the surface 
while kl does will restrict sg to slopes near that of ko . 
For other 01 , with the continuing assumption that 
points 1 and 2 are well separated (Sl and sg are then 
uncorrelated), slope statistics at point 2 are primarily 
affected by the condition of "illumination" at point 2. 
In the absence of an extended shadowing theory, we 
make what seems to be a reasonable and accurate 
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approximation and neglect the condition II (ko): 

Pa,-..J P(sg I 112(k1)]. (4.9) 

A mathematical statement for the right-hand side of 
Eq. (4.9) has been derived by Wagner12 for normal 
statistics, and the result is consistent with the work of 
Smith.ll , The distribution of slopes which can be 
illuminated by kl is again normal. As the range of 
illuminated slopes varies with 01 , the normalization 
factor for the conditional statistics is dependent on 01 : 

Pa -::::= ( 2 )U(sg - cot (1)P(Sg), 0 < 01 < 11T, 
1 - erf VI 

-::::= ( 2 )U(cot 01 _ s~)P(s~), 
1 - erf VI 

-!1T < 01 < 0, 

(4.10) 

where 

VI = [15 Itan 0lW\ 
pes) = (1TI52r i exp (-S2W), 15 = 2iso. (4.11) 

Once again, the u's are step functions, with value unity 
for positive argument and value zero for negative 
arguments. 

ray k to the right of point 2 while the ray -ko achieves 
sufficient altitude to clear. From this last, it is clear 
that II (ko) is still an important condition for angles 
outside of the special double range, but there is no 
theory available for P4 as it stands. In order to 
proceed, we drop the conditions on point 1 for (0, ( 1) 

outside the double range. This leaves 

and 

P 4 "-' P[I2(k) I sL I 12(k1)], 

- t1T < (j < 0 or (j > (jo, 

(4.12) 

Equation (4.12) has the superficial appearance of a 
bistatic illumination probability, but the ray k1 
originates from a surface point rather than from a 
source at infinity. This distinction effectively divides 
the 01 angular range into subranges 1011 < t1T and 
1011 > i1T. First we note that sg is the slope connecting 
k1 and k. But, from Eq. (4.9), P3 is zero unless Sg(Sl) 
can be illuminated by k1 [the step functions in Eq. 
(4.10) permit only those values of SI for which this is 
true]. Thus the only sg permitted in Eq. (4.12) are 
those which are illuminated by k1' and the only 
distinguishing feature, with respect to illumination, 
between the conditions sg and 112(k1) is the origin of kl 
at a surface point. For 1011 < trr, the two conditions 
are very nearly redundant (see next paragraph), and 
112(k1) can be dropped with negligible error. Equation 
(4.12) then has the form of Eq. (4.2) with 00 ---+ 0 and 
Sl ---+ sg. If sg is illuminated by kl' it is illuminated by 
-k, so that the mathematical statement of Eq. (4.12) 

The complicated P4 is exactly unity in the double 
range -1T < 01 < 0, 0 < 0 < 00 , For this combi­
nation of (0, ( 1), point 2 is to the left of point 1 
(Fig. 3). The surface to the right of point 1 cannot 
intersect ko because of the condition II (ko). The ray k1 
connects points 1 and 2 because of the condition 

is 
I l2(k1). The ray k will always be to the left of ko if 

P[I2(k) I sg, 1l2(k1)] -::::= P[I2(k) I sg] = S(O), 

101 ~ i1T, 0 < 01 < t1T, 
o < 0 < 00 and so cannot intersect the surface for 
this range of observation angles. 

There are no certainties for other combinations of 
(0, ( 1), As an example, consider the case 0 < 01 < 1T, 

where the point 2 is to the right of point 1 (Fig. 2). 
Even when 0 < 0 < 00 , the distance between the two 
points may be such that the surface can intersect the 

FIG. 3. p. is exactly unity for this configuration of angles. 

and 

-t1T < (j < 0 or 0> (jo, -t1T < 01 < o. 
(4.13) 

When 10il > i1T, the fact that k1 originates from a 
surface point can affect the probability that k reaches 
the observer. Thus, there are ranges of 0, (1T + (j1) < 
o < t1T, for 01 negative (Fig. 3) and -!1T < 0 < 
- (1T - (1) for 01 positive (Fig. 2), for which k lies 
below - k1 and so must strike the surface with 
certainty yielding zero for Eq. (4.12). For kjust above 
- k1' the effect of 112(k1) on the shadowing of k 
should decrease fairly rapidly with increasing angular 
difference. In order to proceed mathematically, we 
will assume a stepfunction behavior at k = -k1 with 
P4 = 0 when k lies below -k1 and P4 = S(O) for other 
k. This concludes the breakdown of P4 into illumi­
nation probabilities. We can now group the preceding 
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results together: 

S(O) , 0< 0l < t7T, 

[1, 0 < ° < °0 , 

S(O), other 0, -t7T < 0l < 0, 

P,~ [1, 0 < ° < °0 , 

U[(7T + 0l) - O]S(O), other 0, 

01 < -frr, 
u[O + (7T - Ol)]S(O), 0l> t7T· 

(4.14) 

The quantity See) is defined in Eq. (3.7). 

5. ('Y2«(J,(JO» 

We wish to combine the results of Sec. 4 with Eq. 
(3.14). As a preliminary, we streamline Eq. (4.14) by 
the introduction of yet another function w(O, ( 1) 

which takes on only values of zero and unity: 

w(O, 0l) = 0, 0 < ° < 00 and -7T < 01 < 0, 

= 1, all other (0, 0l)' (5.1) 

We can now construct the function 

S[O, w(O, ( 1)] == 1 + w(O, (1)[S(0) - 1], (5.2) 

which assumes the forms S(O) or unity in accordance 
with Eq. (5.1). By Eqs. (5.1) and (5.2), Eq. (4.14) 
becomes 

1, 

0l < -t7T, 

u[O + (7T - ( 1)], 

(5.3) 

where the fact that U[(7T + 0l) - 0] = 1 for 0 < ° < °0, Ol < - t7T has been used. 
The substitution of Eqs. (4.1), (4.6), (4.8), (4.10), 

and (5.3) into Eq. (3.14) yields the following expression 
for the double-scatter coefficient: 

(Y2(O, ( 0» = i ra;+ldslT(s~, w)A;(s1), (5.4) 
;=1 Ja; 

where 

and 

C - erf Vl) U [(0 7T) - ° 
1 + erf V1 + 1]' 

1 - -- u( -S1 - tan ( 0) ( S(Ol)) 
S(Oo) 

(A;) = x u(sg - cot 0l), (5.6) 

(1 - S(Oo, (1))U(cotO _ SO) 
S(Oo) 1 2 , 

C - erf V1) 
1 + erf V1 

U[(7T - 0) + Od 

The integration limits in Eq. (5.4) are 

a1 = -00, a2 = -tan [HOo + tn')], a3 = -tan tOo, 

a, = tan [Ht7T - ( 0)], and a5 = cot °0 , 

6. ENERGY CONSERVATION 

An important application of the scattering formal­
ism is the calculation of the total power scattered into 
the physical range of angles. It is especially instructive 
to consider a conducting surface, for we know what 
the result should be from Eq. (2.8): 

f
t .. 

dO(y (0, °0 ; r = 1» = 1. 
-tIT 

(6.1) 

It has been shownl3 for a normally distributed surface 
that the uncorrected probability of slopes theory does 
not, in general, satisfy Eq. (6.1), with the deviation 
from unity dependent on incident angle and roughness. 
When shadowing alone was accounted for, the con­
servation condition was fulfilled at grazing incidence. 
In this section we present and discuss a 'computer 
evaluation of Eq. (6.1) for the single- and double­
scatter coefficients as applied to the case of normal 
statistics. A number of roughnesses and several 
incident angles are considered. The results are then 
compared with the uncorrected theory and the 
conservation condition. 

The equation of interest is 

lV(Oo) == lV1(Oo) + lV2(Oo) 

= it .. dO [(Y1 (0, °0 ; r = 1» + (Y2 (0, °0 ; r = 1»]. 
-!IT 

(6.2) 

We use Eqs. (3.5) and (3.6) for the single-scatter 
theory N 1(Oo) and Eqs. (5.4)-(5.6) for the double­
scatter correction N2(Oo)' In addition, we evaluate the 
totally uncorrected theory M(Oo), which follows from 
Eq. (3.5) by setting the illumination probability equal 
to unity. For a perfect reflector, 

M(Oo) = (b'ds1Pnormab1)(1 + S1 tan ( 0 ), (6.3) Jbl 
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TABLE I. Energy-conservation coefficients. 

Q(Oo) So = tan 10° tan 15° tan 30° tan 45° 

1 ° M 1.0000 0.9998 0.9167 0.6828 
N, 1.0000 0.9984 0.8308 0.5262 
Ns 0.0000 0.0015 0.1450 0.3752 
N 1.0000 0.9999 0.9758 0.9014 

15° M 1.0000 0.9984 0.9168 0.7162 
N, 0.9999 0.9946 0.8359 0.5522 
N. 0.0001 0.0048 0.1397 0.3595 
N 1.0000 0.9994 0.9757 0.9116 

M 0.9997 0.9905 0.9192 0.8201 
N, 0.9988 0.9791 0.8514 0.6338 
Ns 0.0011 0.0180 0.1251 0.3071 
N 0.9999 0.9971 0.9765 0.9410 

45° M 0.9950 0.9713 0.9415 0.9973 
N, 0.9889 0.9482 0.8788 0.7645 
IVs 0.0096 0.0436 0.1021 0.2063 
N 0.9985 0.9918 0.9809 0.9708 

60° M 0.9741 0.9536 1.0369 1.2715 
N, 0.9532 0.9150 0.9123 0.9055 
N. 0.0394 0.0712 0.0753 0.0846 
N 0.9926 0.9862 0.9877 0.9901 

75° M 0.9710 1.0420 1.4277 2.0284 
N, 0.9123 0.9172 0.9497 0.9711 
N. 0.0742 0.0714 0.0449 0.0262 
N 0.9865 0.9886 0.9945 0.9973 

89° M 4.5449 6.6339 13.7000 23.3580 
N, 0.9862 0.9909 0.9960 0.9980 
Ns 0.0126 0.0084 0.0037 0.0019 
N 0.9989 0.9993 0.9997 0.9999 

where 

and 

from Eq. (A3). The numerical results are presented in 
Table I. The quantities Q = M, N} , N2 , and N are 
evaluated for the seven angles at the left and the four 
rms slopes between tan 10° and tan 45°. 

It will be noted that M«()o) is too small for angles 
near normal incidence and much too large for angles 
near grazing. The former "energy loss" is a con­
sequence of the single-scatter theory in that all surface 
slopes are available to scatter the incident radiation. 
Therefore, surface elements with slopes outside the 
range bl < SI < b2 scatter the incident rays into final 
directions outside of the physical range -!17 < () < 
tl7. The double-scatter theory N2 returns much of the 
lost radiation to the observation range. The infinite 
catastrophe for near-grazing incidence is due to the 
neglect of shadowing corrections. The incident beam 
intercepts a surface length of sec ()o times the beam 
width. The same amount of energy is incident regard­
less of (}o, so that the large intercepted surface for 

()o -.. }17 is greatly shadowed. An appropriate shadow­
ing theory will eliminate the sec 00 factor. The quantity 
1 - M«()o) is displayed in Fig. 4 for several rms slopes. 

The shadow-corrected, single-scatter theory has the 
property NI «()o) < M«()o) over the entire range of (}o. 
This makes sense, for not only is there the energy loss 
associated with M, but in addition the shadowing 
correction in NI reduces the output into any nonzero, 
observable direction. Of course, any scattered ray 
which is shadowed is a multiply reflected ray, and Nz 
must account for part of this shadowed radiation. 
This is clearly the situation as, from Table I, we note 
that N«()o) is much closer to unity than M«()o) for all so, 
save for the odd angular range where M passes unity 
on its way to infinity. In this latter respect, we note 
that N«()o) ~ 1 for all ()o. This is most gratifying, and 
it is a result dependent on the choice of shadow 
correction, Eq. (3.7). The shadowing theory of 
Wagner, e.g., leads to numerical results for N which 
approach unity at grazing incidence from above. 
Thus, the energy-conservation integral provides a 
standard against which the various shadowing 
theories may be judged. We display 1 - N«();") in 
Fig. 5 for comparison with Fig. 4. 

The numerical results differentiate between the 
relatively smooth 10°, 15° surfaces and the rough 30°, 
45° surfaces. Thus, for the surfaces with modest So, 
the quantity N2«()0) starts off at or near zero for normal 
incidence, then rises to some maximum as ()o increases, 
and finally falls back slowly to zero as ()o approaches 
grazing. Now, the most likely slopes for scatter are 
-tan at < s < tan IX, where tan IX = (j = 2iso and at 

is defined relative to grazing. For a reasonably smooth 
surface and normal incidence, the scattered rays are 
not likely to strike the surface elsewhere. As ()o 

increases from zero, the normals to the important 
range of "far" slopes (the positive slopes of Fig. 1) 
make larger angles with the incident rays. Therefore, 
the scattered rays leave these slopes at larger angles 
from the z direction. The probability of multiple 
scatter thus increases as ()o increases. However, the 
far slopes are also being shadowed, with only the 
unimportant steep slopes initially but with the shadow­
ing condition eventually extending to positive slopes 
~ tan at as ()o increases. The maximum multiple scatter 
occurs near il7 - ()o = IX; for increasing (}o, the slopes 
responsible for multiple scatter are increasingly 
shadowed. 

For the rough surfaces, on the other hand, there is 
multiple scatter for all angles of incidence. The 
quantity N2 is a maximum at normal incidence and 
decreases monotonically with ()o. This decrease for 
increasing ()o arises because the normals to the 
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FIG. 4. Energy nonconservation for the uncorrected scattering theory, with rms slope as parameter. 

important "near" slopes (negative slopes of Fig. 1) 
make smaller angles with the incident rays. The 
corresponding scattered rays leave the surface at 
smaller angles relative to the z direction and, thus, are 
less likely to intersect the surface again. At i7T -
00 ~ oc, this mechanism is joined by the substantial 
shadowing of far-side slopes responsible for multiple 
scatter. The table indicates that the double-scatter 
formalism is not sufficient for So ;<> 1 and near-normal 
incidence; i.e., the higher-order scattering coefficients 
in Eq. (2.6) are not negligible. The monotonic de­
crease of multiple-scatter effects with (jo, however, 
means that an accurate description is still possible for 
some range of angles prior to grazing. 

7. CONCLUSIONS 

A ray-optics approach has been applied to the theory 
of scattering from I-dimensional, random rough 

surfaces. In principle, the theory can account for 
shadowing and all orders of multiple scatter. As a 
practical matter, shadow-consistent descriptions of 
both single and double scattering are presented in 
terms of known functions. The former is just the 
familiar proportionality of scattered intensity with the 
slope probability density, but now the appropriate 
illumination probability is included as well. The 
double-scatter correction provides computational 
accuracy; it has appreciable value for large angles of 
incidence on relatively smooth surfaces and for all 
angles of incidence, save grazing, on the rough 
surfaces (so ~ tan 20°). In order to test the ability of 
the theory to conserve energy, a numerical evaluation 
of the energy integral is carried out for a perfect 
reflector. The double-scatter formulation successfully 
accounts for the incident energy when So ~ tan 30", 
and it is far superior to the conventional single-scatter, 
unshadowed theory for any rms slope. 
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FIG. 5. Energy-conservation discrepancies for the corrected scattering theory and the So of the previous figure. 

APPENDIX 

We derive here the basic geometrical quantities 
appearing in Eqs. (3.5) and (3.14). We first consider the 
parameters associated with point I and define 

-1{o' fil = cos Otl' fil • Z = cos PI' (AI) 

where PI is measured clockwise from the z axis. It 
follows immediately that the slope at point I is 
SI = -tan PI • From Fig. 2, 

()l = ()o + 2IXl' PI = ()o + Otl' (A2) 
so that 

and 

The procedure for point 2 is the same. We define 

-1{1 • fi2 = cos Ot2, fi2• Z = cos P2' (AS) 

and P2 is measured clockwise from the z direction. 
The slope at point 2 is S2 = -tan P2 • From Fig. 2, the 
angle between - kl and the z axis is 1(' - ()1; thus, we 
have 

The solution of the preceding pair of equations yields 
P2 = -H1(' - ()l - ()2), and 

S2 = -tan {32 = tan [H1(' - ()1 - ()2»)' (A7) 

Sl = -tan PI = -tan [H()o + ()1»)' (A3) By use of the relation ()l = -()o - 2 tan-l Sl from Eq. 
We can also write cos Otl in terms of ()o and Sl: (A3), we obtain S2 as a function of Sl and ()2: 

cos IXl = cos ({3l - ()o) 

= (1 + s~)-!( cos ()o - Sl sin ()o). (A4) 
(AS) 
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The remaining quantity needed is cos (X2 as a function 
of S1 and ()2, for this is the argument of one of the 
reflectivities. Thus, from Eq. (A6), 

R ( ) 
cos (Xi - (K - 1 + cos2 (Xi 

H cos (Xi = !' 
cos rJ.i + (K - 1 + cos2 rJ.;) 

cos IX2 = cos [t7T + t«()2 - ()1)) 

= sin [t«()1 - ()2)) 

= -sin W()o + ()2) - .Btl 
= -(1 + sir!{sin [H()o + ()2)) 

+ S1 cos [t«()o + ()2)])' (A9) 

The reflectivities will be written here for convenience. 
If we distinguish them as rv = IRvl2 and rH = IRHI2 
to denote vertical and horizontal polarization, re­
spectively, then we have 

R ( ) 
K cos (Xi - (K - 1 + cos2 (Xi)! 

V cos (X; = !' 
K cos (Xi + (K - 1 + cos2 IX;) 

K=~. 
f-t 

Here, E is the relative complex permittivity, and f-t is 
the relative permeability. 
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Case's technique utilizing Green's functions for dealing with boundary-value problems of the neutron 
linear-transport theory is exploited. We show that the Fourier coefficients of the Green's function over the 
Case spectrum are precisely the normal modes. In particular, if we assume that the scattering kernel is 
rotationalIy invariant (which indeed we do assume) and approximate it by a degenerate kernel consisting 
of spherical harmonics, the set of modes is deficient for problems lacking azimuthal symmetry. We also 
show that the expansion of the scattering kernel, in terms of spherical harmonics (or any set of orthogonal 
functions for that matter), permits the linear factorization of the Fourier coefficients of the Green's 
function in terms of the lowest element, with the proportionality functions consisting of complete 
orthogonal polynomials. As a consequence of this attribute of Fourier coefficients, the eigenfunctions 
(continuum and discrete) also factorize, which then permits decoupling of the appropriate singular 
integral equations. To illustrate our idea, we solve half-space and slab problems. However, the basic 
procedure is kept sufficiently general so that the extension to problems involving other geometries 
remains straightforward. 

1. INTRODUCTION 

The normal-mode (eigenfunction) expansion tech­
nique of Case,1 in dealing with boundary-value prob­
lems, has achieved considerable success in the types of 
problems for which the normal modes (continuum 
plus discrete) form a complete orthogonal set. However, 
there are several problems of interest, for instance, in 
the theory of neutron diffusion and kinetic theory of 
gases,2 where the sets of modes are either deficient or 
the appropriate integral equations are regular. In 

particular, in a recent paper by Case et al.,3 it has been 
shown for spherical geometry that one cannot directly 
adapt the above-mentioned technique. In this paper, 
we consider the Green's function approach also due to 
Case.4 We show that the Fourier coefficients of the 
Green's function for the appropriate neutron I-speed 
transport equation over the Case spectrum are pre­
cisely the normal modes. In particular, if we assume 
that the scattering kernel is rotationally invariant 
(which indeed we do assume) and approximate it by a 
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The remaining quantity needed is cos (X2 as a function 
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problems for which the normal modes (continuum 
plus discrete) form a complete orthogonal set. However, 
there are several problems of interest, for instance, in 
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gases,2 where the sets of modes are either deficient or 
the appropriate integral equations are regular. In 

particular, in a recent paper by Case et al.,3 it has been 
shown for spherical geometry that one cannot directly 
adapt the above-mentioned technique. In this paper, 
we consider the Green's function approach also due to 
Case.4 We show that the Fourier coefficients of the 
Green's function for the appropriate neutron I-speed 
transport equation over the Case spectrum are pre­
cisely the normal modes. In particular, if we assume 
that the scattering kernel is rotationally invariant 
(which indeed we do assume) and approximate it by a 
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degenerate kernel consisting of the spherical harmon- on S, and iii is a unit normal pointing into V. The 
ics, then the set of modes is deficient for problems integral equation for the surface distribution 'f(rs, n) 

= LdO'd3r'G(r" n; r', n')Q(r', n') 

+ r dO'dS'G±(r., n; r;, n')iii(r~). n''f(r;, n') 
)8' 

=Q ~ 

lacking azimuthal symmetry. However, if the index of is 
degeneracy is allowed to approach infinity, then the 
deficiency of that set vanishes. Furthermore, we also 
show that the expansion of the scattering kernel, in 
terms of spherical harmonics (or any set of orthogonal 
functions for that matter), permits the linear factori­
zation of the Fourier coefficients of the Green's 
function in terms of the lowest element with the 
proportionality functions which consist of complete 
orthogonal polynomials. This attribute of Fourier co­
efficients then leads to the factorization of eigenfunc­
tions (continuum and discrete) and the eventual 
decoupling of the singular integral equations. The 
main advantage of Green's function technique over 

The object is to construct the Green's function 
from Eq. (2) and solve the integral Eq. (4) for 
the surface distribution5 'f(rs, n). Having obtained 
'f (rs, n), we then determine the angular density 'nr, n) 
by Eq. (3). The basic mathematical tools relevant 
to such a treatment are the elementary use of Fourier 
transforms and the theory of singular integral equa­
tions of the type 

the normal-mode expansion technique is that the 
normal modes appear "naturally" in the Green's 
function, with the additional terms (if any) which 
make the set complete also appearing as an integral 
part of it. 

To illustrate our idea, we solve half-space and slab 
problems. The latter type of problems are treated in 
somewhat greater detail than the former. In particular, 
two limiting cases' of thick and thin slabs are con­
sidered. We begin by first presenting the basic for­
mulas4 and relevant mathematical tools. 

2. BASIC FORMULAS 

In the I-speed approximation,4 the neutron-trans­
port equation we consider is 

(1 + n • V)'f(r, n) 

= f 40 'f(n • ~!')'f(r, n').+ Q(r, n), (1) 

where n is the unit velocity vector, 'f is the angular 
density, Q is some given source function, andf(n .n') 
is a rotationally invariant scattering kernel. The appro­
priate Green's function satisfies 

(1 + n· V)G(r, n; ro, no) 

= I dO'f(n • n')G(r, n'; ro, no) 

+ t5(r - ro)t5(n • no). (2) 

The quadrature for the angular density is 

'fer, n) 

= Ldo'd3r'G(r, n; r', n')Q(r', n') 

+ Is dO'dS'G(r,n;r~,n')ii;(r~)' n''f(r~,n'), (3) 

where V is the volume in which the angular density is 
to be determined, S is the boundary of V, r; is a point 

1 i d'll !BCu)r(,u) + -. !f - A(,u, 'II)r('II) = f(,u). (5) 
2m L 'II -,u 

Reduction of Eq. (4) to the integral equation (5) 
should become obvious soon. 

3. GREEN'S FUNCTION FOR THE I-SPEED 
TRANSPORT EQUATION AND 

EIGENFUNCTIONS 

In this section, we take a cursory look at the 
relationship between the eigenfunctions of the I-speed 
transport equation and the Fourier components of the 
corresponding Green's function. We express the scat­
tering kernel fen • n') in Eq. (1) in the degenerate 
form 

fen. n') = i 21 + 1 bIPI(n. n'), (6) 
!=o 41T 

where N is arbitrary. Using the addition theorem for 
spherical harmonics, i.e., 

pen .n') = ~ ~ y*(n)y; (n') (7) 
I m=--/21 + 1 1m 1m 

in Eq. (6), the I-speed transport equation then may be 
written as 

N I 

(1 + n • V)'f(r, n) = L L bIYz'~.(n)<'f~m)' (8) 
I=Om=-1 

where the inner product is defined by 

<fg) = I dOf(n)g(n). (9) 

Let us consider the Fourier transform of Eq. (8), i.e., 
set 

(10) 



                                                                                                                                    

3044 MADHOO KANAL 

Then, Eq. (8) becomes 
N I 

(l + ik· n)1/(n) =! ! b1Yz'!.(n)(1/Yzm)' (11) 
I=Om=-1 

The appropriate Green's function satisfies 

(1 + n· V)G(r, n; ro, no) 
N I 

=! ! b1y1!.(n)(GYzm) + b(r - ro)b(n • no)' 
I=Om=-1 

(12) 

To construct the Green's function, let us take the 
Fourier transform of Eq. (12); i.e., set 

G(r n· r n) = _1_ Jd3keik.(r-ro)g(k n· n ). 
, ,0, 0 (27T)3 ' , 0 

(13) 
The result is 

(k n n ) - ~ b y1!.(n) (y; ) + b(n. no) 
g , , 0 - l~ I 1 + ik • n g 1m 1 + ik • n 

(14) 

Now, every solution of Eq. (14) must be of the form 

= ~ b y1!.(n) ; (k n ) ben • no) (15) 
g l~ I 1 + ik • n 1m , 0 + 1 + ik • n ' 

where ;lm == (gY1m ) are to be determined. If we 
multiply both sides of Eq. (15) with Y1'm,(n) and 
integrate over n, we get a system of linear inhomo­
geneous equations for ;lm' They are 

Simple calculations will show that 

/ Y1!. Yz'm' \ 
\1 + ik .n/ 

(16) 

J
l dp.' 

= 27Tbmm, . Yzm(p., O)Yz'm'(p., 0). 
-11 + Ikp. 

By using this simplification in Eq. (16), we get 

~ 1= Am (k) - Y1'm(no) (17) 
k "1m II' - . , 

1=lml 1 + Ik • no 
where 

J
l df.-t 

A[V(k) = b!l' - 27Tb1 Y1m(p., 0) Yz'm(p., 0). 
-11 + ikp. 

(18) 
When the determinant (the dispersion function) 

(19) 

of the system (17) is nonzero, for any fixed m, we have 

(20) 

where dm (n denotes the signed minor of the matrix 
(Art.) associated with the lth row and the l'th column. 
In particular, the homogeneous equations 

(21) 

and 
N 

! ;lmAz"t, = 0 (22) 
1=lml 

then have the unique solutions g = 0 and ;Im = O. 
On the other hand, when Am = 0, Eq. (22) and, 
consequently, Eq. (16) have nonzero solutions, and 
the number of linearly independent solutions is equal 
to the nullity of the matrix (Art,) (Le., the difference 
between its order and its rank). In any event, the most 
general Fourier representation of G is of the form 

G(r, n; ro, no) = _1_ ! blYl~(n) 
(27T)3 I,m 

X fd3kik.(r-rO) ;lm(k, no) 
1 + ik·n 

1 f eik.(r-ro) 

+ ben • no) (27T)3 d
3

k 1 + ik .n . 
(23) 

We note that the Fourier components ~lm of G, given 
by Eq. (20), are sectionally holomorphic functions in 
the complex k-vector space, with a branch cut for 
k = -;00 to -i and ito ioo, and they have poles at 
the zeros of the dispersion function Am. In what 
follows, we look at ;Im in terms of their relation to the 
eigenfunctions of Eq. (11) over this spectrum (the 
Case spectrum),6 and also examine a certain recurrence 
relation leading to the factorization of ;lm in terms of 
the lowest element ~mm' 

Our first immediate observation is that, for a fixed 
direction of k, the difference of boundary values of 
~lm about its branch cut are precisely the continuum 
eigenfunctions2 of Eq. (11); i.e., if we denote such 
functionals by Elm(k, n), then 

Elm(k, ilk' cfo) = ~~(k. ilk' cfo) - ;im(k, ilk' cfo) (24) 

or, explicitly, 
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satisfy Eq. (11). Here, Ok = t{ • n, and + (-) denotes 
the boundary value as k approaches the branch cut 
from the left (right) side. On the other hand, if ki is a 
simple zer07 of Am(k) , then the discrete eigenfunction 
[of Eq. (11)] is given by 

Flm(ki , Ok' rp) = lim (k - ki)~lm(k, Ok' rp), (26) 

i.e., 
k-+k; 

F (k 0 ,/.) - _1_ ~ d (l, k.)Y;'m(Ok' rp) 
1m i , k' 't' - A' (k) ,k m l' 1 1 + 'k ("\ , mil =Iml I jUk 

(27) 

where A~(ki) is the derivative of Am(k) evaluated at 
k = k j • 

It may seem peculiar at first sight that, for a fixed 
point in the Case spectrum, there are N number of 
eigenfunctions for I ranges from Iml to N. However, 
we shall see presently that all such eigenfunctions are 
not distinct. In fact, they differ from the lowest eigen­
function (l = 1m!) by a multiplicative factor which is 
a polynomial in (ilk). To see that, consider Eq. (16) 
rewritten in the form 

~ ( j * ik ·n \) k ~Im bu,bmm,(l - bl) + bl\Ylm . Y;'m'j 
I.m 1 + lk·n 

= Y;'m.(no) . (28) 
1+ik·Qo 

Using the recurrence relation for spherical harmonics, 

OkY;m(n) = AlmY;+lm(n) + AI-1mY;-lm(n), (29) 

where 

A = (0 + 1 - m)(l + 1 + m))! (30) 
1m (21 + 1)(2l + 3) , 

we obtain 

z(b l - l)~lm + Alm~l+lm + AI-lm~l-lm 
= -z¥;m(no), (31) 

where, for convenience, we have put k = ilz. From 
this equation, we conclude that 

~Im = hlm(z)~mm + Wlm(z, no), (32) 

where hlm(z) are complete orthogonal polynomials (in 
the Stieltjes sense) satisfying the following 3-term 
recurrence relation: 

Almhl+1 m(z) + z(bl - I)hlm(z) + A I_1 mhl-l m(z) = 0, 

(33) 

and Wlm(z, Q) are also polynomial in z. Equation (32) 
gives us the desired factorization of ~Im (mentioned 
above) in terms of the lowest element ~mm' Two 
immediate consequences of this equation are (I) the 

factorization of eigenfunctions and (2) a convenient 
representation of the dispersion function Am. In 
other words, we have 

Elm(v, Q) = hlm(v)Emm(v, Q), (34) 

Flm(Vi, n) = h1m(v;)F mm(Vi, n), (35) 

and 

~ jYI";..Ymm\ 
Am(z) = 1 - z k blhlm(z)\ j' 

1=lml Z - Ok 
(36) 

Equations (34) and (35), of course, follow by defini­
tions (24) and (26), while Eq. (36) is obtained merely 
by substituting ~Im in Eq. (28) by means of Eq. (32). 
In particular, for the lowest element ~ mm' we have 

z N 
Am(z)~mm(z, Q) = Ymm(z) -- - L W1m(z, Q) 

z - Ok 1=lml 

X (blm - bl<Yim z ~ Ok Ymm») , 

(37) 

from which we may readily construe the explicit forms 
of the lowest eigenfunctions. 

The results of this section may be summarized as 
follows: 

(i) The Green's function for a degenerate kernel of 
the form given by Eq. (I) was Fourier transformed. 
For the Fourier components (~Im) of G, we obtained 
a set of inhomogeneous linear algebraic relations. 

(ii) It was then shown that the difference of bound­
ary values of ~lm about the Case-spectral line gave 
rise to the continuum eigenfunctions of Eq. (11), while 
the discrete ones consisted of the 

lim (z - V;)~lm; 
Z-+VJ 

Vi is a simple zero of Am. 
(iii) Using the recurrence relation for spherical 

harmonics, we obtained a 3-term inhomogeneous 
recurrence relation for ~Im which permitted us to 
express all ~lm linearly in terms of the lowest coeffi­
cient ~mm' As a consequence of this factorization, 
all the eigenfunctions for fixed m and V (or Vi) become 
proportional to the corresponding lowest eigenfunc­
tion, with the factors being orthogonal polynomials 
in V (or Vi)' 

We may remark here that result (ii) is valid inde­
pendently of the geometry, the type of functions u'sed 
to express the scattering kernel, and the rank N of 
degeneracy. Result (iii), on the other hand, though 
valid for any geometry, is crucially dependent on the 
fact that we expanded the scattering kernel in terms of 
orthogonal functions. In other words, the Fourier 
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coefficients of G satisfy a 3-term inhomogeneous re­
currence relation of the type given by Eq. (31) if and 
only if the scattering kernel is expanded in terms of a 
set of orthogonal functions. The coefficients then 
factorize in the way given by Eq. (32) and the corre­
sponding eigenfunctions as given by Eqs. (34) and (35). 
As a final remark, we wish to state that the above 
factorization of elm, in terms of a single lowest ele­
ment, is not possible if the scattering kernel is a 
function of all velocity components, such as in the 
energy-dependent case. 2 

In what follows we shall restrict our treatment to 
I-dimensional problems. In particular, for the purpose 
of illustrating the general formulation discussed above, 
we shall consider half-space and slab problems. For 
the latter, the angular density in two asymptotic 
limits of thick and thin slabs will be given. 

4. ONE-DIMENSIONAL PROBLEMS (GENERAL 
FORMULATION) 

The I-dimensional version of the Fourier repre­
sentation of the Green's function [Eq. (23)] is 

where p, = x . n. Let G> denote G for x > Xo, and 
G < for x < Xo; the point source is presumed to be at 
Xo. First, consider x > Xo. In order to express G in 
terms of eigenfunctions of Eq. (11), as discussed 
previously, consider the integral in Eq. (38) over the 
contour C shown in Fig. 1. Assuming that Am has no 
zeros on the real k axis, the sum of the integrals from 
- 00 to 00 and that around the branch cut equals the 

FlO. 1. Contour x > xo. 

residue arising from the zeros of the dispersion 
function Am(k) in the upper-half k planes; since 
x > Xo, the integral along the semicircle at infinity 
gives zero contribution. Hence 

1
ioo e- t+) X dkeik("'-"'ol ( 1m _ "1m 

i (1 + ikp,L (1 + ikp,)+ 
M 

+ (~ .. bY· (n) "" e-("'-"'ol/Vm;F (v n ) k I 1m k 1m m;' 0 
I.m i=1 

(39) 

where M is the total number of zeros 'I'm; of Am in the 
upper-half k plane, 0(p,) is the Heaviside step func­
tion, and Flm(vm;, no) are the discrete eigenfunctions 
of Eq. (11). The explicit form of F;m is as given by Eq. 
(27), with k i replaced by i/vm;. 

Putting k = ii'll in Eq. (30) and using the Plemelj 
formula 

1/('1' - p,)± = (1'[1/('1' - p,)] T i1Tb(v - p,), (40) 

we re-express G> in the form 

1 N N • 
G> = -. 2 2 b,ylm(n) 

2m m=-N 1=lml 

X ((I' (1 dv e(~"'ol/vElm(v., no) 
Jo (v - p,)v 

.[t- ( n) t+ ( n)] -("'-"'01/1' 0(p,) + 1T1 "1m p" 01"0 + "1m p" 01"0 e --
p, 

+ 21Ti ~1e-("'-"'01/Vm;Flm(Vm;' no») 

+ b(n. no)e-("'-"'ol/I' 0(p,) , (41) 
p, 

where we have now identified e~m(v, no) - etm(v, no) 
with the continuum eigenfunctions E,m(v, no) [Eqs. 
(24) and (25)] and have used the identity 

N INN 

2 2 AIm = 2 2 Aim' (42) 
I=Om=-1 m=-NI=lml 

We note that the singular part of G> is appropriately 
expressed in terms of the continuum eigenfunctions 
and has a Cauchy-type kernel, but that the second 
term on the right-hand side contains the sum of the 
boundary values of elm' which are not eigenfunctions. 
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However, if we write Eq. (17) in the form 

N Z I ~zm(Z, no)Az':!(z) = -- Yl'm(no) 
I=\m\ Z - Po 

(43) 

and consider the difference of its boundary values as 
z approflches the cut ( - I ::;; 11 ::;; 1) from the top and 
the bottom, then we obtain 

N 
I [A;r+(p) - A~,-(P)](~tm + ~!m) 

Z=\m\ 
N 

= I (A;r+ + A~;-)(ttm - ~~m) 
l=\m\ 

- 47Tipb(p - PO)Yz'm(no), (44) 

which relates ~im + ~~m to the eigenfunctions 

~tm - ~~m (== Elm)' 

By means of this equation, we may now replace the 
second term in Eq. (41) by the right-hand side of Eq. 
(44), if we note that [see Eq. (18)] 

A;r:,+(p) - A;r:,-(p) = 47T2ibIPyl!.(n)Y;'m(n). (45) 

Thus, using Eqs. (44), (45), and the factorizations 
given by Eqs. (34) and (35) in Eq. (41), we get 

where 

+ ! d(p - po)e-<x-xol/Jl8(p) 
p 

x (b( 4> - 4>0) _.l ~ eim<4>O-4>l), ( 46) 
27T m=-N 

N 

Am(p, 11) = I [A7':(p) - A7'';(p)]h ,m(1I), (47) 
Z=\m\ 

N 

Bm(P) = I [A?::(p) + A7'';(p)]hzm(p), (48) 
I=\m\ 

X II dp' P Yzm(p' ,0) Y mm(P' , 0), (49) 
-1 (p - p')± 

and hzm (1I) are polynomials given by the recurrence 
relation (33). 

Similarly, for x < xo, we have 

.V e-im4> 
G< = - I 

m=-N p Y mm(P, 0) 

x (_I_~JO ~ e-<x-xol/VA (p, 11) Emm(1I, no) 
27Ti -111 - P m 47T2

i1l 

+ 1B ( ) Emm(p, no) e-<x-xol/Jl8(_ ) 
"2" m P 4 2. P 7Tlp 

+ ~ -<x-Xol/vmiA ( _ ) F mm( -1Imi , no)) 
k e m p, 1Iml 
;=1 47T2 

- pb(p - po)e-<",-xol/Jl8( -p) 

x (d( 4> - 4>0) - m~/im<4>O-4>l). (50) 

A few remarks are due here. In the expression (46), 
the last two terms cannot cancel so long as N, the 
rank of degeneracy of the scattering kernel, is finite. In 
other words, for the problems lacking azimuthal sym­
metry, the set of eigenfunctions (Emm' F mm) do not 
possess half-range completeness for degenerate kernels. 
This was to be expected, because any arbitrary func­
tion of 4> cannot be expanded in terms of a finite set of 
e,m4>. Consequently, the last two terms are there to 
substantiate the deficiency of the set (Emm , F mm), as 
may be seen by letting N approach infinity; the terms 
cancel, and hence the deficiency becomes zero. On 
the other hand, for azimuthally symmetric problems, 
the above set is complete over the half-range of 11; 

this is readily seen by integrating Eq. (46) with respect 
to 4> from 0 to 27T. The same remarks apply to G> . 

5. APPLICATIONS 
A. Half-Space Problems 

As an application of the above formulation, let us 
first consider the half-space problems. Shifting the 
point source to the origin (xo = 0), we may write 
the integral for '¥(x, n) [see Eq. (3)] in the form 

N e-im4> 
'¥(x, n) = I(x, n) + I 

m=-N p Ymm{fl, 0) 

x (~~ rl~ e-x/vAm(p, 1I)r m(1I) 
2m .10 11 - P 

+ !Bm(p)e-"'/Jl8(p)r m(P) 

+ ;~e-"'/YmiAm(P' 1Iml)r~(1Im)) 
+ e-"'/Jl8(p) ('¥(O, n) _.l ! e-im4> 

27T m=-N 

X fll d4>' eim4>',¥(O, p, 4>')), (51) 

where I(x, n) is the angular density due to source 
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and where 

and 

r m(v) =fdQ'ft''Y(O, Q') Emm(v, Q') 
4'71"2iv 

(52) 

r o ( ) = dil' ''Y(O Q') mm mj' (53) f F (v Q') 
m vmi ft, 4'71"2 

are the coefficients to be determined from the given 
boundary condition. An equation that determines 
them is 

N -im.p 
'Y(O, Q) = 1(0, Q) + ! _e __ 

m=-N p,Ymm(ft, 0) 

x (~:r11~ Am(ft, v)r m(v) 
2m 0 v - ft 

+ lBm(ft)r m(ft)0(ft) 

+ iAm(ft, vmiW?,.(vm;») 

+ 0(ft) ('Y(O, Q) _l.. i e-im.p 
2'71" m=-N 

X f" drp'eim.p''Y(O, ft, 4>'»). 
In solving this integral equation for any specific 
problem, we assume that 'Y(O, Q) for ft > 0 is known, 
so that 

'Y m(O,ft) = l.. (211 drpeim.p'Y(O, Q), ft> 0, (55) 
2'71" Jo 

is also known. This entails a considerable amount of 
simplification in the solution of the integral Eq. (54). 
If we multiply it by eim'.p and integrate over rp from 0 
to 2;, we obtain a set of 2N + 1 decoupled integral 
equations of the form 

1 i1 dv -. fl' -- Am(ft, v)r m(v) 
2m 0 v - ft 

+ lBm(ft)r m(ft) = cI>m(ft), (56) 
where 

<l>m(ft) = p,Ymm(ft, O)['Y m(O, ft) - Im(ft)J 
M 

- !Am(ft, vm;W?,,(vm) (57) 
i=1 

and 

(58) 

The set of Eqs. (56) are singular integral equations, 
which may be solved by the standard procedure due to 
Muskhelishvili.9 In fact, an elaborate solution for 
m = 0, but arbitrary N, has been given by Mika.10 

Since the procedure for m :;!: 0 is the same as for m = 
0, we merely state the pertinent results. 

Let us assume that the zeros of Am(z) [see Eq. (36)] 
are nondegenerate and the polynomials h1m(z) [see 

Eq. (33)] are simple, i.e., of degree precisely 1- m. 
Splitting the kernel in Eq. (56) into the singular and 
the regular parts, we rewrite it in the form 

A;'(ft) -.A;'(ft):r (1~ r m(v) 
2m Jo v - ft 

where 
+ HA;'(ft) + A;'(ft)]r m(ft) = $m(ft), (59) 

$m(ft) = <l>m(ft) 

_ ~ (1dvr m(v) Am(ft, v) - Am(ft,ft) 
2m Jo v - ft 

(60) 
and where we have used the fact that 

(61) 
and 

Bm(P,) = A~(ft) + A;,.(p,) (62) 

[compare Eqs. (I5), (16), and (17) with Eq. (36)J. 
In Eq. (60), the integral may be written as a sum over 
the moments of r m(v) as follows: 

(63) 
If we write h1m(v) as 

!-Iml 

h1m(v) = ! Cil, m)v\ (64) 
k=O 

then 
h (v) h () l-Iml k-1 

!m - 1m ft _ '" "'c (I ) k-i-l i 
-~~k,mft v. (65) 

V - ft k=l ;=0 

Substituting the appropriate ratio in Eq. (63) by 
means of Eq. (65), we obtain 

Arn(ft, v) - Am(ft, ft) 

v-p, 
N 

= 4'71"2iftYmm(ft, 0) ! bIYzm(ft,O) 
1=lml+1 

l-Iml k-l 

X ! !Ck(l, m)ftk-i-V. (66) 
k=l i=O 

Denoting the moments of r m(v) by gim, i.e., 

gjm = fdVvir m(v), (67) 

we re-express <l>m [Eq. (60)] in the form 
N 

<I> m(P,) = <l>m(P,) - 21TiftYmm(P" 0) ! b!Yzm(P,' O) 
1=lml+1 
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The solution of Eq. (59) is 

A;t;(Y) + A;;;(Y) «p 
r m(Y) = 2A;t;(Y)x;;;(Y) m(Y) 

_ A;t;(Y) - A;;;(Y) ~ _1 f1d/-, «Pm(/-,) x;;;(/-,) • 

A;t;(Y)A;;;(Y) 27Ti Jo Y - /-' A;;;(/-,) 

(69) 
while the conditions that determine r::,.(vm ;) are 

dllll -- <I> (II) = 0 J' = 0 1 ... M - 1 i l :I x:;;'(/-,) -
o rr A;;;(/-,) m r • ••• • 

where (70) 

xm(z) = exp - _/-'- arg A;t;(/-') . 1 (1 il d ) 
(1 - Z)M 7T 0 /-' - Z 

(71) 

Equations (70) give just the sufficient number of con­
ditions to determine the unknown discrete coefficients 
r::,.(ym ), The moments gjm may be evaluated by using 
Eq. (67). 

B. Slab Problems 

Let us take the volume V under consideration to be 
the slab between x = - tL and x = tL. Assuming 
that there are no sources (Q = 0), we see that the 
integral representation of 'Y(x. n), by virtue of Eqs. 
(3), (46), and (50), is then 

N e-imq, 
'Y(x,n) = I 

m=-N /-' Y mm(/-', 0) 

X (~~ fl~ e-(",+!L)/vAm(/-" Y)r~)(Y) 
2m Jo Y - /-' 

+ tBm(/-,)e-("'+!L)/p0(/-,)r~)(/-,) 

+ ~le-("'+!L)/VmIAm(/-" Ym;)D~)(Yml)) 

+ e-("'+!L) /P0(/-')('Y( -tL, n) - 2
1
7T 

X m~Ne-imq, f"dc/>'eimq,''Y(-iL ,/-" c/>'») 
N e-imq, 

- I 
m--N /-,Ymm(/-" 0) 

X (~~Jo ~e-("'-!L)/Vr~)(Y)Am(/-"Y) 
2m -1 Y-/-' 

+ tBm(/-,)e-(",-!L)/P0( -/-,)r~)(/-,) 

+ %e-(",-!L)/Vm;Am(/-" --:Ym)D~)(Vmi») 

- e-(",-!L) /P0( -/-,)('Y(tL , n) - 2~ 

X i e-imq, f21r dc/>' eimq,''Y(tL, /-'. c/>'»), 
m=-N Jo 

(72) 

The coefficients r~)·(2)(y) and D~)·(2)(Ym) in Eq. (72), 
which are to be determined, are defined as 

and 

D~),(2)(Ym;) = f dQ'/-,''Y(=ftL, n') F mm(~:;;' n') , 

(74) 

where 'Y(=ftL, n) is the surface distribution at 
x = =f tL. The rest of the symbols have the same 
meaning as previously. 

In dealing with any particular problem, we assume 
that 'Y(=f tL, n) for (~~~) are known. In that case, we 
may reduce Eq. (73) to two sets of decoupled singular 
integral equations by letting x approach =f tL, multi­
plying both sides by eim'q" and integrating over C/>' 
from 0 to 27T. The result is 

M 

+ I Am(/-', Ym)D~)(Ym;) 
j=1 

M 
- ~ e-LIVmIA (11 -Y )D(2)(y ) 

k m r' mj m m; 
i-I 

- ~ JO ~ eLlvAm(/-" v)r~)(v) 
2m -1 v-/-' 

= /-,Ymm(/-" O)'Y m( -tL, /-,), /-' > 0, (75) 

tBm(/-,)r~)(/-,) + ~ ~ fO ~ Am(/-', v)r~)(v) 
2m 11 v-/-' 

iII 

+ I Am(/-', -vm)D~)(Ym;) 
i=1 

iII 
- ~ e-LIVmIA (11 v )D(I)(V ) 

k m r' mj m mj 
i-I 

Clearly, exact solutions of these integral equations 
are not feasible. However, they are well suited for 
approximations in the asymptotic limits. 

1. Thick Slabs (L » 1) 

For this limiting case we can solve Eqs. (75) and 
(76) for the coefficients by the iterative procedure dis­
cussed in Ref. 4. Thus, in the zeroth approximation, 
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we ignore the terms involving the exponentials e-L1v. 
Equations (75) and (76) then reduce to Eq. (56) for the 
half-space problems. Let us, therefore, assume for a 
moment that r(2)(v) D(2)(V ) and rW(v) DW(v ) 

m ' m mj' m' m mj 
are known in Eqs. (75) and (76), respectively. Then, 
formally, solutions of Eqs. (75) and (76) are 

r~)(v) = A;;;(v) + A;;;(v) cI>!;)(v) 
2A;;;(v)x;;;(v) 

where 

_ A;;;(v) - A;;;(v) I~)(v), (77) 
A;;;(v)A;;;(v) 

cI>~)(v) = v Ymm(v, O)'Y m( -tL, v) 
M 

and 

with 

- ZAm(v, vm)D~)(vm,) 
j=1 
M 

+.'" e-LlvmlA (v -v .)D(2)(V ) k m' m:J m mj 
j=1 

+ ~ LO 

~ eLlv'Am(v, v')r~)(v') 
2m -1 v - V 

N 

- 27TivYmm(v, 0) Z b'Y'm(v, O) 
1=lml+1 

I-Iml k-1 
X Z zCil, m)vk-j-lg~~, (78) 

k=1 j=O 

tll(v) =;r _1_ [1~ X;;;(/-,') 
m 27Ti Jo v-/-" A;;;C/-,') 

X /-,'YmmC/-,', O)'Y m( -tL, /-,') 
M 

- Z [D~)(vml)R~l(v, vml) 
;=1 

- e-L1vml D~)(vm)R~)(v, -'I'm)] 

+ _1_ [0 ~ eL1v'r(2)(v' ) 
27Ti J-1 V _ v' m 

X [R~\V', v') - R~)(v, v')], (80) 

RUl(v v') = ;r _1_11~ X;;;(/-,') A ( I v'). (81) 
m' 2 . I A-( ') m /-' , 7T1 0 V-/-' m /-' 

The additional conditions that determine the discrete 
coefficients are 

(82) 

Similarily, for Eq. (76), we have 

r~)(v) = A;;;(v) + A;;;(v) cI>~\v) 
2A;;;(v)x;;;(v) 

_ A;;;(v) - A;;;(v) I~\v), (83) 
A;;;(v)A;;;(v) 

where 

cI>~)(/-,) = - (/-,Ymm(/-" O)'Y m(lL, /-,) 

M 

- ZAm(/-" -vm)D~)(vml) 
i=1 

M 

+ '" e-L1v'"IA (II. V )DU)(v ) k m r' fflj m mj 
i=1 

+l1~ e-LlVAm(/-" v)r~)(v) 
o v-/-' 

N 

- 27Ti/-,Ymm(/-" 0) Z b,Y,m(/-"O) 
1=lml+1 

I-Iml k-1 ) 
X k~1 ~oCk(l, m)/-,k-j-lg~~ , 

X [R~)(V', v') - R~)(v, v')], 

R~)(v, v') = ;r ~ [0 ~ X;;;(/-,') Am(/-", v'). 
2m )-1 v-/-,' A;;;(/-,') 

The additional conditions are 

[0 d/-,/-,i x;;;(/-,) cI>(2)(1I.) = 0 J' = 0, 1, ... , M. 
)-1 A;.(/-,) m r , 

(84) 

(85) 

(86) 

(87) 

Consider Eq. (77) first. In the zeroth approximation, 
ignore all the terms involving the exponentials. The 
coefficients r~)(v) {denoting the degree of approxima­
tion as [r~)(v)]n} are then given by 

[rU)(v)] = A;;;(v) + A;;;(v) [cI>U)(v)] 
m 0 2A;;;(v)x;;;(v) m 0 

_ A;;;(v) - A;;;(v) [1(1)('1')] (88) 
A;;;(v)A;;;(v) m 0' 
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where 

[<I>~)Cu)JO = pYmm(p, O)'Y m( -lL, p) 

and 

M 

- !Am(p, vmi)D~)(Vmi) 
j=l 

N 

- 217ipYmm(P, 0) ! bl"Yzm(P,O) 
1=lml+1 

I-Iml k-1 
X ! ! Ck(l, m)pk-Hg~;:' (89) 

k=l ;=0 

[1(1)(v)] =:r _1_l1~ X;'(p') 
m 0 217i 0 v - p' A;,(p') 

X p'Y mm(P" O)'Y m( -lL, p') 
M 

- '" D(l)(v )R(O(v v ) (90) ~ m mi m , ml" 
}=1 

Similar quantities for r~) should be obvious. In the 
first approximation, the correction to Eq. (89) for 
r~)(v) is obtained simply by retaining the exponential 
terms in Eqs. (78) and (80), with r~)(v) and D~)(vmi) 
replaced by [r~)(v)]o and [D~)(vm)]o, respectively. 
Thus, 

[r(l)(v)] = A;:;(v) + A;.(v) [<I>(1)(v)] 
m 1 2A;:;(v)x;.(v) m 1 

_ A;:;(v) - A;'(v) [1(1)(v)] (91) 
A;:;(v)A;.(v) m 1, 

where 

[<I>~)(V)]l = [<I>~)(v)]o 
M 

+ !e-LlvmiAm(v, -vm)[D~)(vmi)]o 
}=1 

+ ~ fO ~ eLIV'Am(v, v')[r~)(v')]o 
2m -1 v - v 

(92) 
and 

[1~)(V)]1 = [1~)(v)]0 
M 

+ !e-Llvmi[D~)(Jlmi)]oR~)(v, -vmi) 
}=1 

+ ~ fO ~ eLIV'[r~)(v')]o 
2m -1 v - V 

X [R~)(V', V') - R~)(v, v')]. (93) 

The same iterative procedure may be followed to 
approximate the discrete coefficients D~)(vmi) which 
are determined by Eq. (82). The procedure for obtain­
ing r!!) and D!!) is exactly the same. Here we omit 
the details. 

2. Thin Slabs 

Because this situation is physically much simpler 
than the limiting case (L» 1) considered previously, 

one can obtain the integral representation for 'Y(x, n) 
by dealing. directly with Eq. (3). The approximation 
procedure for various other situations is discussed in 
Refs. 2 and 4. To avoid repetition, we merely state the 
pertinent results here. Thus, if we write 

'Y( -lL, n) = 'Y(lL, n) + 'fr( -tL, n), 

p < 0, (94) 

'Y(~L, n) = 'Y( -tL, n) + 'fr(!L, n), 

p > 0, (95) 

where 'fr(=FiL, n) are to be of order L, then one can 
show thatll 

'Y(lL, n) 

= f dQlp'['Y( -lL, n')0(p') + 'Y(tL, n')0( _p')] 

. {GAlL,n; -lL,n') - G+(-lL,n; -lL,n') 

+ G«-!L,Sl;lL,n') - G_(-!L,n; -lL,n')}, 

(96) 
where 

= lim G(x, n; -IL, A'). (97) 
x_-iL{From within V } 

From without V 

For a homogeneous medium we have 

'fr( -fL, n) = - 'fr(tL, n). (98) 

The combination of Green's functions, occurring in 
the right-hand side of Eq. (96), may be calculated 
explicitly by means of Eqs. (46) and (50). It is given by 

N e-imq, 
= ! 

m=-N pYmm(p, 0) 

X (f dv(e-Llv - I)Emm(v, n')H mev, p) 

1 M 
+ -2 !(e-LIVmj - 1)(Am(P, vmj)F mm(vmj , n') 

417 1=1 

- Am(P, -vmj)F mm( -vmj , nl») 
+ 1. <5(p - p') (<5( 1> - 1>') - 1- i eimW-q,)) 

p 217 m=-N 

X [(e-LIIt - 1)0(p) - (eLIIt - 1)0( -p)], (99) 
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where for convenience we have defined 

1 1 A(p, v) Bm(P) 
H (v p) = - ~ ---- + -- 6(v - p). 

m' 21Ti v - P 41T2iv 81T2ip 

(100) 

In general, the contribution from the terms involving 
discrete eigenfunctions [in Eq. (99)] is small compared 
to the terms involving the continuum eigenfunctions. 
Let us therefore ignore that term and further 
approximate the terms involving exponentials as fol­
lows: 

fdV(e-LIV - I)F(v) 

= fdv[F(V) - F(0)](e-L1V - 1) 

+ F(O) f dv(e-Llv - 1) 

= i(-1)nLn [idvv-n[F(v) _ F(O)] 
n=1 n! Jo 
+ F(O) fdV(e-LlV - 1). 

Since 

dve-Llv = I - + L(log L - 1 + y), i l OC! ( L)n 

o n=on!(I-n) 
n'<l 

where y = 0.577216 is the Euler's constant, we get 

fdv(e-LIV - I)F(v) 

= i (-L)n (1 dvv-n(F(v) _ F(O» 
n=1 n! Jo 
+ F(O)(~ (_L)n + LOogL - 1 + y»). 

,n=2 n! (1 - n) 
(101) 

Retaining terms only up to quadratic in L, we see 
that Eq. (99), by means of Eq. (101), becomes 

G>-G++G<-G_ 
N e-im</> [ 

= I L log LEmm(O, Q')Hm(O, p) 
m=-N /.l Y mm(/.l, 0) 

+ L(Y - I)Emm(O, Q')Hm(O,p) 

- fdVV-l(Emm(V, Q'). Hm(v,p) 

- Emm(O, Q')H mea, p») 

+ tL2(fdvV-2(Emm(V,Q')Hm(V,p) 

- Emm(O, Q')H m(O, p» - Emm(O, Q')H m(O, p») J. 
(102) 

The angular density 'I" may now be calculated simply 
by inserting the expression (102) for the given com­
bination of Green's function in Eq. (97). 
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Electromagnetic propagation, influenced by arbitrary tensor constitutive functions in an unbounded 
medium, is considered. The general expansion of the determinantal eigenvalue equation for the disper­
sion relations is obtained, exhibiting, for the first time, the functional dependence of the eigenvalue 
equation on the constitutive tensors. 

I. INTRODUCTION 

The dispersion relations for the propagation of 
characteristic electromagnetic waves, governed by 
tensor constitutive functions in an unbounded 
medium, corne from the deterrninantal eigenvalue 
equation 

det M = 0, (1) 

where the Maxwell dyadic M is given by! 

M == n2(j(j( - I) + r. (2) 

In Eq. (2), j( is a unit, vector in the direction of propaga­
tion, 1 is the unit dyadic,n is the index of refraction 
defined as n == ckjw, where k is the wavenumber and 
w the angular frequency, and r is a dyadic defined 
from the permittivity dyadic £ and the conductivity 
dyadic a by the equation2 

r == E;;-l[£ + (i/w)a]. (3) 

Equation (1) is, of course, the condition that the 
homogeneous wave equation M· E = 0 have non­
trivial solutions (the characteristic modes). 

When the r for a particular situation has a suffi­
ciently simple structure, it is common practice to 
arrive at the eigenvalue equation by directly expanding 
det M in a suitable coordinate system. There are 
situations, however, in which the structure of r is 
complicated to the point that one would prefer an 
alternative to directly expanding det M in order to 
find the eigenvalue equation. Such situations occur, 
for example, in the consideration of propagation in 
certain anisotropic plasmas. 

The purpose of this paper is to derive the general 
expansion of det M for arbitrary r, an expansion 
which has not been obtained before. In situations 
with a complicated r, this expansion leads to the 
eigenvalue equation with less algebraic manipulation 
than would be required if det M were evaluated 
directly. I'n addition, the expansion shows, for the 
first time, the structure of the general eigenvalue 
equation, exhibiting those functionals of r which 

actually enter into the calculation of dispersion rela­
tions. The expansion is presented in Sec. II. 

The considerations of this paper exclude material 
media with either a permanent or induced magnetiza­
tion. The constitutive equations considered are the 
line~r relations 

J(k, w) = a(k, w). E(k, w), 

D(k, w) = £(k, w). E(k, w), 

(4a) 

(4b) 

in wave-vector (k)-angular-frequency (w) space, 
where J, D, and E are the current density, displace­
ment, and electric field strength, respectively. Equa­
tions (4) are, of course, not the most general linear 
constitutive relations, but they are the ones most 
often encountered in practice. 

II. EXPANSION OF THE DETERMINANT 
OF M 

We evaluate det M in a coordinate-independent 
manner to emphasize the generality of the result. The 
definition of det M is3 

where the E'S in Eq. (5) are the completely anti­
symmetric Levi-Civita symbols. We may write M as 

M = T + n2i{i{, (6) 

where the dyadic T is defined as 

(7) 

When Eq. (6) is inserted into Eq. (5) and the result 
multiplied out, the only terms that survive are the 
term containing no components of t, which by Eq. 
(5) is det T, and the three terms containing a product 
of two components of i{. These three terms are all 
equal since they differ among themselves by cyclic 
permutations of their indices. The remaining terms 
all contain components of i{ x i{ and, hence, vanish. 
We have, therefore, 
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The second term in Eq. (8) can be evaluated by 
expressing the product of Levi-Civita symbols as a 
sum of products of Kronecker deltas. When this is 
done, we arrive at 

det M = det T + !n2[(Tr T)2 - Tr (T2) 

+ 2k • T2 • k - 2(Tr T)k • T • k]. (9) 

The various functionals of T called for in Eq. (9) 
are readily evaluated in terms of r, from Eq. (7). 
The most complicated of these functionals to evaluate 
is det T. The evaluation can be carried out either by 
using the definition (5) or by directly expanding det T 
in some coordinate system, since T has the same 
matrix form in all coordinate systems. The result for 
det T is 

particular coordinate system. Considering the simplic­
ity of the result, we see that the derivation is perhaps 
longer than it should be. However, the method has the 
advantage that it emphasizes the generality of the 
result and leads to it unambiguously. We may verify 
the expansion in a way which also serves as a simpler 
derivation. We choose a coordinate system in which 
k lies along one of the coordinate axes, say, the x axis. 
Then det M may be written, in explicit determinant 
form, as 

det M = r 21 r 22 - n2 (14) 

r S1 r S2 rSS - n2 

The polynomial form of this determinant is 

det M = An4 + Bn2 + C, (15) 

+ n4 Tr r - n6
• (10) where A, B, and C are given by 

The other functionals required by Eq. (9) are 

TrT = Tr r - 3n2, (lIa) 

Tr (T2) = Tr (r2) - 2n2 Tr r + 3n4, (lIb) 

k. T • k = k • r • k - n2 , (Uc) 

k • T2 • k = k • r 2 • k - 2n2k· r • k + n4. (lId) 

When Eqs. (10) and (II) are inserted in Eq. (9), we 
have 

det M = (k • r • k)n4 + [k. r 2 • k - (Tr r) 

x k· r .k]n2 + det r. (12) 

Equation (12) is the general expansion of the 
determinant of the Maxwell operator, for arbitrary r. 
It is seen to depend on the four functionals Tr r, 
det r, k. r • k, and k· r 2 • k-the latter of which, 
incidentally, does not require one to square r since 
it can be evaluated as 

The eigenvalue equation for n, which ensues by setting 
the right-hand side of Eq. (12) equal to zero, is not 
biquadratic in n, as it superficially appears to be, 
since, in general, r depends on k. 

We have derived Eq. (12) without reference to any 

A = r u , (16a) 

B = r 1Sr S1 - rurss + r 12r 21 - rUr22' (I6b) 

C = det r. (16c) 

In the coordinate system we are using the element r u 
may be written k • r • k. The structure of the right­
hand side of Eq. (16b) suggests that we add and 
subtract the term Q1' The form of B is then 

B = r 1;ri1 - ru(Tr r) = (r2)1l - ru(Tr r). (17) 

For k along the x axis, B may be written 

B = k • r 2 • k - (Tr r)k • r • k, 

and Eq. (15) is identical to Eq. (12) in this coordinate 
system. Since det M and the form of the coefficients 
A, B, and C are invariant under orthogonal trans­
formation, the identity holds in all coordinate systems. 
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The present work is concerned with what are called polynomial algebras as an extension of the work 
of Ramakrishnan and his colleagues on the algebras of matrices satisfying conditions like Lm = I and 
Lm = Lk. Assuming Lm to be an m-dimensionallinear space, we generate a class of associative algebras 
called polynomial algebras by requiring that every element L of Lm satisfy a polynomial equation 
Ln + P1Ln-l + ... + Pn =0. We show that some very important algebras which physicists have found 
useful can be obtained by various restrictions on the polynomial. A few general properties of these 
algebras are established. 

1. INTRODUCTION 

In a series of contributions, Ramakrishnan and 
his colleagues have initiated and studied the matrix 
algebras obtained by imposing restrictive polynomial 
conditionsl like 

Lm = I and Lm = Lie. (1.1) 

The work presented here extends these studies by 
imposing more general polynomial conditions, leading 
to what we shall call polynomial algebras. 

Let Lm be an m-dimensional linear space over a 
field F. We generate a class of associative algebras 
called polynomial algebras A [oct, oc2 , ••• ,ocm ] with 
{oct I i = 1, 2, ... , m} as generating elements by 
requiring that every element l 

, 
L(x) = XIOCl + X 2OC2 + ... + xmocm (1.2) 

belonging to Lm satisfy a polynomial equation 

P[x; L] =: Ln + PlLn-1 + ... + Pn = 0, (1.3) 

where n is independent of m. We show that some very 
important algebras in physics such as Clifford and 
Grassman algebras (ordinary and generalized) and 
spin and parafield algebras are indeed polynomial 
algebras. 

In the second and third sections, we define poly­
nomial algebras and study operations on them. In the 
fourth section, we recover a number of different 
algebras of physical importance as polynomial 
algebras. In the fifth and last section, we study the 
transformations of the algebras and obtain their 
automorphism groups. 

2. CHARACTERISTIC EQUATIONS OF 
POLYNOMIAL ALGEBRAS 

Let A [oct, oc2, ... , ocm
] be an F-algebra defined by 

a set of generating elements {oci I i = 1, ... ,m} over 
a field F. We write A[ocl,···,&i,···,ocm] for the 
algebra obtained by restricting the generating rela­
tions of A to those containing ocl , ••• , oci-t, OCi+!, ... , 

ocm only. Further, we denote by A [oct, ••• , oci, OCi, 

OCiH , ••• ,ocm ] the algebra, if it exists, obtained by 
substituting oci for oci +! in the elements of A. Ob­
viously, the restriction and substitution operations 
can be extended to a finite number of generators of 
A. We write A [ocl , ..• , ocm ] '=:' B[PI, ... ,pn] for two 
isomorphic algebras A and B under oci ~ P' and 
m=n. 

Let I denote the set of positive integers. F-algebras 
A [oc]: {A [ocl , "', am], m El} are called simplicial 
algebras (S A) if they satisfy the following conditions: 

(a) For every A [oct, "', ocm ] EA[oc] algebras 
A [OCI, ••• , &il, ... , &ik, ... , ocm ] 

and 

exist for all 0 < k, I ~ m; 

(b) !5i :A[ocl ,'" ,ocm ] 

. =. A [ocl ••• OCi - 1 &i ... HI ••• ...m+l]. - , , ,,\Ao, ,,,,, , 

for all i. 

b and a are called the face (restriction) and degener­
acy (substitution) operations, respectively.2 Simplicial 
algebras can be directly defined without referring to 
generating elements. Then under b and a the gener­
ating elements should be stable. 

Note that the simplicial conditions can be extended 
to the index set I ® I ... ® I when considering 
algebras A [{oc}, {P},' .. ,{y}], where [{oc}, {P}, ... , 
{y}] are sets of generating elements. This is accom­
plished by extending the above definitions under the 
mapping i ~ (i, ... ,i) and conSidering the set 
{oc i

, Pi, ... ,yi} of generating elements simultane­
ously under bi and ai • Hereafter A [oc] denotes the set 
of algebras A [oc] and those obtained from A [oc] by 
substitution and restriction operations. Now let an 
algebra ~n E A [oc] have n generators and let 1-': ~n • =:' 
~m be an isomorphism. Suppose that OCi1,"', oc" 
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written in the reverse order are the generators of Am 
not contained in fl[An] and r;.it,"', r;.i, are the 
generators of An such that fl[r;.i] = fl[r;.i+l]; then 

II. = c5. 0 c5. 0'" 0 c5. 0 (1. '" (1. (2.1) 
r II l2 t, 31 't' 

where 1 ~ is < ... < il ~ m, 1 ~ jl < ... < jt ~ n 
and n + s = m + t. Further, the factorization is 
unique. Now, for simplicial algebras A [r;.], we have 
the following: 

Theorem: The set of necessary and sufficient con­
ditions for 

A [r;.Pl, '" ,r;.Pn] '==' A [r;.ql, ... ,r;.qn], (2.2) 

where Pi' qi E I and 1 ~ PI < P2 ... < Pm and 1 ~ 
ql < q2 ... < qm' is that the A [r;.] satisfy the simplic­
ial conditions. 

Proof: Obviously, that (2.2) implies the simplicial 
conditions and the simplicial conditions imply (2.2) 
is seen from (2.1). 

Suppose A [r;.l, ... , r;."'] is an algebra not necessarily 
associative with a finite basis over an infinite field F. 
Let3 

L(x) = Xlr;.l + X2r;.2 + ... + x",r;.'" (2.3) 

be an element of the linear space Lm over F with 
{r;.i Ii = 1, ... ,m} as basis elements. L(x) satisfies a 
minimal equation 

P[x; L] == Ln + PlLn-l + ... + Pn = 0, (2.4) 

where Pr , r = 1, ... ,m, is a homogeneous poly­
nomial of rth degree in Xl' X 2 ,'" , xm and X ~ 
(Xl' ... , Xm). It is important to note that (2.4) holds for 
every general element L(x) ELm. 

Let A [r;.] be simplicial algebras not necessarily 
associative with finite basis over an infinite field F. 
Since 

for m > n 

when m - n elements are deleted, it easily follows by 
considering the cases with n = 1, 2, ... , m - 1 that 
the coefficientsPr ofthe minimal equationP[x; L] = 0 
of L(x) E Lm form the rth-degree symmetric homo­
geneous polynomials (SHP's) in x. Hence, the Pr , 

r = 1, ... , n, are given by 

PI = ai ~ Xi' 

P2 = all>] ! Xi,Xi2 + af2] ~ x;, 
il<i, 

(2.5) 

where i; E [1,2,'" ,m] and [aI' a2,'" ,ar] is a 
composition of r, i.e., integers ai > ° are such that 
~ ai = r. 

Example 1: Consider the algebra A [el, ... , e"'] 
with generating relations eie i = c5ijei and 1 (1 •... • m) = 
el + e2 + ... + e"'. The characteristic equation of 
L(x) == I xie i E Lm is P[x; L] == n(L - Xi) = O. 

Obviously, by considering index sets [iI' ... ,im ] C I 
in the above example with ei1 + ei • + ... + eim = 

l(il ..... i
m
)' we obtain simplicial algebras A[e]. 

Example 2: Let A [r;.\ ... , r;.IH] be either a general­
ized Clifford or Grassman algebra (see Sec. 4). It is 
important to note that the degree of the minimal 
equation of L(x) = ~ Xir;.i E Lm is independent of m. 
This is not true in the case of simplicial algebras in 
Example 1 which do not intuitively correspond to 
polynomial algebras. 

Polynomial condition: Simplicial algebras 

A [r;.]: {A[r;.\ '" ,r;."']; mEl} 

are said to satisfy the polynomial condition if all the 
polynomials P[A]:{Pm[x; L]; L(x) ELm} associated 
with A [r;.] have the same degree k (say). For m > k 
the minimal equation P m+l[xl , ••• ,xm+1; LJ = 0 of 
Xl r;.l + ... + Xm+1 r;.m+1 E Lm+1 is obtained from that 
of Xlr;.l + ... + Xmr;.m ELm by adding terms con­
taining xm+1 to the SHP's that are the coefficients of 
P m[x; L], without altering their order and weight. In 
what follows, all the SHP's so obtained from an SHP 
C are represented by C itself without specifying its 
variables. 

Isotropy condition: Simplicial algebras A [r;.] are 
said to satisfy the isotropy condition if there exist 
functions {Fm(Xl' ... ,xm); mEl} such that J.F;;;lL(x) 
satisfy the minimal polynomial equation 

P[J., 0, ... ,0; L].= o. 

The isotropy condition is very restrictive and 
implies the polynomial condition. Fm(Xl' ... ,xm) is 
a homogeneous function of degree one. Obviously, 
Ps should be an SHP for some s ~ k. Let r be the 
minimal integer with this property and P = Can SHP. 
Then it follows that, for simplicial algebras satisfying 
the isotropy condition, 

q 

P[x; L] == lJ' II (IJ + bil:) = 0, (2.6) 
i=l 

where bi E K, a suitable extension of the field F. 
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Simplicial algebras A roc] are said to satisfy the 
factorizability condition if there exists an SHP C such 
that every P[x; L] can be factorized as in (2.6) over 
a field K ::> F with fixed integers p and q. Obviously, 
simplicial algebras satisfying the isotropy condition 
are factorizable. Simplicial algebras which satisfy the 
factorizability condition are called polynomial algebras. 

Hence, from definition, with every set of polynomial 
algebras.A [oc] an SHP C is uniquely associated, but 
for multiplication by a constant. Polynomial 
algebras AI:[oc] associated with the same £, are called 
associated polynomial algebras with polynomials pr:.. 
In particular, if pI: is of degree r, which is also the 
degree of £" then pr:. can be taken as pc: L' = 1:.1 

Algebras with the polynomial condition L' = Care 
called basic polynomial algebras. For r = 1, A C[oc] 
reduces to F. 

3. OPERATIONS ON POLYNOMIAL ALGEBRAS 

If the polynomial algebras A [oc] with moduli over an 
infinite field F are a direct sum + of the polynomial 
algebras A;[ocd, i = I, •.• , t, and if P[x; L] = 0 'and 
Pi[x;L] = 0 are the polynomial equations of A[oc] 
and Ai[OCi], i = I, ... , t, respectively, then 

A ® B, respectively. Hence, if A and B are polynomial 
algebras associated with the SHP's C and .AL, then 
A EB B and A ® B are associated with the SHP's 
£, + .At, and £,.At" respectively. 

4. POLYNOMIAL ALGEBRAS IN PHYSICS 

In this section, we consider a few polynomial 
algebras which are of interest to physicists. First we 
consider the polynomial algebras 

A [oc]: {A focI, ... , oc"']; m E I} 

satisfying a second-degree polynomial equation. We 
assume that F is the real field and L(x) = X 1OC1 + 
... + xmoc'" ELm satisfies, without loss of generality, 
the minimal equation 

(4.1) 

where P2 = a 21 ,2' xix j + a22 .2 x;. Substituting for 
L and equating the coefficients of XiX; to zero, we 
obtain the generating relations 

OCiOCi + ocioci = -2azzI, if i = j, 

= -anI, if i":F j, (4.2) 

t 

P[x; L] = II Pi[x; L]. 
;=1 

of A roc]. Obviously, the A [oc1 satisfy the simplicial 
(3.1) conditions. In fact, if we waive these conditions, the 

above set of generating relations can be generalized to 

From this it follows that, if the A [oc] are polynomial 
algebras with moduli, then Ai[oci1 for each i is a set 
of polynomial algebras and conversely. If A [oc1 is 
associated with the SHP C, then each one of the PA's 
A;[oc;] is associated with £, and conversely. 

Consider two sets of simplicial algebras A [oc1 and 
B[,8]. We define their sum A[oc] EB B[,8] to be the 
algebras 

C[oc EB ,8]: {Cm [oc1 ® I + I ® ,81; 

oc2 ® I + I ® fJ2; ••• ; ocm ® I + I ® ,8m]; mEl} 

(3.2) 

and their product A [oc] ® B[,8] to be the algebras 

D[oc ® ,8]: {Dm[oc1 ® ,81; oc2 ® ,82; ... ; OCffi ® ,8ffi]}. 

(3.3) 

The extension of simplicial operations to A EB Band 
A ® B is direct. The minimal polynomials associated 
with C[oc EB,8] and Dfoc ® ,8] are symbolically given 
by PA[x;L]EBPB[x;L] and PAfx;L]®PBfx;L] 
which have as their roots the sums (products) of the 
roots of the polynomials P A[X; L] and PB[x; L), with 
minimum multiplicity such that they are the minimal 
polynomials associated with the algebras A EB Band 

ociOCi + OCioci = -a·.[ i J' = 1 2 ••• m (42') U', " " . 

where [aij] is a symmetric matrix. The representation 
theory of this algebra was considered by Landsberg. 4 

Now let us recover some familiar algebras. 

Grassman algebras: Algebras isomorphic to Grass­
man algebras5 are obtained by taking a21 = a22 = 0 
in (4.2) when the generating relations become 
ociOCi + (J.ioci = O. 

Clifford algebras: We choose a22 = -1 and a21 = 0 
in (4.2); then we obtain Clifford algebras, with the 
generating relations 

(4.3) 

Obviously, this is an isotropic polynomial algebra with 

L. = x 2 = x~ + x~ + . . . . (4.4) 

Algebras of annihilation and creation operators: Now 
let us consider a mixed algebra obtained from (4.2'). 
For that, let m = 2v and 

aij = 2, if Ii - jl = v, 

= 0, otherwise. (4.5) 
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This is the vth-order algebra of annihilation and 
creation operators. To put this in the familiar form, 
we introduce 

., ·t +. a' = (I.' and a' = (l.Y', i = 1,2, ... , v. 

Then the commutation relations (4.2') under (4.5) 
become 

aiai + aiai = aitait + aitait = 0, 

aiait + aHai = 2biiI. (4.6) 

Now consider the index set I ® I and the algebras 
A [a, a tJ satisfying the polynomial condition 

P[z, z; LJ == L2 = 2{ZlZl + Z2Z2 + ... + ZyZy}, (4.7) 

where 
(4.8) 

By equating coefficients of products of Zi and Zi' 

we recover the commutation relations (4.6). Algebras 
of annihilation and creation operators are isotropic 
algebras with 

C = 1~12 = (ZlZ1 + Z2Z2 + .. '). (4.9) 

As is well known, there is an intimate connection 
between Clifford algebras of order 2v and the algebras 
of annihilation and preation operators of order v. To 
establish it, we put 

(1.2/-1 = (ai + ait)/2!, (l.2i = i(ai - ait)/2!. (4.10) 

Then L = I Xj(l.i becomes L = I (zjai + ziait) and 
X2 = I x; becomes IzI2 = I ZiZi' where 

Zi = 2-!(X2i- 1 + iX2i) 

and Zi is the complex conjugate of Zj when we obtain 
Eq. (4.7) from (4.1) with a22 = -1 and a21 = O. 

Generalized Clifford and Grassman algebras: Now 
we consider a few polynomial algebras A [(I.] satis­
fying polynomial equations of degree greater than 
two. The generating relations of these algebras cannot 
be obtained from the polynomial condition alone. 
The conditions on (I.'s, obtained by equating the 
coefficients of products Xi to zero, generate algebras 
of infinite order. 

Now consider the algebras6 A [(I.]: {A [(1.1, ••• , (I."']; 
mE/} satisfying the generating relations (J • .irl/ = 
WOCioc i , i < j, and (oci)P = q over an infinite field F 
containing f! and a pth primitive root w of unity. 
These algebras obviously satisfy the simplicial con­
ditions. If f! = 1(0), A roc] is called the simplicial 
set of generalized Clifford (Grassman) algebras 
Aodp](Aoo[pD and, when n = 2, the ordinary 
simplicial set of Clifford (Grassman) algebras are 
recovered. Note that, for p > 2, these algebras are 

order dependent on the generating elements. From the 
generating relations it can be verified directly that 

I [OCi(1']Pl[OCi(2']P2 . .. [(l.i(m,]pm = 0 (4.11) 
{ii 

if at least two Pi :;i: 0, where [Pt, P2' ... ,Pm] is a 
composition of p and {j} . ==' Sm the set of all permu­
tations of [1,2,"', m]. Hence, from (4.11), we 
obtain 

ll' == (X lOCI + X2OC2 + ... + xmocmy 

= a(xf + x: + ... + x::'). (4.12) 

Since the roots of the Eq. (4.12) in L are distinct, it 
is the minimal equation of L(x) ELm. Hence the 
A [oc] define polynomial algebras since the degree of the 
minimal equation of A [ocl, ... ,ocm

] is independent 
of m. In fact, the algebras A[oc] are the basic poly­
nomial algebras associated with C = xf + x~ + .... 

Given two simplicial sets of generalized Clifford 
algebras Aoclp] and Aoclq], where p and q are 
relatively prime, then AocIp] ® AocIq] = Aoclpq]. 
Hence, if p = p";:lp';2 ... pr;' is a prime power decom­
position of p, then 

r 

Aodp] = II Aodpy"]· 
® 

(4.13) 

Generalized Spin and Parafield Algebras: Given the 
simplicial (polynomial) algebras A [oc], let us consider 
the algebras ISG;) A roc] == A [IX] EB ... EB A roc], s-times 
introduced by the usual inductive process. These 
are also simplicial (polynomial) algebras. The roots 
of the minimal pOlynomial equations of Is A roc] are 
sums of the roots of the minimal polynomial equa­
tions ofIH A [IX] and A [IX]. Now, to obtain the com­
mutation relations of Is A that are independent of 
s, we consider Iii = a,ia.' - a,fa,i, where 

a,i = lXi ® I ® ... 181 I + I ® lXi 181 ••• 181 I 

+ ... + I ® I 181 ••• 181 (1.i 

are the sth-order helicity operators associated with 
lXi, and find the commutation relations [a,k, Iii]. 

These commutation relations are easily seen to be 
independent of s. Hence, to obtain their explicit form, 
we have to only consider the case when s = 1 and 
evaluate [ock , Iii] from the defining relations of A [oc]. 

When we take for A[(1.] the Clifford algebras Ac 
(annihilation and creation operator algebras Aac), 
we obtain the spin (parafield) algebras. The com­
mutation relations of spin algebras are easily obtained 
from Eqs. (4.3): 

[a,k, Iii] = bika,i _ rjika,i. 

Since the index set for Aac is I @ I, we have to con­
sider Mii = aiai - alai and Nii = a it a i - aiait and 



                                                                                                                                    

POLYNOMIAL ALGEBRAS 3059 

their complex conjugates. The following commuta- cients of xrxr2x~ and X~-2XkXj' j '# k '# I, we have 
tion relations are easily obtained from (4.6): 

[ak, Nii] = bkiai and [ak , Mil] = O. 

The minimal polynomial equations satisfied by 
spin ~. Ac and parafield ~. Aac algebras are easily 
obtained as 

(£2 - is21:)(£2 - !(s - 1)21:) ... (V - il:) = 0, 

if s is half-integral, 

(£2 - s21:)(£2 - (s - 1)21:) ... (£2 - I:)L = 0, 

if s is integral, (4.14) 

where Land C. are given by Eqs. (4.1), (4.4) and (4.8), 
(4.9) for spin and parafield algebras, respectively. It 
is interesting to note that, by considering the coeffi­
cient of z;v from (4.14), we obtain the Ryan-Sudarshan 
relation7 (a,)2vH = 0, (a')p '# 0 for p ~ 2v. 

Note that the ~. AGdp] are a generalization of 
spin algebras which reduce to ordinary spin algebras 
when n = 2. These generalized spin algebras and their 
parafield algebras will be considered elsewhere.8 

~. AUTOMORPHISMS OF A[Ot] 

Let A[oc] be a set of simplicial algebras satisfying 
the polynomial condition. In this section, we shall 
consider the groups Gl[A]:{Gl[ocl,"', ocm]; mEl} 
of all nonsingular transformations 

(5.1) 

when A [' oc] give rise to the same type of generating 
relations as that of A roc] and the groups 

G2[A]:{G2[Xl"", Xm]; mEl}, 

of all nonsingular transformations 

t :'xi = ~ t:x j , (5.2) 

leaving invariant the coefficients Pi [Xl' ... , xm] of the 
minimal polynomial expression P[x; L]. Because 
every transformation of G~JA]:= Gl[ocl, ..• , ocm ] 

defines a transformation of G;'[A] := G2[xu ... , xm] 
in an obvious way, we have 

G!,.[A] c G~[A] c aut {Lm}, (5.3) 

where aut {Lm} is the set of all automorphisms of the 
vector space Lm' 

It is instructive to find9 G:',[AGclp n, i = 1, 2, for 
the simplicial set of generalized Clifford algebras 
AGdp]. Obviously G~.[p] = TI0CP' where Cp is the 
cyclic group of order p. To find G;' [p], the trans­
formation t should leave invariant ~ xf, i.e., 

~' xf = ~xf. (5.4) 

Substituting (5.2) in (5.4) and comparing the coeffi-

~ (t~)p = 1, (5.5) 
i 

~ (tDP-2( ~2 = 0, (5.6) 
i 

and 

~ (t{)p-2t~t: = a (say), (5.7) 

respectively. If we write (5.5) and (5.6) together, we 
have 

~ (tDp-2(t~)2 = bik. (5.8) 
i 

Hence, it follows that 

det ([tW- 2
) '# o. (5.9) 

The algebras turn out to be quite distinct depending 
upon whether a = 0 or a '# O. From (5.7) it follows 
that 

(5.10) 

t~t!n 
If a = 0, it follows from (5.9) that there exists no 

index i such that t1 = 0 for j = 1, ... , m and from 
(5.10) that there exists only one j(i) for each i such 
that 

(5.11) 

From (5.9), it is obvious that j(i), i = 1, ... , m, 
is a permutation of (1,2, ... ,m). From (5.5) and 
(5.11) we have 

(tfW)p = 1. 

Hence t:w = wI'; where w is a primitive pth root of 
unity in F. Now, it is easily seen that pmm! linear 
transformations exist leaving ~ xr invariant when 
p >2. 

Theorem: The groups G:"[p] := Gi [A Gdp]] , i = 1,2, 
of the simplicial set of generalized Clifford algebras 
AGdp] are given by 

G!,.[2]:= G~[2] ':=' Om, 

the mth-order orthogonal group over F, 

G;' [p '# 2] ':=' IT C p is given by '(Xi = wP'(Xi, 
IS! 

where Pi is any integer mod p, and 
m 

G~[p '# 2] ':=' TI Cp 0 Sm 
IS! 

is given by 'Xi = wp'xi(i), (5.12) 
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where j(i), i = 1, 2, ... ,m, is any permutation of 
(I,2,···,m). 

Let us now consider general polynomial algebras 
(PA's) A [IXJ and introduce the groups Hi[AJ c Gi[A], 
i = 1, 2, defined by the transformations f lXi = '!..lXi and 
x· = tx·, where T, tEe, the field of complex numbers. 1. _ t __ 

Obviously, Hi[AJ are cyclic groups and are of the 
form II® Cr and IT® C. for suitable integers rand s 
where r I s. This means that the minimal equations 
satisfied by an L are of the form 

P[x; LJ := I!(£ir + Q1LU-1)r + ... + Qt) = 0 

and the degree of each variable Xi in the SHP 
Q.[x1 , ••• , xmJ is divisible by r. For example, if q is 
divisible by rand r;;:= 3, then the terms (Xi)H(Xi)2 
and (Xi)Q-2xixk will not occur in the coefficients 
Xl' •.• ,xm of the polynomial expression P[x; LJ. 
Hence, for the PA with polynomial equations in which 
0[8] -=F 0 in (2.5), 

m 

G![PAJ ':=' IT Cs ® Sm 
® 

and is given by 
'Xi = (JJ8

iX ;Ci), 

where j(i) is any permutation of (1, 2, ... , m) and (JJ 

is a primitive sth root of unity. 
Now since G~[AJ c G~.[A], for simplicial algebras 

A there are two exclusive possibilities. The generating 
relations of A are either order dependent or order 
independent. In the first case, the symmetry groops 
are G~[A] ':=' II® Cr and in the second 

m 

G1 [AJ ':=' IT Cr ® Sm· 
m ® 

If q = 2, there are once again two extreme possi­
bilities: either G:',[AJ ':=' Om' the mth-order orthog­
onal group over F, or 

m 

Gi [AJ ':=' II C2 ® Sm· 
m ® 

In the first case A[IXJ is necessarily a set of poly­
nomial algebras associated with th~ symmetric 
function C = x~ + x~ + . . . . In the second case the 
function C of even degree 2s (say) is such that 

C ~ a(x~ + ... + x!y. 

We summarize the above discussion in the following: 

Theorem: Let A [IX] be simplicial algebras satisfying 
the polynomial condition. If the group H2[A] ':=' 
II® C., then all the coefficients Pr of P[x; L] vanish 
unless sir and the terms that are present in Pr are 
symmetric polynomials wherein each term contains 
Xi with a degree divisible by s. Further, if one 0[8] ~ 0 
in (2.5) for sir, r S m, and s > 2, then the group 
G![A] ':=' II® C2 ® Sm with the transformations 
(5.12). In the case when s = 2 and r = 2j, if, for one 
r P ~ a {x2 + ... + X2}i then , rT"" rIm' 

and, if every Pr = ar{x~ + ... + x!,}, then 

G!,[A] ':=' Om' 

the group of all orthogonal transformations over F, 
and A[IXJ belongs to C where C = (x~ + x~ + ... ). 
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Symmetries of the Racah Coefficients 
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A new symmetry of the Racah coefficients is derived using a property of a generalized hypergeometric 
function of unit argument. The symmetry is similar in appearance, though not derivation, to that given 
by Regge. 

One representation of Racah's coefficient W(abed; ef) is given by the series! 

W(abcd; ef) = /l(abe)/l(cde)/l(acj)/l(bdf) 

XL{(-I)pr[ a+b+c+d+2-p J 
p a + b + 1 - e - p, c + d + 1 - e - p, a + c + 1 - f - p, b + d + 1 - f - p 

X r[e + f + 1 - a - d + p, e ~ f + 1 - b - c + p, 1 + pJ}, (1) 

where 

/l(x z) = {r[X + y + 1 - z, x + z + 1 - y, Y + z + 1 - XJ}! 
Y x+y+z+2 

(2) 

and where we have used the notation 

r(a)r(b)·· . = r[a, b, .. 'J. 
r(p)r(q) . . . p, q, ... 

The coefficient is defined with the restriction that the triads (abe), (cde), (acf), and (bdf) have integer sum and 
a, b, e, d, e, andfare integral or half-integral. The series in Eg. (1) terminates when one of the r functions in 
the denominator has a pole, i.e., after a + b - e, c + d - e, a + e - f, or b + d - fterms, whichever is the 
smaller. We shall subsequently assume, for convenience, that the series terminates after either a + e - for 
b + d - fterms. 

We may rewrite Eq. (1) in terms of the 4F3 generalized hypergeometric function of unit argument. Then 

W(abcd; ef) = /l(abe)/l(cde)/l(aef)/l(bdf) 

r[ a+b+c+d+2 J 
x a + b + 1 - e, c + d + 1 - e, a + c + 1 - f, b + d + 1 - f, e + f + 1 - a - d, e + f + 1 - b - c 

X 4FS[W; 1], (3a) 

with 

4F3[W; 1] == 4F3[e - a - b, e - e - d,f - c - a,f - b - d; 

-a - b - c - d - 1, e + f + 1 - a - d, e + f + 1 - b - c; I]. (3b) 

The 4F3 function is defined in the usual manner2 and terminates after the same number of terms as the series 
of Eq. (1). 

It is well known that W(abcd; ef) is unchanged by certain permutations of its parameters. For example, 

W(abcd; ef) = W(bade; ef). (4) 

In addition, using a different series representation, Regge3 has given further symmetries of the form 

W(abed; ef) = W(a, t[b + e + e - f], t[b + e + f - e], d; t[b + e + f - e], He + e + f - b)). (5) 

Equations (4) and (5) may be verified by direct substitution into Eq. (1) or Eq. (3) since they leave either the 
series or hypergeometric function unchanged. 

3061 
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We shall give a further set of symmetries for W(abcd; el) which are similar in form to those of Eq. (5). 
They differ, however, in that the definitions of W(abcd; ef) afforded by Eq. (1) or Eq. (3) are not obviously 
invariant under these new symmetries, and we shall need to use a transformation property of the hypergeometric 
function in order to verify them. 

We note first that the hypergeometric function 4Fa[W; I] is of the terminating Saalschutzian variety, i.e., 
the sum of the lower parameters exceeds the sum of the upper parameters by one. For this type of function, 
we know that4 

F [A BCD' E F G' 1] = r[E + F - A - B - D, E + F - A - B - C, F - C - D, FJ 
4 a , , , , , " E + F - A - B, E + F - A - B - C - D, F - C, F - D 

X 4Fa[E - A, E - B, C, D; E, E + F - A - B, E + G - A - B; 1], (6) 

where A + B + C + D + 1 = E + F + G and either C or D is a negative integer, so that both functions 
terminate. We see then that, from Eqs. (3b) and (6), we may write 

[ . ] _ r[b + I + d + 2, a + c + 1+ 2, a + d + e - I + 1, e + I - b - c + IJ 
4Fa W,1 -

21 + 2, a + b + c + d + 2, a + e - b + 1, e + d - c + 1 

X 4Fa[b + I - d + 1, c + I - a + l,f - a - c,f - b - d; e + I - a - d + 1,21 + 2,f - e - a - d; 1]. 

(7) 

We have assumed that the series in Eqs. (1) or (3) terminates after a + c - lor b + d - Iterms in making this 
transformation. We may clearly write a similar transformation if there are a + b - e or c + d - e terms. 

We may now return to Eq. (3). We then have, for example, that 

W(Ha + c + d - b], He - I-a + d - 1], He - I + a - d - 1], 1[a + b + d - c]; 

He + I + b + c + 1], He + I - b - c - 1]) 

= {r[d - 1- b, a + c + I + 2, b + e - a + 1, a - c - 1,1 + c + e - d, b + d + I + 2J 
c + d + e + 2, a + b + e + 2 

X r[1 + a + c - 1,1 + d + I -- b, e - c - d, b + d - 1+ 1, e - a - b, a + 1- c + 1J}! 
a + e - b + 1, e + d - c + 1 

[ 
a+d+e-I+l J 

X r d _ I _ b, a - c - I, a + c - I + 1, b + d + 1 - I, e + I - a - d + 1, 21 + 2 

X 4Fa[b + I - d + 1, c + I - a + 1,f - a - c,f - b - d;1 - a - d - e, 1 + e + I-a - d, 
21 + 2; 1] (8) 

! [ a + b + c + d + 2, e + d - c + 1, e + a - b + 1 J 
= { } r d _ I - b, a - c - f, 1 + a + c - I, 1 + b + d - I, 1 + e + I - a - d, b + d + I + 2 

X r[ 1 J4Fa[W; 1], (9) 
a + c + I + 2, e + I - b - c + 1 

where { }! represents the similarly bracketed term in Eq. (8) and we have substituted from Eq. (7) into Eq. (8) 
to get Eq. (9). After some simplification, we finally obtain, using Eq. (3), that 

W(Ha + c + d - b], He - f - a + d - 1], He - I + a - d - 1], Ha + b + d - c]; 

He + 1+ b + c + 1], i[e + 1- b - c - 1]) = W(abcd; el). (10) 

This symmetry is similar in appearance to the Regge symmetry [Eq. (5)] apart from the ± 1 terms, although 
it is essentiaJly different in origin. Other symmetries may be obtained by combining Eq. (10) with Eqs. (4) and (5). 

1 See, for example, L. C. Biedenharn, J. Mati). & Phys. 31, 287 (1953). 
• L. J. Slater, Generalized Hypergeometric Functions (Cambridge V.P., Cambridge, 1966), Chap. 2. 
• T. Regge, Nuovo Cimento 11, 116 (1959). 
'Reference 2, p. 64, Eq. (2.4.1.7). 
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!he steady-state kinematic dynamo problem in a homogeneous 3-dimensional core is studied. The 
~xlstence of ~ class of sm?oth solenoidal dynamos. satisfying a no-slip condition on the core boundary. 
IS p~oved us~ng.perturbat\O~ theory. The dynamos are of the form q = q(l) + q(2) + q(8), where q(l) is 
sP3at~ally perI~dlc on a s~fficlent1y small s~le of length. q(2) is zero except near the core boundary. and 
q( ) IS a~ arbitrary suffi~lent1~ small motton. The term q(l) is also a spatially periodic dynamo in an 
approprIate sense for an mfimte core. The last property allows a simple characterization of the bounded 
dynamos in terms of the admissible qU). 

1. INTRODUCTION 

In this paper, we study the steady-state induction 
of an electromagnetic field by a motion within a 
spherical fluid conductor of unit radius. The principal 
result of the investigation is an explicit construction 
of a class of bounded kinematic dynamos, i,e., 
suitably regular motions of the fluid capable of 
maintaining indefinitely a magnetic field of bounded 
nonzero energy.l These solutions of the kinematic 
dynamo problem have a number of features which are 
consistent with the physical aspects of the theory of 
the earth's magnetic field; they are related, in partic­
ular, to a certain class of laminar and turbulent 
motions of a perfect fluid which might be expected to 
appear in a rotating mass of fluid. 

These dynamos have the structure 

q(r; ~) = -eV X [w(r; e)v(r/e)] + ell+1w(r), 

o ~ r ~ 1, (1.1) 

where q = velocity, r = (x,y, z) = (Xl> X2' xa), r = 
Irl, and f3 is any positive number. The function w 
may be any continuously differentiable solenoidal 
field satisfying the no-slip condition w = 0 on the core 
boundary r = 1. The function vCr) is of the form 

Fin~lly, e is an arbitrary positive parameter. We 
prove that, with suitable additional conditions on v, 
motions of the form (1.1)-(1.3) are steady-state 
kinematic dynamos in the unit sphere provided that e 
is sufficiently small. 

The field v is studied in a separate analysis, by 
considering a related kinematic dynamo problem in 
an infinite conductor. This yields, in a natural manner, 
additional necessary conditions on v, which fully 
characterize this class of bounded dynamos. An 
example of an admissible v is, in component form, 

vCr) = (siny + cos z, sin Z + cos x, sin x + cosy), 

(1.4) 
as is shown in Sec. 4. 

The dynamo theory required to study (Ll) is not, 
however, easily related to that of (1.4), since thete is 
no natural algebra comparable to that of the periodic 
functions upon which to base the analysis. Instead, we 
use perturbation theory in an operator formalism, the 
unperturbed operator corresponding to a certain 
comparison dynamo problem which, for the case of the 
spherical conductor, is easily solved. In either case, 
the operator equation has the well-known eigenvalue 
character.l The spectrum of the (self-adjoint) com-

vCr) = .l J.L(k) exp (ik. r). (1.2) parison operator'is discrete, real, and symmetric 
K 

In (1.2), K is the set of vectors k = m1k1 + m2k2 + 
maka, where (kl' k2 , ka) is an orthogonal basis in 
3-space and m1, m2, m3 are nonzero integers. Further 
conditions to be imposed on v are described in Sec. 4. 
The scalar function win (1.1) is an infinitely differen­
tiable "cutoff" which vanishes on r = I and is unity 
for 0 =:;; r =:;; 1 - e. A suitable choice is 

about the origin. In the examples to be treated, the 
exact eigenvalues are obtained by perturbing a positive 
comparison eigenvalue. A second family of dynamos 
and electromagnetic eigensolutions, associated with 
the negative comparison eigenvalues, may be obtained 
by reflection since, if q(r; e) is a steady dynamo in a 
sphere, then the same is true of -q( -r; e) [cf. 
(2.1O)-{2.4) below]. For simplicity and without loss of 
generality, we may, therefore, restrict attention to 

(1.3a) dynamos oflike parity, as determined by the positivity 
of the unperturbed eigenvalue. As in other formula­
tions of the kinematic dynamo problem, the primary 

per) = (1 - te - r)/{r - 1 + e)(1 - r). (1.3b) goal is the existence of a real perturbed eigenvalue. 

where 

lf1J
(r) 2 

wCr; e) = TT- -00 e-S ds, 
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The method we use may be described schematically 
in the following way: The effect of a motion q(r; E) 
on a magnetic field h defined in the core is to induce a 
second field Lh defined in all space (see Sec. 5). This 
definition determines the operator L in the form 

L = HQ, Qh == q x h, (1.5) 

where H is the integral operator whose kernel is the 
Green's tensor for Maxwell's equations without 
displacement current. The exact problem is therefore 
obtained on a suitable Banach space of functions h 
defined in the core, and the form is 

Lh = Ah. (1.6) 

For the dynamos studied here, the comparison 
problem has the elementary form 

Hh = ,uh, ,u > O. (1.7) 

The connection between (1.6) and (1.7) can be clarified 
by exhibiting the eigenvalue problem 

Hh = 'Vh - Vh, V = L2 - H, (1.8) 

in which V occurs as the perturbing operator and 
L2 ,..." H and 'V ,..." ,u in the proposed scheme. 

Thus, the method may be characterized by the fact 
that it is the second iterate of L, rather than L itself, 
which is compared with a self-adjoint operator. 
Smallness of V is achieved by an appropriate choice of 
linear space. The perturbation is ultimately carried 
out in Banach space, using a maximum norm con­
taining a fractional power of E as a factor of the 
estimate on first derivatives of h (see Sec. 5). We 
emphasize this point, not only because the choice of 
appropriate space proved to be a central issue in the 
analysis, but also because some of the original pro­
posals dealing with the kinematic dynamo theory, in 
effect, utilized almost exclusively the Hilbert-space 
norm associated with magnetic fields of finite total 
energy.2.3 For motions of the form (Ll) (and these are 
believed to be among the simplest fluid motions for 
which an analytic dynamo theory can be developed) 
such spaces appear to be "wide." A magnetic field 
which is bounded· in the inner-product norm, uni­
formly as E -4- 0, may interact with a motion of this 
type to induce a field which becomes unbounded with 
respect to the same norm as E -4- O. This leads to very 
essential difficulties in formulating a rational theory 
of the perturbed spectrum. However, on Banach 
spaces of the kind mentioned above, it becomes 
possible to render L uniformly bounded as E -4- O. 
Thus, in this respect, boundedness of the exact 
operator is here regarded as determining on the class 
of norms that are useful. 

The above reasoning and, indeed, all essential parts 
of the subsequent analysis can be illustrated quite 
simply with the aid of a complex-valued I-dimensional 
analog of Maxwell's equations for a moving medium. 
Therefore, we present this parallel analysis in one 
space dimension in Sec. 3, even though the fields are 
there complex and cannot be related, by Cowling's 
theorem,! to a real version of the dynamo prob­
lem. 

The physical basis for the regenerative cycle which 
emerges from the dynamos studied in this paper is 
very similar to that underlying the model proposed by 
Parker.4 Although Parker considers a time-dependent 
dynamo cycle, the idea of using a (time) rapid small­
scale motion capable of inducing a predominantly large­
scale current in the conductor is clearly contained in 
his model. As is clear from (1.1), the present examples 
are predominantly small scale with respect to spatial 
variation in the velocity, and, since H is independent 
of E in (1.8), the induced magnetic field is predomi­
nantly large scale (i.e., on the scale of the core). The 
parameter E may therefore be regarded as a ratio of 
length scales determined from the dominant com­
ponents of the fields- The notion of a "scale separa­
tion" of this kind is, in fact, rather common in 
dynamo theory. In the model of Backus, it occurs as a 
separation of the cycle into well-defined periods of 
motion and (sufficiently long) periods of free decay.3 
In Herzenberg's 2-sphere model, the small parameter 
is the ratio of sphere radius to conductor radius.5 •6 

Compared with these examples, our results may be 
viewed as extensions of known existence theory to a 
class of essentially fluid motions which cannot be built 
up from a finite collection of rigid rotators or which 
do not require an implausible distribution of body 
forces for their operation. 

The results given in the present paper were originally 
announced in April, 1967.7•8 In the intervening time, 
the analysis has been further clarified with the aid of 
I-dimensional analogs, and a few errors have been 
corrected, although the proof given here remains 
essentially unchanged. Our original discussion of the 
self-adjointness of H contained an error in the 
treatment of boundary terms. Examination of this 
point led to a simplification in geometry and a new 
definition of the Hilbert space appropriate to H. 
The convexity condition on periodic dynamos and 
the argument employing modified operators in the 
existence proof for the bounded conductor (see 
Sec. 7) also required revision. In order to make the 
present paper self-contained, portions of the con­
struction of spatially periodic dynamos, described 
elsewhere, are repeated in Sec. 4.8 
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2. FORMULATION 

Let D denote the interior ofthe unit sphere cent~red 
at the origin, S the boundary r = 1, and V the 
exterior region r > 1. We also set D = D + Sand 
t; = D + V. We refer to D as the conductor, or core, 
and endow it with a constant scalar electrical con­
ductivity (J and magnetic permeability f-l. The magnetic 
field h and the electric field e generated by the motion 
q of D are assumed to satisfy Maxwell's equations for 
a moving medium in the magnetohydromagnetic 
limit. In dimensionless notation, these are 

J == V x h = e + Rq x h, 

V· b = 0, 

ah 
V x e = -R­at ' 

(2.1a) 

(2.1b) 

(2.1c) 

when rED; since V is regarded as empty space, 

V x h = V . h = V . e = 0, 

V x e = -R ah 
at ' 

(2.2a) 

(2.2b) 

when rEV. Here R is a real dimensionless parameter 
usually called the magnetic Reynolds number. 9 In the 
kinematic dynamo theory, q is a prescribed function 
ofr and t. Given q, we then seek solutions of (2.1) and 
(2.2) which satisfy , 

r x e, h continuous on S, (2.3) 

r 3h, r 2e bounded in V. (2.4) 

A subsidiary condition, 

J . r -4- ° as r -4- 1 in D, (2.5) 

which follows from (2.2) and (2.3), is also used. If 
q, h, and e are independent of time, we refer to the 
problem and its solutions as steady. The steady 
kinematic dynamo problem,. which is the principal 
problem studied in this paper, can then be defined as 
follows: To determine a class Q of reasonable motions 
q(r) such that q E Q implies the existence of a real 
value of R for which (2.1)-(2.4) has a nontrivial 
steady solution. Here, "reasonable" is understood to 
imply that q is solenoidal in D and zero on S, and it is 
at least continuously differentiable in D. These 
conditions imply that such q represents a possible 
smooth source-free flow of an incompressible fluid 
which adheres to the boundary. 

It is readily observed from (2.1) that the mathe­
matical problem posed here reduces to an eigenvalue 

problem for the linear elliptic system 

V'2h + RV x (q x h) = 0, V· h = 0, (2.6) 

with variable coefficients determined by q and the 
eigenparameter R. Stated in another way, the dimen­
sional speed of the dynamo is the eigenvalue. The basic 
linearity of the problem as indicated by (2.6) is, 
however, misleading since, as formulated above, the 
kinematic problem requires an analysis of the (non­
linear) functional connection between the real point 
spectrum of the differential operator in (2.6) and the 
motion (coefficient) q by which this operator is 
determined. The class Q studied here is of the form 
(Ll). 

Our analysis of the steady problem is based on a 
reformulation of (2.1)-(2.4) as an integral equation. 
Let K(r, r') and E(r, r') be the magnetic and electric 
fields obtained by solving (2.1)-(2.4) when the term 
R(q x h) in (2.1a) is replaced by M(r - r'), where 
I = idemfactor and rEt;, r' E D. Applying the super­
position principle, we obtain the integral eigenvalue 
problem for h in the form (1.6): 

Lh == E-i In K(r, r') . [q(r') x her')] dr' = Ab(r), 

rED, A = Ro!' (2.7) 

where we have set R(E) = RO(E)E-i in (2.1a). With 
E = Veil, the corresponding electric potential is given 
by 

c!>(r) = A-I
E-

i ID eIl(r, r') • [q(r') x her')] dr' == A-IMh. 

(2.8) 

For the spherical core, an explicit construction of K 
and E can be given (see the Appendix). 

3. AN ANALOGOUS PROBLEM IN ONE 
DIMENSION 

A. Equations 

In this section, the steady eigenvalue problem (2.7), 
with q given by (Ll), is studied in a complex-valued 
I-dimensional analog defined on one space dimension. 
Here extension to the complex plane is necessary in 
order to avoid the implications of Cowling's theorem. l 

Notation, terminology, and the steps in the derivation 
of the existence theorem (Theorem 2 below) parallel 
the study of (2.7) in Secs. 5-7. 

In this analog, hex, t) (magnetic field), e(x, t) 
(electric field), and q(x, t) (velocity field) are complex 
functions of the real variables x and t. The infinite 
conductor becomes the real x line, while the analogous 
core is taken to be the segment Ixl < l. The analog of 
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the Maxwell equations is taken to be 

i ah = e + Rq*h* 
ax 

and 

(3.1a) 

(3.1b) 

in the conductor. In (3.Ia), the star denotes complex 
conjugate. 

If all variables are independent of time and q = 
exp (iX/E) in (3.1), then there exists a family of x­
periodic solutions defined when IERI < t. These are 
found by noting that, in this case, e = constant and 
that, from (3.1), 

d dh 
- q - = R2qh + Rq*e - E-1e. (3.2) 
dx dx 

The solution of (3.2) is straightforward, and we 
obtain 

h = C[exp (iA2X) - RAIl exp (iA1X)] 
_ R-1q*e* + E-1R-2e, 

A1,2 = -(2E)-1[1 ± (1 - 4E2R2)!], (3.3) 

where C is an arbitrary real constant. For the same q, 
(3.2) becomes an eigenvalue problem for R( E) provided 
that we add a periodicity condition. We treat only the 
case e = 0 and require that 

h(-l) = h(+l). (3.4) 

With (3.4), the equation for R is 

R = A1(sin A2/sin AI), (3.5) 

which, for sufficiently small E, has solutions R = 
R~n)(E)C!, where 

[R~n)]2 = W7T - E! sin l/E cos n7TR~n) + O( E) (3.6) 

as E ---+ 0 with n = 0, 1,2, .... If q* replaces q in the 
above, similar equations are obtained with -R 
replacing + R in (3.5). This property of the model 
problem is analogous to the invariance of the steady 
dynamo effect under reflection, as noted in Sec. 1. 

B. Integral Formulation 

The model dynamo problem for a I-dimensional 
core may now be defined as before, for q in the form 

q = -iE.!£ [w(lxl; E)V(X; E)] + E/I+!W(X), (3.7) 
dx 

where w is given by (1.3) and w is continuously 
differentiable for Ixl :::;; 1. We add to (3.la) and (3.lb) 
the boundary condition 

h(-I) = h(+I) = 0 (3.lc) 

and introduce the model version of (2.7): 

Lh == E-! L~l K(x, x')q*(x')h*(x') dx' = Ah(x), 

Ixl < 1, A = Rot. (3.7') 

K(x, x') = -ti sgn (x - x') + tix. (3.7/1) 

Now, adopting the choice vex, E) = exp (iX/E) in 
(3.7), we define the comparison eigenvalue problem 

Hh == L~lK(X, x')h(x') dx' = ph(x) 

and the quantities V and 'II as in (1.8). 

C. Estimates 

(3.8) 

The operators H, L, and V are characterized by 
their action on two principal linear spaces. Let C1 
denote the complex space of functions hex) which are 
continuously differentiable on Ixl:::;; I and satisfy 
(3.1c). A Hilbert space Je is then obtained by complet­
ing C1 in the norm 

Ilhll = (h, h)!, (f, g) =J+1(df d
g
*) dx. (3.9) 

-1 dx dx 

In addition, admitting now a parametric dependence 
on E, we introduce the 2-parameter family of Banach 
spaces q(E), defined for each positive E and y by 
adding to C1 the norm 

Ilhll~ = Ilhll", + E1 Ilh'II"" Ilhll", = sup Ihl, h' = dh. 
1"'1:0;1 dx 

(3.10) 

If, for fixed y, Ilhll~ = 0(1) or 0(1) as E ---+ 0, we say 
that hex; E) is uniformly bounded or uniformly small, 
respectively, in q(E). Similar definitions will be 
implicit in our discussion of other properties of 
functions or operators when uniformity with respect 
to E is required. In particular, an operator will be 
uniformly compact on q if it maps a uniformly 
bounded sequence in q into a uniformly equi­
continuous sequence in Cr. 

The following lemmas are then elementary: 

Lemma 1: H is a self-adjoint on Je and is uniformly 
compact on q(E); 

Lemma 2: L is uniformly bounded on q( £) if y = t. 

Lemma 3: 

IWhlle" = o(lIhll~) as E ---+ 0 

if Y < min [l, t + In 
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Proof of Lemma 1: This is straightforward; we 
note that the uniform compactness follows from the 
inequality 

IHh(x2) - Hh(xl)1 + lOy I [Hh(X2) - Hh(Xl)],1 

~ IX2 - xllllhll~ 

for lXII, IX21 ~ 1, which is easily proved using the mean 
value theorem. The eigenvalues of H acting on Je are 
simpl~.with fl = fln = I/mr, n = ±1, ±2,"', and 
the associated eigenfunctions are complete in Je. 

Proof of Lemma 2: We use (3.7), (3.9), and an 
integration by parts to obtain 

IILh II 00 ~ (f! + lOP II wll 00)11 h 1100 + f! II h' II 00' (3.10' a) 

II(Lh)'lloo ~ 2f-! Ilqlloo Ilhll oo · (3.1O'b) 

By our construction, Ilqlloo = 0(1) as 10 ~ 0, so that 
the result follows if {3 ~ 0. 

Proof of Lemma 3: We can derive the similar 
estimates 

IlVhll oo ~ (610 + 3f!+P Ilwll oo ) Ilhll oo + 10 Ilh'lloo 

+ (f! + lOP Ilwll oo ) IILhll oo , (3.lla) 

II(Vh),lloo ~ 2(1 + IlfW'lloo + fP+! Ilwll oo ) 

x (1lhll oo + f-! IILhll oo) + f! II(Lh), II 00 . (3.11b) 

Combining (3.1 0) and (3.11) and using the fact that 
IlfW'lloo is 0(1) as 10 ~ 0, we then obtain 

II Vhll 00 = 0(10 Ilhll (0) + O(f!+P Ilhll oo ) + 0(f2p Ilhll (0) 

+ 0(10 IIh'ID + O(fP+! Ilh'II), (3.l2a) 

II(Vh),lloo = O(llhll oo ) + O(fP-! Ilhll oo) + O.<llh'lloo)· 

(3.l2b) 

Now (3.12a) implies Lemma 3, while (3.12b) proves, 
in addition, that V is uniformly bounded on q(f) if 
max [0, t - (3] ~ y ~ min [1, t + (3). However, V 
is not uniformly small for any y > 0, since (3.12b) 
contains an estimate of order Ilh' II 00' A device which 
enables us to overcome this difficulty is described in 
the next section. 

D. The Modified Operators 

The family ofmodifted operators Vee) is now defined 
by 

Vh = J~l K(x, x')(wv*q - l)h dx' 

- (L~l K(x, x')v*wh dx') (L~l qh dx') 

+ f!v*we-l(L3h)*, (3.13) 

where e is a new real nonzero parameter. Inspection 
of (3.13) shows that h has been replaced by e-l £2h 

in the term of V which contributed the estimate of 
order Ilh'lloo in (3.12b). Thus, if h satisfies L2h = vh 
with 'II = e, then Vh = Vh. Conversely, it is not 
difficult to see from (3.13) that, if 

[H + V(e)]h(e) = v(e)h(e) (3.14) 

for some v(e) and h(e) uniformly on a positive closed 
interval in which v(e) = e has a solution '110 = ).2(10), 
then h().2) and V().2) provide an eigenfunction of L2 
with positive eigenvalue. In this case, at least one of the 
two numbers ±). is a real eigenvalue of L. Therefore, 
it is sufficient, under these conditions, to study the 
modified problem (3.14). 

The importance of the above modification is 
reflected in an improved estimate on q(f). 

Theorem 1: For each fixed positive e, Vee) is 
uniformly small on q(f) provided that 

max [0, t - {3] < y < min [I, t + (3]. 

Proof: This result is an immediate consequence of 
(3.10), (3.11), and (3.13), which together imply 

II VII~ = 0(f21l) + O(fY) + O(fl- y
) 

+ O(fP+Y- i ) + O(fll+i - Y). (3.15) 

E. Perturbation of H 

Let f be any solution of (3.8) with positive eigen­
value flk' We write (3.14) in the form 

h = -(H - v)-lVh == Th = (T - PT)h 

+ PTh == Th + PTh, (3.16) 

where P is the projection in Je onto scalar multiples of 
f If (J - T)-If E Je, then a solution of (3.16) is ob­
tained in the form h = (/ - T)-Y provided that 

f = PT(J - T)-If. (3.17) 

(This argument is given in detail in Sec. 4B.) Now, 
(3.17) is equivalent to 

'II = flk + (j, V(l - T)-Y)(j,f)-l 
== flk + R(v, e, f), (3.18) 

the inner product being that appropriate to Je. From 
the manner in which e and'll occur in V and T, 
respectively [cf. (3.13) and (3.16)], it is seen (by 
partial differential with respect to either parameter) 
that R is continuous in both parameters provided that 
V and (l - '1)-1 exist as operators on q for all 
nonzero e. Now, suppose that this is the case whenever 
'II lies in some closed subset A of the real line and that 
IRI = 0(1) as 10 ~ ° uniformly for'll and e in A. It then 
follows from the implicit function theorem that (3.18) 
has a real solution v(c, f) for 10 sufficiently small. 
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Moreover, by a similar argument, v(e, E) = e has a 
solution e(E) provided that E is sufficiently small. Then 
VeE) = v(e(E), E) is the desired positive eigenvalue of 
L2, and existence is proved. 

Therefore, it follows, from (3.15) and (3.18), that 
it is sufficient to show that A can be chosen so that 
Iltll~ = 0(1) uniformly for nonzero v and e in A. We 
first observe that, if A is chosen to be positive, of 
finite length, and to contain among the eigenvalues 
of H only I'k' then (H - '11)-1(1 - P) is a bounded 
operator on q . (Here P is regarded as an operator on 
q .) Indeed, ifthis were not the case, then, by Lemma 1 , 
H would have an eigenvalue in A with eigenfunction 
of the form (I - P)h, h being some element of q. 
But then the eigenfunction would belong to .le, and 
this is impossible by the above choice of A. Combining 
this result with (3.15), we see that 

Iltll~ = 0(1), 

if {3 > 0 and I < y < t + {3. Therefore, we have 
proved 

Theorem 2: If {3 > 0, the functions q of the form 
(3.7) with v = exp (iX/E) are "dynamos" if E is 
sufficiently small. This is the existence theorem in the 
I-dimensional analog. 

F. Remarks 

The difficulty mentioned in Sec. 1, concerning the 
exclusive use of Hilbert-space norms, can be clarified 
in the present model. The relation between Lemma 2 
and Theorem 1 suggests that boundedness of L 
should be obtainable in a family of norms which 
provide useful estimates on the operator V. The 
obvious family of Hilbert spaces is determined by the 
norms 

IIhll~ = (h, h)t + EY(h', h,)t. (3.19) 

We now show that, withq = exp (iX/E) replacing (3.7), 
IILII~ cannot be 0(1) as E --+ 0 for any choice of y ~ O. 
Consider the function 

g = 0, Ixl > EI1., 

= q*E-t l1., Ixl ~ EI1., 

with at > O. Then IIgll~ = 2t(1 + EY- 1
) and IILgll~ ~ 

EY-t-tl1.. Thus, IILgll~/llgll~ --+ 00 for at > 2y - 1 if 
y ~ 1 and for at > 1 if y < 1, as E --+ O. 

Theorem 2 admits a number of generalizations, the 
simplest and most useful of which allows vex; £) to be 
an arbitrary trigonometric function of x, 

+00 
vex) = ! ak exp (ikx/£), 

k~-oo 

where only a finite number of the complex amplitudes 
ak are nonzero. In this case, the only essential change 
in the previous results is that H must be redefined and 
is given by 

+00 \ \21+1 
Hh ==k~oo aZ -1 K(x, x')h(x') dx'. (3.20) 

It is not difficult to see how (3.21) arises from the 
manner in which Lemma 3 and Theorem 1 were 
obtained. The same conclusions hold for arbitrary 
periodic functions v with period 27TE provided that the 
infinite sum in (3.20) converges and is nonzero. 

4. SPATIALLY PERIODIC DYNAMOS IN 
THREE DIMENSIONS 

A. Admissible v 

We now consider, in detail, the periodic functions 
v [cf. (1.2)] which determine the set Q of 3-dimensional 
dynamos q having the form (Ll). For simplicity, we 
impose the further condition that v be trigonometric, 
i.e., (as in the extension of the analog mentioned in 
Sec. 3E) only a finite number of complex amplitudes 
attached to K will be nonzero. It is also understood 
that v is real, so that necessarily fL( - k) = fL *(k) in 
(1.2). For a given field of this form, we may attempt 
to solve (2.1) with q = v in (2.1a) for the steady-state 
fields in an infinite conductor. The analogous problem 
in Sec. 3 yielded the periodic solutions (3.3). In the 
actual 3-dimensional problem, explicit solutions for 
arbitrary E are not available, and, instead, we seek a 
convergent expansion for small E. 

The expansion is carried in the complex linear space 
Sen) spanned by the basis ,p, = {~}, where ~ = il1. X 

exp [in. r + E-1m· r] == il1.{3(m), at = 1,2,3, mE 40; 
{iI' i2, i3} is orthonormal and Ko is K pius the z~ro 
vector; n is some real nonzero 3-vector. The norm on 
Sen) is defined by 

IIhll. = ! \r(m)\ if h = L r(m){3(m). (4.1) 
Ko Ko 

The dynamo equations (2.1) may be written, in Sen), 
in the form 

h = Tooh == _RV-2V x (v x h), (4.2) 

where V-2{3(m) = -lmE-1 + nl-2{3(m), and the sub­
script 00 refers to the fact that the conductor is now 
infinite. We propose to solve (4.2) with a series in E of 
the form 

00 
h = LE;/Jh;(r; E), 

;~o 

where J is a positive integer, and 

ho = r(n; E) exp (in. r), hE Sen), 

IIh;ll. = 0(1), as E --+ 0, 

(4.3) 

(4.4) 
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forj =,1, 2,···. We also require 

lim lib - bolls = 0, R(E) = ROE1
/
J-\ (4.5) 

<-+0 

for Ro some positive constant, for some } ~ 2. 

B. Analysis 

We first seek to estimate the effect of Too when the 
mean or average effect taken over the small [O(E)] 
length scale is removed. Let the projection P be 
defined for ~ E $ by 

P~ = 0, m:;6 0, 

=~, m = O. 

If Too = Too - PT 00 , then it follows from (4.1), (4.2), 
and (4.5) that 

IITooils ~ Ro IIvllsE1'J(1 - En)-1 (4.6) 

and hence that (/ - T 00)-1 exists on PS if E < EO, 
where 

EO = min {(2n)-t, (2 Ilvll s Ro)-J}. (4.7) 

The proof of (4.6) is straightforward and is omitted. 
Suppose now that E < EO where Eo is defined by 

(4.7). Let f be some element of PS, and set g = 
(/ - T 00)-1f. Then 

g - Toog = f - PToo (/ - Too)-1f, 

so that g will solve (4.2)-(4.5) if and only if f solves 

f = PT 00(/ - T (0)-1f, (4.8) 

in which case f = Pg. In this way, solutions of the 
periodic dynamo problem may be generated (for E 

sufficiently small) by solutions of the compatibility 
Eq. (4.8). A solution of (4.8) corresponding to a given 
o represents, moreover, a Fourier mode having 0 as 
its wavenumber vector. For small E, it follows from 
(4.6) that this wave is the dominant part of g. This 
separation of scales, wherein the dominant small-scale 
velocity field gives rise to a magnetic field with a 
dominant part varying on a scale of order unity, also 
occurred in the analog of Sec. 3, as is clear from (3.3) 
and (3.16). 

To solve the compatibility equation, we write it 
in wavenumber vector form, assuming that f = 
r exp (io • r), 

io x r = io<l> + A·r, io·r = 0, (4.9) 

where <I> = in-2o • A • r and A is the 3 x 3 complex 
matrix defined by 

A. r = !Rg(i)1-1E1IJ-1 I [I-L1 x m1- 1 x ... x rJ 
1=2 (i) m~-l .•• m~ 

00 
;: IE1/J-IR~A~1) • r. 

1=2 
(4.10) 

In (4.10), mj = kl + k2 + ... + k j + EO, where k j is 
an arbitrary vector from the jth copy of K and "j­
summation" is defined to be summation over all 
elements mj satisfying kl + ... + ki, :;6 0, i = 1, 
2, ... ,j - 1, k1 + ... + k j = O. We have also 
written a x b x cfor a x (b x c). Note that in AW(E), 
as defined by (4.10), E and 0 occur only in the combina­
tion EO. Now, if A is to have a bounded nonzero limit 
as E -+ 0, then it is necessary and sufficient that} equal 
the index of the first nonzero matrix in the series 
(A(2) (0), A(S)(O), .. '). At this point, we adopt this 
particular value of} and assume that it is finite. 

Elsewhere, we have shown that AW is Hermitian 
(anti-Hermitian) if j is even (odd) and that AW(O) is 
real. 8 Moreover, the dispersion relation for 0 following 
from (4.9) is given by 

3 

n4 
- I a~pn"np - in 2 I E"pya"pn y, (4.11) 

".P ",P,y=1 

where A = {a"p} and A' = {a~p} is the matrix of 
cofactors of A. The reality of 0 when E is small will 
therefore depend on } and the choice of the I-L(k) in 
(1.2). 

C. Construction of Periodic Dynamos 

Let Ao and A~ denote the values of A and A', 
respectively, when E = O. The field v will be said to be 
a spatially periodic dynamo if A is Hermitian and A' 
positive definite, the former uniformly for E in a~ 
interval of the form 0 ~ E ~ El ~ EO, El > O. Clearly, 
then, v is a spatially periodic dynamo if} is even, ~ 
positive definite, and A (1) = 0 for all odd j ~ 3. 

If v is a dynamo in this sense, it also has properties 
of physical interest. From (4.6) and (4.14) it can be 
shown that there will exist, for E sufficiently small, a 
closed surface B swept out by real wavenumber 
vectors 0 satisfying (4.14). This surface has the 
property that 

B -+ Bo as E -+ 0, (4.12) 

where Bo is defined by nonzero solutions of 

n4 
- 0 • ~ • 0 = O. (4.13) 

Superposition of these plane-wave solutions gives the 
magnetic field 

h = fE(I - T oo)-lr(n; E) exp (in. r) ds, (4.14) 

which solves (2.1) and tends to zero as r -+ 00.10 Such 
fields are. the. nat~lfal eigensolutions for steady 
dynamos In an mfimte conductor, in spite of the fact 
that the total magnetic energy of such a solution will 
not, in general, be finite (see Sec. 8). The above 
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conditions, isolating the spatially periodic dynamos 
from other admissible fields v, have been interpreted 
physically elsewhere. 6,8 

D. The Motions Q 

The class Q of velocity fields covered by the exist­
ence theory of Secs. S-7 can now be characterized by 
the admissible v in the following way: In (1.1), v is to 
be admissible in the sense of Sec. 4a; it is also to be a 
periodic dynamo in the sense of Sec. 4C, with J = 2 
and Ao = I. Finally, v is required to have the Beltrami 
property v x (V x v) = O. Without loss of generality, 
we may impose this last condition in the formll 

V x v = -v. (4. IS) 

This family of v can be studied explicitly by noting 
from (4.10) that, if (4.IS) is satisfied, 

~2) = i ~ k-2[(~* X ~) 0 k1. (4.16) 
K . 

an orthonormal basis in:re is given by the set {b~~, k = 
±I, ±2,'" ;n = 1,2,'" ;m = -n, -n + 1,'" , 
n - 1, n}, where 

T (k) C(k). ( (k) Y 
mn = n In an r mn' 0 ~ r ~ 1, 

= 0, r> 1, 

P~~ = (a~)r\T~~ - 1p~!), 0 ~ r < 1, 

= -C~\n + lrli~(a~)r-(n+l)Ymn' 
111(k) = C(k)(n + 1)-la(k)J"(a(k)rny 
Tmn n n n n mn· 

Also, 

(S.4a) 

(S.4b) 

(SAc) 

r> 1, 

( SAd) 

(C~)rl = [n(n + 1)]ta~)in+l(a~), (S.4e) 

where a~k) is a zero of the Bessel functionjn(r) defined 
by 

(
7T)t (1 d)n sin r inCr) = 2r J n+i-(r) = (_I)nrn ; dr -r-' (SAf) 

However, in view of (4.15), we see that 1~(k)1 #- 0 and Ymn is the surface harmonic 
implies k = I and that 

~(k) = a[ik x c _ c1, (4.17), Ymn = (_1)m(2n + 1»)i-(n - m)!)i-

where a is a complex number and c is a real unit 
vector normal to k. Substituting (4.17) into (4.16), we 
obtain 

~2) = 2 ~ la(k)12 k 0 k. (4.1'8) 
K 

The remaining condition on v is, thus, that the 
mapping onto A~2" as given by (4.1~), yields the 
identity matrix. 

5. PERTURBATION OF H 

47T (n + m)! 

x P':(cos 0) exp (imcf». (SAg) 

We also want to regard H as an operator on the 
Banach spaces q(€), €, Y > 0, obtained by equipping 
C1 with a norm analogous to (3.10): If T = {Tii ... k } is 
any tensor, we define 

I/TI/~ = I/TI/oo + €Y I/VTI/oo, (S.Sa) 

I/TI/oo =i~~~JS~p l7;i'''kl} (S.Sb) 

The comparison eigenvalue problem (1.7) is defined. We now prove the next lemma. 
for (2.1}-(2.4) as in (3.8), by setting 

Hb == tK(r, r') • b(r') dr'. (5.1) 

A suitable linear space :re for the operator H may be 
defined as follows: Let h be irrotational and r 3h 
bounded in V, solenoidal in 8, continuously differen­
tiable in D and V separately, and continuous in E. 
These functions constitute a space C1, on which the 
inner product 

(f, g) = t(V x f) .(V x g*) dr (5.2) 

may be defined. Completion of C1 in the norm 

IIbl/ l = (b, b)i- = /IV x hll (5.3) 

provides the Hilbert space :re.12 It can be shown6 that 

Lemma 1 *: H is bounded and self-adjoint on :re 
and is uniformly compact on q. 

Proof: To prove self-adjointness, we note that,if 
f, g E C1,there will exist scalar functions cf> and 1p so 
that [cf. (5.2)1 

(f, H g) - (Hf, g) 

=t(VX{,Vcf>-Vx g ,V1p+V.fx g)dr. (5.6) 

Since (2.5) is satisfied for all functions in C1, the 
right-hand side of (5.6) reduces to a surface integral of 
the normal component of f x g. But f and g are 
continuous on S and are irrotational in V, so that 

(f, Hg) - (Hf, g) = Lv, (g x f) = O. 
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Boundedness follows from the inequality 

IIHfll~ = t (V4> + f). (V x Hf) dr 

~ IIfll IIHflll 

~ 1/"-1 Ilflll IIHfll l . 

In particular, IIHlll ~ 1/"-1. The uniform compactness 
follows from the representation of the kernel :g: given 
in the Appendix [see (AlO), (A13), and (AI9)]. Thus, 
we have 

K(r, r') = V x A(r, r'), (S.7a) 

where A is a tensor which is regular for r, r' E D except 
at r = r', and 

IAijl ~ aij Ir - rT\ (S.7b) 

I ~~:j I ~ bijk Ir - r'I-
2
, (S.7c) 

for some constants au, bijk. Using (S.7) and Gauss' 
theorem in (S.1), we may represent Hh, bE Cl , as a 
surface integral similar to a single layer potential, the 
distribution being continuously differentiable, to­
gether with a volume integral similar to a continuous 
volume distribution in potential theory. Known 
results in potential theory carryover, and it is found 
that a uniformly bounded sequence in q is mapped 
under H into a sequence which is uniformly equi­
continuous with respect to the same norm. Thus, His 
uniformly compact on q . 

We can also establish the following versions of 
Lemmas 2 and 3 and Theorem 1 of Sec. 3. 

Lemma 2*: The operator L, defined by (2.7), is 
uhiformly bounded on et( EJ. 

Lemma 3*: If b E Cl and if IX is any number 
between ! and 1, then 

IWhll", = O(El- a Ilbll",) + O(E2a
-
l IIVbll",) 

+ O(EP+t Ilwll", IIVhll",), (S.8) 

as E -- 0, where V = £2 - Hand q is of the form (Ll) 
with f3 > O. As in the model problem, V fails to be 
uniformly small on q but, again using modified 
operators, we can obtain: 

Theorem 1*: There is a family of operators Bee) 
on Cl with the following properties: (i) If c #: 0, then 
fl(e) - H(e) is uniformly small on q for some r 
between t and 1; (ii) if B(v)h = vb for some b(r; E) E 

Cl and v( E) ~ const > 0, uniformly for 0 < E ~ El , 
El > 0, then £2h = vh for E sufficiently small. 

We give the proofs of these results in the next two 
sections. 

Using Theorem 1 *, we now solve the eigenvalue 
problem (1.6). Let Vee) = B - H and formally set 

T = (H - V)-l V, (5.9) 

so that the modified eigenvalue problem becomes b = 
Th. Let flk be any positive eigenvalue of H with an 
associated finite set {fi' i = 1, 2, ... , m} of eigen­
functions belonging to Cl and orthonormal in .re. We 
define the projections Pi and P by 

Pib = fit(V x fi )· b dr, (S.10a) 

(S.10b) 

and set f = T - PT. Suppose that f is of the form 

m 

f = L lXiE, e)f;; (S.11) 
i=l 

then geE, e) = (J - f)-If solves the modified problem 
provided that 

lXifi = PiT(J - f)-If, i = 1, 2, ... , m, (S.12) 

is satisfied by f. This system is the compatibility 
equation for the bounded conductor [cf. (4.8)]. We 
rewrite (S.12) in the equivalent form 

m 

(flk - V)lXi = L R;jlXj, i = 1,2, ... ,m, (S.13a) 
;=1 

Rij = tfi' [V(1 - f)-lfj] dr. (S.13b) 

Then we see that (S.12) has a nontrivial solution if 
and only if 

det {(v - flk)tJij + Rij} == (v - flk)m + :R(v, E, e) = O. 

(S.14) 

If :R = 0(1) as E -- 0 and is continuous with respect 
to E and e in some interval of the form 

-tJ<V-flk<+tJ, tJ>O, O<E~El' El~O, 

el < e < e2, el < flk' C2 > flk 

and if m is odd, then (S.14), with :R(v, E, v) replacing 
:R(v, E, c), has at least one solution V(E) for E suffi­
ciently small. 

In order to solve the equation b = Tb for c = v, 
it is therefore sufficient to show that (J - T)-I 
exists and that the required conditions on :R are 
satisfied. We first choose £5, in the above interval, to 
be positive and less than flk' so that, among the 
eigenvalues of H, A = [,uk - £5, ,uk + tJ] contains 
only flk' Thus, if v E A, then (H - V)-I is bounded on 
the subspace (l - P)C1 • Indeed, if this were not the 
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case, then, from Lemma 1 *, this subspace would 
contain an . eigenfunction of H belonging to C1 and 
hence to :re, which is impossible because of the choice 
of tl. and the definition13 of P. Thus, for 'J! oF f-lk' we 
have an estimate of the form 

(5.15) 

where (,is a constant independent of 'J! and f. Letting 
'J! ~ f-lk in (5.15), we obtain a uniform estimate on T 
for all 'J! E tl.. By Theorem 1 *, it then follows that T 
is uniformly small on q. Finally, it is apparent from 
the definition of f that :R is actually a differentiable 
function of 'J! and c on an interval of the above form. 
By Theorem I * again, it then follows that g(f, ).2) 

satisfies Vb = ).2h for 10 sufficiently small, so that one 
of the two functions (L ± ).)g(f, ).2) is an eigenfunc­
tion of L corresponding to the real eigenvalue ±).. 
It remains to be checked that H has an eigenvalue f-lk 

with the requisite properties. However, from (5.4), we 
see that the eigenvalues {( 0'~)-1} have multiplicity 
2n + I, with associated eigenfunctions {h~~, m = 
-n, ... , +n} belonging to C1 • Thus, we have proved 

Theorem 2*,' If fJ > 0 and 10 is sufficiently small, 
then the motions (l.l) with q E Q are steady-state 
kinematic dynamos. This is the desired existence 
theorem and the main result of this paper. 

6. PRELIMINARY ESTIMATES 

In this section, we shall prove Lemmas 2* and 3*. 
The first of these is a consequence of estimates on L 
obtained by dividing the domain of integration into 
two parts, so that global and local estimates (the 
latter associated with the singularity for r = r') may 
be treated separately. Let Da be the intersection of the 
interior of a sphere of radius fa and center at r with D. 
Here r is any point in D, and 0 < (X :::;; 1. Also, let 
D~ = D - Da and aDa = Da - Da. Then we write 

Lb=f-!r Ko(qxh)dr'+f-!r Ko(qxh)dr' 
JDl JD1' 

== II + 12 , (6.1) 

where here and below the Ii are defined, in order, 
by the terms on the right. In treating 11, we use the 
decomposition (AW) derived in the Appendix and 
note from (A13) and (A19) that 

IKijl :::;; (XiiI - rrT2, (6.2a) 

I aa~~ I :::;; fJiik(l - rr,)-3 (6.2b) 

for positive constants (Xii and fJiik' With 

II = f-! r Vir - rr1 x (q x h) dr' 
47T JDl 

+ f-! r K* 0 (q x b) dr' 
JDl 

== In + 112 , 

we then obtain, using (6.2) and (I.l), 

(6.3) 

II/nlloo = O(f! IIhll oo), 11/12 1100 = O(f! lib II 00)' 

IIVI12 1100 = O(f-! IIbll oo), (6.4) 

as 10 ~ 0,14 To obtain an estimate on VIn , we con­
sider the identity 

r Vir - r'1-1 x (q x b) dr' 
JDl 

= r Ir - rr1 V' x (q x b) dr' + r (q x b) X ds'. 
JDl JaDl 

(6.5) 
Using (6.5) in (6.3), we obtain 

IIV/nlloo = O(e! IIhll oo ) = O(f! IIVbll oo)' (6.6) 

To treat 12 in (6.1), we use (I.l) and integrate by 
parts to obtain 

f-!r Ko(qxb)dr' 
JD1' 

= f! r w[b 0 vK - K 0 vb - K 0 bV] 0 ds' JWl 
+ f! r w[(v 0 V'K) 0 b 

JD1' 
+ (b 0 V'K) 0 v - b 0 vV' 0 K] dr' 

- f! r K 0 wv X (V' x h) dr' 
JD1' 

+ f! r K 0 b(v 0 V'w) dr' + loP r K 0 (w x b) dr' 
JDl' JDI' 

If (5.7) is used to estimate K and VK, we have 

11/2l1l00 = O(f! IIbll oo), 

IIV/21 1100 = O(f! log f! lib II 00)' 

II/doo = O(f! log 10 IIbll oo), 

IIVI22 1100 = O(f-! IIhll oo), 

II/doo = O(f! IIVbll oo ), 

IIVI23 1100 = O(f! log 10 IIVbll oo), 

11/24 1100 = O(f! IIbll oo), 

IIV/24 1100 = O(f! log 10 IIhll oo), 

11125 1100 = O(fP IIwlloo IIhll oo), 

IIV125 II 00 = O(fP log 10 IIwll oo lib II 00)' 

(6.7) 

(6.8) 
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Combining (6.4), (6.6), and (6.8), we then obtain 

IILhll 00 = O(ft log f IlhlD + O(ft IIVhII) 

+ O(fP I\wll oo IIh!!oo), (6.9) 

IIVLhl1 = O(f-i IlhlD + O(fi log f IIVhll), (6.10) 

which imply, in view of (5.5), Lemma 2 *. 
To obtain Lemma 3*, we replace Dl by D~ in (6.1) 

and retain IX as a parameter. This change is indicated 
by adding the superscript (oc) to the Ii' It is not 
difficult to see that this does not change the estimates 
(6.8) on I 2i , i = 1, ... , 5, except for the estimate on 
V 122 , This must be replaced by 

IIVli~)11 00 = O(ft-~ Ilhll (0)' (6.11) 

Using (6.8), (6.9), and (6.11), we then have 

IILI2 1100 = O(f1-<% Ilhll oo ) + O(dOgf IIVbll oo) 

+ O(fP+! Ilwll oo IIVbll oo), (6.12) 

when (J > ° and t $ IX ::;; 1. For the integrals over D, 
we have, clearly, 

III~~)II<X) = O(fa- i Ilhll oo), 

III1~)II<X) = O(fa- i Ilhll oo), 

IIVI1~)IICD = O(f-! Ilhll oo)· 

( 6.13) 

(6.14a) 

(6.14b) 

However, (6.14b) must be strengthened in order to 
obtain a suitable estimate of LIi;)· Specifically, if 
aDa n S = 0, then K is regular over the domain of 
integration in 112 , and the estimates (6.14) come from a 
spherical shell of thickness 2f'" adjacent to S. More­
over, if r is constrained to lie within this shell in 
obtaining the sup with respect to r, these estimates 
drop to O(fsa-i Ilhll oo)' We can therefore refine 
(6.14) to obtain, when used in conjunction with (6.9), 

IILIi~)IIo'J = O(fa log f Ilbll",) + 0(fP+2a-! Ilwlloo Ilhll",). 

(6.15) 

In order to study Lli~), we substitute for her') the 
expression 

her') = her) + (r' - r) • Vh(ro)' (6.16) 

where ro is some point on the line segment between r' 
and r determined (since r is fixed) by r'. The effect of 
the two terms in (6.16), taken in order, is to de­
compose Ii~) into two parts, 

If~) = Ii~~ + Ii~L 
where, clearly, 

IIImiloo = O(€2"'-1 I\hll oo ). (6.17) 

Now, consider Ii~L with q given by (1.1). In the 
computation which follows, we take v(r) to have the 

simple form 

vcr) = (sin y + cos z, sin z + cos x, sin x + cos y). 

(6.18) 

However, the final estimate [Eq. (6.27) below] is valid 
for an arbitrary element of Q. We write 

5 

l ea) -, 0 
111 - k i' 

i~l 

and study LOi , i = 1, ... , 5, in turn. Here 

-fil 0 1 ;: - V Ir - rTl 
41T Da. 

X {[ V'w(r') x v(~)] x b(r)} dr' 

vanishes identically if the distance between rand S 
exceeds f + fa.. Otherwise, its components are each 
O( t;a.-i IIhll CD)' Thus, 

IIL01 1100 = O(f2a- 1 1IbII 00)' (6.19) 

Next, we set 

and observe that 

IIL021100 = O(fallhll oo), (6.20) 

by a similar argument. Setting 

f-
t 1 Vir - rT1 x [v(r'/f) x b(r)] dr' ;: Os + 0 4 , 

41T D", 

where 

Os = Ed f p-3p x [v(~ + ~) x her)] dp. (6.21) 
41T1s~ f f 

We may estimate L04 in the same way, giving 

IIL04 1100 = 0(f2
",-1 IIhll oo ). (6.22) 

Lastly, we have 

0 5 = ~ 1 V Ir - r'I-1 x [w(r') x her')] dr' 
41T Da. 

and the obvious estimate 

I!L05 11 = O(EP+a.-l Ilwlloo IIhll",,). (6.23) 

Then, considering (6.21) with v given by (6.18), we 
obtain by an explicit calculation 

€-lv(;) x 0 3 = b - r;(€)b + !F, (6.24) 

where 



                                                                                                                                    

3074 STEPHEN CHILDRESS 

and :F is a finite linear combination of terms of the 
form 

iahp(r) [sin (k.rjE)], cos (k.r/e)], k",integral, k¢iO. 

Thus, the method used to derive (6.9) may be repeated 
to obtain 

so that Lemma 3* cannot be extended to obtain uni­
form smallness of V on q . 

We are therefore led to define the family of 
modified operators n(c) for c ¢i 0 by 

n(c)h == L2h + c-lLI~~I(I:h - ch) 

= (L2 - LI~~)h + c-lLI~~(L2h), (7.4) 

/lHw:Flloo = O(e log e Ilhll oo) + O(e IIVhll oo)' (6.25) with 

Combining (6.24) and (6.25), we see that 

IILil3 - Hhll oo ~ IIH(w - l)hll oo IIHw1Jhll oo 
+ IIHw:Flloo + O(eP- l+a Ilwll oo Ilhll oo) 

= O(e1
-

a Ilhll oo) + O(eP- l +a Ilwlloo Ilhll oo ) 

+ O(e IIVhll oo)' (6.26) 

Now, using (6.19), (6.20), (6.22), and (6.23) together 
with (6.26), we obtain 

IILIif~ - Rhll oo = 0(e1- a Ilhll oo) + O(e IIVhll oo ), 

(6.27) 

provided that! < ex ~ 1. Combining (6.12), (6.15), 
(6.17), and (6.27), we obtain Lemma 3*. 

7. ESTIMATES IN THE MODIFIED EIGEN­
VALUE PROBLEM 

In this section, we establish Theorem 1 * and thus 
complete the proof of Theorem 2 *, as outlined in 
Sec. 5. The problem we treat here also arose in the 1-
dimensional model and was discussed in Secs. 2C and 
2D. We first seek an estimate for 11V11i:, with y > 0, 
using those derived in the preceding section. From 
(6.3) and (6.10), we can obtain 

IIVLIia11100 = 0(ea-1log e Ilhll oo) + O(ea log e IIVhll oo) 

+ O(ea+P-llog e Ilwll oo Ilhll oo), (7.1) 

and, from (6.8) and (6.10), we have 

II V L( I~al - I~~) 1100 

= O(log e Ilh/l (0) + O(eP-lllw/l 00 Ilhll oo ). (7.2) 

In conjunction with Lemma 3 *, (7.1) and (7.2) imply 

liZ: - H - LI~~III~ 
= O(e1- a) + 0(e2a- r- 1) + O(llwlloo eP+l-r) (7.3) 

provided that! < ex ~ 1 and! < y ~ 1. Thus, if 
!<ex<1 and l<y<2ex-1 (lIwlloo=O) or if 
t < y < min [2ex - 1, fJ + tl (Ilw/l oo ;rf: 0), the right­
hand side of (7.3) is 0(1) as e - O. However, (6.8) and 
(6.10) can only provide the estimate 

IILl~~III~ = 0(1), 

I~~l(h) = -ell K· rov X (V' X h) dr' 
D' a 

following from (6.7). Using (6.9) and (6.10) repeat­
edly, we then obtain 

IILI~~(1:h)ll~ = 0(e1- r log e Ilhll~) 
+ O(eP+l-r Ilwll oo Ilhll~). (7.5) 

Combining (7.3)-(7.5) with c ¢i 0, we obtain part (i) 
of Theorem 1 *. 

Now, suppose that n(v)h = vh with hE C1 and v 
positive, uniformly as e - O. From (7.4), we then see 
that h' == (£2 - v)h satisfies 

(7.6) 

Now, if part (i) of Theorem 1 * is used, we see that this 
h has the property that Ilh - foll~ - 0 as e - 0 for y 
in some positive open interval chosen as described 
above, where fo is a solution of (1.7) with p. = P.k' In 
particular, Ilhll&o = 0(1) for y in this interval. We 
also find, using (6.9) and (6.10), that 11£211~ = 0(1) 
for these y. Thus, we may assume that Ilh'll~ = 1 for 
all y in this interval which exceed some value y'. 
However, applying (6.8) and (6.9) to (7.6), it follows 
that 

v Ilh' II 00 = O( e1-Y}og e Ilh' II ~), 

for some y less than 1. Thus, we have a contradiction 
unless h' = O. This proves part (ii) of Theorem 1 *. 

8. REMARKS 

For periodic motions of the kind used to construct 
Q (cf. Sec. 4D), the "unperturbed" (e == 0) magnetic 
fields can be obtained by solving (4.9) with A = A~2). 
An example is 

ho = nV X ar-1 sin nr + V x V x a,-1 sin nr, (8.1) 

where a is an arbitrary constant vector. We see from 
(8.1) that, in general, the induced fields (4.12), 
while vanishing at infinity, do not have a bounded 
total magnetic energy. Nevertheless, (8.1) is similar 
to the eiBFnfuDctions of the comparison problem 
(1.7). The largest positive eigenvalue P.1 is (20.19)-1, 
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approximately, and it is associated with three 
linearly independent dipolelike eigensolutions: 

ho = (k2
tp - 2)a + Va • Vtp - ka x Vtp, 

CPo = 2ka • r, rED, 

3 sin. kr 
tp = --, k = (,ul)-l. 

k2 sin k r 

(8.2) 

It is, therefore, of interest to attempt to apply the 
present model to the geomagnetic dynamo problem. 

In several respects, the motions (Ll) are physically 
compatible with a rotating fluid system. Condition 
(4.15) not only makes v into a force-free perfect 
fluid motion, but also introduces a preferred parity, 
which could be induced, in practice, by the direction 
of rotation. Moreover, the second term in (1.1) 
accounts for possible weak large-scale (geostrophic) 
motion, which can be expected to appear in most 
contained rotating fluid systems. The model can, 
however, be criticized in several respects. In the first 
place, there is no a priori reason to suppose that 
small-scale components of the core motion should 
dominate over large-scale ones, which is the case in 
(Ll) when €« 1. Indeed, in most physical theories 
of the geomagnetic dynamo, a typical dynamo speed is 
usually associated (in a spherical core) with an 
axisymmetric-toroidal shearing motion.4 Such motions 
actually cooperate in the achieving the dynamo efrect 
in models proposed by Parker4 and Braginskii,16 while 
they are entirely subsidiary to it in (1.1). In the second 
place, Parker has also suggested that the preferred 
sense of "vortices," as determined by the sign on the 
right of (4.15), should be different in northern and 
southern hemispheres, so that, if this is a necessary 
property of a realistic dynamo the model, (1.1) with 
(4.15) can only be expected to apply to the dynamo 
process within one hemisphere. Finally, the ordering 
of the magnetic Reynolds number R = Ro€-i utilized 
in our proof implies that the magnetic Reynolds num­
ber based on the characteristic length of tht! small-scale 
motion has been made small in order to achieve the 
dynamo effect. This is by no means a necessary 
property of kinematic dynamos, steady or nonsteady, 
nor is it an obvious feature of the geomagnetic dynamo. 
If local magnetic Reynolds numbers are taken to be 
large, there are severe analytic difficulties connected 
with the calculation of the small-scale magnetic field in 
a steady model, and, in this case, a scale separation 
based upon time appears to be more promising. 
However, in order to extend the present theory in any 
of these directions, it appears to be necessary to 
consider a comparison eigenvalue problem which is 

more complicated than (1.7). It is, in fact, the search 
for a simple self-adjoint comparison problem which 
originally led to the choice of (1.1). 
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APPENDIX: CONSTRUCTION OF K AND E 
FOR THE UNIT SPHERE 

Since the formulation (2.7) and (2.S) of the steady 
kinematic problem has not, to our knowledge, 
appeared before in the literature on dynamo theory, 
we give here explicit formulas for the Green's tensors 
K = {Kkl } and E = {Ek!} = {a<Pklaxl}. In component 
form, the equations are 

aKkl a<PI I I 

€ijk -;-- = ;-- + bilb(r - r), r, rED, 
uX, uXi 

= 0, rE V, (Al) 

(A2) 

OKk! 
- = 0, (A3) 
OXk 

<PI' Kkl continuous on r = 1, (A4) 

r<PI' r3Kki bounded in V. (AS) 

To solve these, we note first that (AI) and (A2) imply 

V2<P 1 = ~ b(r - r') = - .E.- b(r - r') (A6) 
ax! ax~ 

and that (2.5) provides the condition 

a<PI - = 0 on r = l­
Or 

(A7) 

From (A6) and (A7), we see that 

a2 

Ek! = - -- N(r, r'), (AS) 
OXkOX~ 

where N is a Neumann function for Laplace's equation 
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in the unit sphere, 

N(r, r') = (417)-l[lr - r'I-1 + R-l 

- log (1 - r ' r' + R) + log 2], (A9) 

where R = [r2r'2 - 2r' r' + I]l. 
Now, we consider K and set 

(All) 

Then, from (AI), (AIO) , and (All), we obtain, for 
rED, 

(AI2) 

To solve (AI2), we introduce the function 

"P = (417)-1[Iog (1 - r' r' + R) - 1]. (AI3) 

From (A9) and the definition of N, we observe that "P 
is harmonic with respect to r for r :;i:: r/, rED, and 
that 

or"P = -N* + log 2. 
or 

Therefore, the vector field V x r"P satisfies 

V x (V x r"P) = - V N* 

in D; (AI2) thus has the general solution 

* 02xn"P O'¥l 
Kkl = €kmn ~ + ;-, rED, 

uxmux1 uXk 
(AI4) 

where '¥l is an arbitrary harmonic function of r. 
Now, considering (A4) and (A5), we introduce the 

decomposition (into harmonic poloidal and toroidal 
parts3) defined by 

1 " -3 oj; oxng1 
- €klm(Xm - Xm) Ir - r I = - + €kmn -~-- . 
417 OXk uXm 

(A15) 

Solving (A15) forj; and gl and using (A5), we obtain 

I' I. ( ') I '1-1 
Jl = - -II' r x r r - r 

477 

X [r2 - r' r' + r Ir - r'U-l, 

1 a 
gl= ---

417 OX~ 

(AI6a) 

X r-1[log (r2 - r . r' + r Ir - r'l) - log 2r2
]. 

(AI6b) 

Both of these functions are harmonic with respect to r 
in D, except at r/. Now, using (Al3) and (AI6), we 
obtain 

O"P ;-; + gl = 0 for r = 1, (AI7) 
uX I 

so that the sum of the two terms containing €kmn in 
(AI4) and (AI5) vanishes on S. Therefore, we may 
set '¥l = const in (AI4) and 

oj; 
K kl = -, rE V, 

oXk 

(AI8) 

I I ,-3 OXn"P 
Kkl = - €klm(Xm - Xm) Ir - r I - €kmn --- , 

417 OXmOX; 

rED. (AI9) 

We note from (AI9) that Kk1(r, r') = Klk(r', r), where 

_ 02X~"P 
Kkl = Kkl + €Imn ---

OXkOX;,. 

is obtained from Kkt by adding a gradient with respect 
to r. This remark explicitly verifies the self-adjoint 
property of H as proved in Sec. 5. 
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A unified treatment of all three multiplicities, valid for all classical (compact, connected, simple Lie) 
groups, is described. The general theory is given and then applied to the rank-2 groups. 

I. INTRODUCTION AND SUMMARY 

The three multiplicities to be considered are1 

(1) the multiplicity of weights,2 

(2) the multiplicity of representations occurring in 
the (inner) direct product [Clebsch-Gordan (CG) 
series],3 

(3) the branching multiplicity.4 
The groups for which these multiplicities are studied 

are the simple, compact, and connected Lie groups. 
They are referred to as classical groups or simply as 
groups. Throughout this paper, by representations, 
we mean irreducible representations of the classical 
groups. For the third multiplicity, namely, the branch­
ing multiplicity, the subgroups to which we will restrict 
the groups are classical groups or direct products of 
classical groups (semisimple, compact, and connected 
Lie groups). 

In Sec. II, a method of setting up "patterns" and 
"diagrams" is described for the classical groups up to 
rank 4 (but, in principle, valid for all classical groups). 
In Sec. III, rules are given, valid (again, in principle) 
for all classical groups, on how to apply the diagrams 
on the pattern in order to obtain the various multi­
plicities. 

The particular form of a pattern depends on the 
group, while its size depends on the ambitions. The 
pattern is nothing but a systematic way "of writing 
down" a weight diagram. The more representations 
one wants to consider, the more the size of the pattern 
increases. On the other hand, the diagrams, one for 
each multiplicity (counting the restrictions to different 
subgroups as different multiplicities), are determined 
by properties of the classical group (and its subgroups) 
alone. They are related to the Weyl group of the classi­
cal group (and not representations of the group). 

By setting up a pattern for a group and then apply­
ing the various diagrams according to generally valid 

are valid for all classical groups. The number of repre­
sentations for which this is true determines the size of 
the pattern. 

In Sec. IV, the general methods developed in Secs. 
IT and III are applied to the rank-2 groups, namely 
SU(3), SO(5) '" Sp(4), and G2. The group SU(3) is 
trivial with respect to all multiplicities. It has, however, 
been included for reasons of completeness, and also as 
a convenient example due to its familiarity. [Moreover, 
due to its simplicity, the patterns and diagrams 
amount to a somewhat implicit tabulation of the 
multiplicities of SU(3).] The groups SO(5) and G2 are 
already much less trivial, though for these groups also 
some well-known branching multiplicities have been 
included for reasons of completeness. 

The following has been achieved: 

SU(3): Two patterns are given which allow the 
calculation of the multiplicities of weights for 113 
representations as well as the branching of these 113 
representations with respect to the subgroups SU(2) 
and SO(3). Moreover, two subpatterns are given 
which allow the calculation of the CG series of 52 
representations with any representation of SU(3). 

SO(5) '" Sp(4): The multiplicity of weights for 132 
representations, as well as the branching of these 132 
representations with respect to the subgroups SO(4), 
SO(3)1' SO(3)2' and SO(3)3' can be obtained from 
two patterns. Two subpatterns give the CG series of 
42 representations with any representation of SO(5). 

G2: The multiplicity of weights for 36 representa­
tions, as well as their branching with respect to the 
subgroups SU(3), SU(2)1 x SU(2)2' SU(2h, SU(2)2' 
SO(3)1' and SO(3)2 of the group G2, can be obtained 
from one pattern. The CG series of any representation 
of G2 with any of the 15 representations contained in 
a subpattern can be calculated. 

rules on this pattern, the various multiplicities can be Should the need arise, the patterns can easily be 
obtained from the pattern for all representations enlarged to include representations not contained in 
described by it. Thus, all multiplicities can be obtained them (except for obvious limitations given by the size 
from one and the same pattern according to rules which of the patterns). 

3077 
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The method developed in the present paper is 
applied in a subsequent paper to the rank-3 and rank-4 
groups. It is the application to these groups which is of 
real interest. So far, no simple method~ of obtaining 
the multiplicities for these groups exist-with a few 
exceptions-while the methods developed and de­
scribed in the present paper allow a relatively easy 
handling of the multiplicities of representations with 
dimensionalities well in the tens of thousands. More­
over, the treatment is a "unified" one. All multiplici­
ties are treated in the same manner for all the groups. 

II. GENERAL THEORY 

Three formulas are utilized to calculate the three 
mUltiplicities-one formula for each multiplicity. 
Before writing down these formulas, some definitions 
have to be made. 

A highest weight is denoted by M, and m denotes 
an arbitrary weight. Then m E D(M) is a weight 
contained in the representation D(M) with highest 
weight M. The symbol S denotes an element of the 
Weyl group W. The signature of the element S is 
denoted by ~s: ~s = -1 if SEW is a reflection; 
~s = 1 if SEW is not a reflection. The symbol 
~",.II' where x and y are two (weight) vectors, is the 
Kronecker symbol; i.e., ~",.1I = 1 if x = y, ~",.II = 0 if 
x ¥: y. Adding a suffix r to one of the symbols, such 
as Mro mro Sro and Wro denotes the same quantity in 
a subgroup of the group considered. Thus, Mr is a 
highest weight in a subgroup, etc. The mapping of a 
weight m of a group onto a weight mr of a subgroup is 
denoted by Lm (= mr). The three multiplicities are 
denoted as follows: 

yM (m) or y(m): multiplicity of the weight m of the 
representation D(M); 

y(M): multiplicity of the representation 
D(M) contained in the decomposi­
tion of a direct product D(M') @ 

D(M"); 
r(Mr): multiplicity of the representation 

D(Mr) (of a subgroup Gr) which is 
contained in a representation D(M) 
of a group G under the restriction 
of G to the subgroup Gr. 

The simple negative roots are denoted by fJi' i = 
1, 2, ... , I, where I is the rank of the group. The sum 
over all positive roots of the group is denoted by 2R. 

The first formula, for the multiplicity of weights, 
is Racah's recursion formula. 5 In the notation de­
scribed above, the formula is given as 

y(m) = - ! ~sy(m + R - SR). (1) 
SeW 
S¢I 

The second formula-for the multiplicity in the 
(inner) direct product-is also due to Racah.5 If the 
direct product of two representations D(M) and 
D(M') is written as 

D(M) @ D(M') = EEl! y(M)D(M), 
1ff 

then y(M) is given as 

y(M' + m) = ! ~syM[m + M' + R - SCM' + R»), 
SeW 

with m E D(M). (2) 

Finally, the third formula-for the branching multi­
plicity-is due to Straumann6 (it has also been inde­
pendently obtained in Refs. 7). If the branching of 
some representation D(M) is written as 

D(M)lrestr. = EEl! r(Mr)D(Mr), 
Mr 

then 

r(M,) =! ! ~sryM(m)~Lm.Mr+R..--SrRr' (3) 
SreWr meD(M) 

It is easy to observe that all three multiplicities are 
related to weight diagrams (systems of weight vectors 
without their multiplicity). This makes it possible to 
obtain all three multiplicities from one and the same 
"pattern." 

The Pattern 

The pattern is nothing but a systematic way of 
writing down a weight diagram. If D(M) is the repre­
sentation to be considered, all its weights can be 
obtained from its highest weight M as 

(4) 

where the ki' i = 1, 2, ... ,I, are nonnegative inte­
gers. If the dominant weightsab are found first-which 
is simple due to the conditions imposed on a weight 
through its dominancy-there is no problem in elimi­
nating from the set of weights M + kIfll + ... + klPI' 
all possible nonnegative integers k i , the weights which 
do not belong to D(M). Namely, knowing the dom­
inant weights of D(M), we know all weights through 
the Weyl group W. 

So far, only groups up to rank 4 have been treated 
by the methods described here. For them, the pattern 
is most conveniently obtained in the following manner. 

The weights 

M + klPI + k2fJ2 + 0 . fJs + o· fJ4 (5) 

are written down in matrix form. The position of the 
weight given by Eq. (5) for some values ki and k2 is at 
the intersection of the (k1 + l)th line and (k2 + l)th 
column, lines and columns being counted from tl>e 
lower right corner of the matrix. Positions in the matrix 
not corresponding to weights of the representation 
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are left empty (see Sec. IV). The value ks distinguishes 
different matrices-or blocks-one block being put 
on the top of the other (with increasing ks). Thus, the 
weights 

with kl and k2 arbitrary (nonnegative integer) and ks 
some fixed value (nonnegative integer), form the 
(ks + l)th block (matrix) counting from the bottom. 
(With kl and k2 arbitrary we understand that outside 
some maximal values of kl and k2-needed to describe 
the weights of the diagram-all entries of the matrix 
are zero anyway.) We call the set of blocks obtained in 
this manner a "column." The values of k4 distinguish 
different columns, from right to left. 

The weight vectors m of the pattern are written in 
the form q(ml , m2' ..• , mt)p or the form (ml' m2 , ... , 
mt)p, where mi' i = 1, ... , I, are the components of 
the weight and the subscript p is the "dominant 
weight number" (d.w. number). The number p is the 
same for all members of a set of equivalent weights, 
while the dominant weight of this set is singled out by 
bol~face p. 8 The suffix q gives the number of weights 
contained in the set of equivalent weights to which 
this weight belongs. 

It should be noted that a pattern describes not just 
one representation but all those representations whose 
highest weights are contained in this representation. 

The Diagram 

The next things we consider are the diagrams corre­
sponding to the different multiplicities. So far, the 
pattern-the weight diagram-has been set up on 
which the three equations [(1)-(3)] are based. The 
diagrams, determined by these equations, provide the 
tool to calculate the multiplicities from the pattern. 

From Eq. (1), it follows that the multiplicity rem) of 
the weight m is related to the multiplicity of several 
other weights. All these weights are entries of the 
pattern, and it is the diagram which determines for a 
given weight m the location (and signature b s) of the 
other weights to which the multiplicity rem) is related. 
In other words, the relations 

R - SR; ()s 

have to be re-expressed in terms of the pattern 
language. This is done as follows: 

In 

the nonnegative integers ki' i = 1,2, ... ,I, are 
determined for every SEW and, moreover, the 
value of bs is determined. The diagram is then defined 

to be the set of all elements 

(kL kL ... ,kD; +1 
(kf, kL···, kD; -1 

(6) 

A graphical representation of the diagram is obtained 
in the following manner: Along a horizontal line, the 
nonnegative integers 0, 1, 2, ... are written from the 
left to the right. Then, for a given element 

(kt,kL"',kD;()s, (7) 

the () s is written below the nonnegative integer k~. 
The remaining k~ are written to the right of the diagram 
in the same line as the entry () s in the order 

k:, kf-l' ... , k~. 

This is done for every element of the diagram. The 
ordering adopted is that, for two elements 

(kt, kt_ l , .•. , ku, k u_ l , ••• , k2), 

(kp kH' ... , ku' k~_l' ... , k~) 

having the same values ku, kU+1' ... , k!, that ele-
ment is entered first in the graphical representation of 
the diagram for which k U- l < k~_l holds. 

For groups up to rank 4, the graphical representa­
tion of the diagram is of the form 

012 3 4 5 6 ... 

-1 132 
133 
211 

-1 220 

where the four elements (4231); (-1), (5331); 1, 
(2112); l,and (3022); (-1) have been represented 
graphically. Taking care of the conventions in which 
the pattern for the groups (up to rank 4) has been set 
up, we interpret a particular element (kl' k2' ks, k4); 
()s of the diagram in the following manner: 

(1) Go horizontally kl columns to the right; 
(2) from there go vertically k2 lines down; 
(3) from there go to the same position in the ksth 

block below; 
(4) from there go to the same position in the same 

block in the k4th "block column" to the right. This is 
the position for ()s. 

Operations (1)-(4) are referred to as the "counting 
process." 

Upon inspecting the two formulas Eqs. (1) and 
(2), it can be recognized that the diagram for the 
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multiplicity in the direct product is obtained in exactly 
the same way as the diagram for the multiplicity of 
weights. The only difference is that the positions of 
the values b s depend now on the particular direct 
product which is formed. Instead of depending on 

R - SR; bs , 
Eq. (2) depends on 

M' + R - SCM' + R);bs . 

This implies that the diagram depends on the repre­
sentation D(M') but remains the same for all repre­
sentations D(M). As in the case of the multiplicity of 
weights, the position of M' + R - SCM' + R) in the 
pattern is obtained from 

M' + R - SCM' + R) = -(k1f31 + ... + k zf3z). 
The system of numbers (the diagram) 

(kl' k 2 ,'" ,kz); bs (8) 

has the same interpretation as in the case of the inner 
multiplicity. However, it depends not only on the 
element SEW but also on M' [for reasons of simpli­
city, this has not explicitly been indicated in Eq. (8)]. 

Finally, Eq. (3) is considered. For this case, the 
diagram is obtained as in the other two cases. How­
ever, some care has to be taken due to the fact that the 
diagram has to be applied in the subgroup. The pattern 
for the group has to be projected into the subgroup 
by the map L. It is after this projection that the dia­
gram is to be applied. The position of the weight 
Mr + Rr - SrRr' in the projected pattern, is obtained 
from 

Mr + R~ - SrRr = -(klf3~ + ... + ktf3;), t::; I, 

where t is the rank of the subgroup and f3~, f3~, ... , 
f3; are the simple roots which span the projected 
pattern. Thus, f3~," . ,f3; mayor may not be the 
simple negative roots of the subgroup. [The two cases 
are, for instance, represented by SO(5) ! SO(3) and 
SO(5) ! SO(4), respectively. See below, Sec. IV.] 

The interpretation of the set of numbers 

(kl' k 2 ,'" ,kt ); bSr 

in the projected pattern is the same as in the above two 
cases. 

III. RULES 

In this section, the rules for obtaining the three 
multiplicities by applying the diagrams to the patterns 
are given. The rules can be seen to be valid for all 
classical groups. For convenience, the rules are given 
here for the groups up to rank 4. It is a matter of 
simple generalization to obtain the rules for the 
general case. 

A. The Counting Process 

To begin the counting process at some weight m of 
the pattern means the following: 

(1) Go from the weight m horizontally to the weight 
kl columns to the right of it. 

(2) Go from the weight reached by (1) vertically to 
the weight k2 lines below it. 

(3) The weight reached by (I) and (2) is at some 
position in the block containing it. Go vertically to the 
kath block below the block containing the weight m 
and take the weight which is at the same position in 
this block as the weight reached by (1) and (2). 

(4) From the "block column" containing the weight 
m go horizontally k4 "block columns" to the right. In 
the block column thus reached take the weight m' 
which has the same position as the weight reached by 
(1), (2), and (3) in the "block column" containing m. 

An element (k1 , k2' ka, k 4); bs can lead to an empty 
space in the pattern or even out of the pattern. Those 
elements of the diagram can be ignored. They do not 
contribute. 

B. Multiplicity of Weights: y(m) 

The multiplicities of the dominant weights have to 
be calculated only. (Sets of equivalent weights have 
the same multiplicity.) This is done successively, 
beginning with the highest weight of the representa­
tion. Each boldface d.w. number corresponds to the 
highest weight of an (irreducible) representation; all 
d.w. numbers equal or smaller than a given d.w. 
number correspond to weights of that representation.8 

Thus, beginning with some d.w. number p, corre­
sponding to some representation D(M), the multi­
plicities of all weights corresponding to the d.w. 
numbers p, p - 1, P - 2, ... ,1 have to be calculated 
successively. This is done as follows (mp as well as p 
is used to denote the weights): 

(B. 1 ) Let the highest weight M of the representation 
D(M) have the d.w. number p. Then all weights of the 
pattern having d.w. numbers p, p - 1, ... , 1 belong 
to D(M).9 

(B.2) yep) = 1 (multiplicity of highest weight). 
(B.3) yep - 1): 

(b. 1 ) Begin the counting process (Sec. IlIA) at 
the weight mp-l' 

(b.2) Multiply the multiplicity y(m') of the weight 
m' E D(M) reached by (b.l) by bs . 

(b.3) Do this for all elements (kl' k 2, k a, k 4); bs 
of the diagram. 

(b.4) Add all multiplicities y(m') obtained in this 
fashion; the resulting number is the multi­
plicity yep - 1). 
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(B.4) Perform step (B.3) successively for the weights 

mp-2' mp-3' ••• , ml . 

The resulting numbers are the multiplicities 

yep - 2), yep - 3), ... , y(1). 

The following two observations can be made: 
(i) If only the multiplicity of weights is of interest, 

the weights in the pattern can be substituted by their 
d.w. number. No property other than the d.w. number 
labeling is used. (The same is true for the calculation 
of the branching multiplicity.) 

(ii) If the multiplicity of dominant weights only is 
calculated (which is, in fact, the simplest choice), the 
pattern can be made smaller. The last weight to be 
included is the weight corresponding to d. w. number 1. 

e. Multiplicity in the Direct Product D(M) ® D(M') 

The multIplicities y(M) in the direct product 
D(M) ® D(M') are obtained as follows: 

(C.l) If possible, choose D(M') to be the larger of 
the two representations (it simplifies the calculation). 
Then determine the diagram for the weight M'. 

(C.2) A certain d.w. number corresponds to the 
weight M of D(M) in the pattern. All weights with this 
or a lower d.w. number are weights of D(M). The 
multiplicity of these weights has to be calculated by 
the procedure of Sec. IIIB. 

(C.3) The multiplicity y(M' + m), mE D(M), of 
the representation D(M' + m) (i.e., M' + m is sup­
posed to be a d0minant weight) is obtained by apply­
ing the counting process of Sec. IliA with the diagram 
obtained in (C.l) on the weight m. The calculation of 
the multiplicity y(M' + m) is identical to the calcu­
lation of yep - 1) by steps (b. I) to (b.4) in (B.3) 
except that the diagram is different. [The resulting 
number in step (b.4) is, of course, the multiplicity 
y(M' + m).] 

(C.4) The calculation of the y(M' + m) has to 
proceed successively, beginning with the weight M, 
moving from the right to the left and from the bottom 
to the top of the pattern. 

Observation: The explicit weight diagram is needed 
in order to determine the argument M' + m of 
D(M' + m). The d.w. numbers do not distinguish 
equivalent weights, and thus, in the case of this multi­
plicity, the pattern cannot be reduced to a pattern of 
d.w. numbers. 

D. Branching Multiplicity 

The branching multiplicity y(Mr ) for a representa­
tion D(M) is obtained by applying the counting 

process (by means of the diagrams for branching) on 
the weights Mr of the projected weight diagram 
LD(M). 

(D.i) To the highest weight M of the representation 
D(M) corresponds some d.w. number p. All weights 
of the pattern with d.w. numbers ~ p belong to D(M). 
Determine the multiplicity of weights for the repre­
sentation D(M) by (B). 

(D.2) Y(Mr) is obtained as follows: 
(d. 1 ) Apply the counting process (Sec IlIA) (for 

an element of the diagram for branching) on 
the highest weight Mr in the projected 
pattern. Some weight mr is reached. 

(d.2) Sum the mUltiplicities of all weights m of 
D(M) in the original pattern which are 
mapped by L on the weight mr • 

(d.3) Multiply the number obtained by rule (d.2) 
by the Os of the corresponding element of 
the diagram. 

(d.4) Do this for all elements of the diagram. 
(d.5) Add all numbers obtained by (d.l) to (d.4). 

The resulting number is the branching 
multiplicity y(Mr)' 

(D.3) As in the previous two cases(B)and(C) the 
multiplicities yare calculated successively, beginning 
with the highest possible Mr. The succession is, as in 
case (C), from right to left and from bottom to top of 
the pattern. 

IV. THE RANK-2 GROUPS 

In the following patterns and diagrams <;lre given for 
the rank-2 groups SUm, SO(5) '" $p(4),.and G2 • 

In order to keep the1size of the patterns small, two 
sorts of patterns are given. Namely, patterns con­
taining d.w. numbers only and patterns in which the 
weights themselves are given. The former patterns are 
good for multiplicity of weights and branching 
multiplicity only. They have the advantage of being 
able to accommodate many more representations than 
a pattern of the second kind of equal size. Patterns of 
the second kind are obviously good for all three 
multiplicities. That these patterns of the second 
kind contain fewer representations is of no concern. 
The only multiplicity which would be affected is the 
multiplicity in the direct product D(M) ® D(M') for 
which fewer representations D(M) are available. This 
is more than balanced by the fact that D(M') may be 
any representation. 

A. SU(3) 

Simple roots: 

Pl = (-1, 1,0), P2 = (0, -1,1), 
R = (1,0, -1). 
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Weights: 

m = (ml' m2' m3), mi = ~k, k integer, 

ml + m2 + m3 = O. 
In order to minimize the size of the patterns, the 
(p, q) notation is used: 

where 

and 

ml = H2p + q), m2 = H -p + q), 
m3 = H-p - 2q), 

dim (p, q) = Hp + I)(q + I)(p + q + 2), 
with 

p ~ 0, q ~ 0 (d.w. condition). 

Diagram for multiplicity of weights y: 

012 

-I 

SU(2) 

-I 

m 
j = '2 

o 
1 
2 

Diagrams for branching multiplicity y: 

(1) Subgroup SU(2), L(p, q) = tp: 

o 

-1 0 

(2) Subgroup SO(3), L(p, q) = p + q: 

o 

-I o 

Diagram for multiplicity y: 

o 1 2 ... pi + 1 '" pi + q' + 2 

1 
-1 

-I 
1 

-1 

o 
q' + 1 
pi + q' + 2 

2 6 8 10 12 14 16 

o 

SO(3) j= 

FIG. 1. Dominant-weight­
number pattern for S8'(3). 
The representations corre­
sponding to the d.w. num­
bers are given in the text. 
The (dominant) weights j of 
the subgroups SU(2) and 
SO(3) are given on top and 
on bottom of the diagram, 
respectively. The straight 
lines in the d.w. number pat­
tern indicate the projection 
L(p, q) = j of SU(3) weights 
onto the weight j of the sub­
group. All weights with d.w. 
numbers lying along such a 
straight line are projected 
onto the subgroup weight j 
which lies On the same 
straight line. 
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. m su( 2): J = 2 

FIG. 2. As in Fig. 1. 

Representations: 
For the pattern Fig. 1, the representations are 

(8,8)41' (6,9)40' (4, 10)39, (2, 11)38, (0, 12)37, (9,6)36' 
(7,7)35' (5,8)34' (3,9)33' (1,10)32' (10,4)31' (8,5)30' 
(6,6)29' (4,7)28, (2,8)27' (0,9)26' (11,2)25' (9,3)24' 
(7,4)23' (5, 5b, (3,6)21' (1,7)20, (12,0)19' (10, 1)18, 
(8,2)17' (6,3)16' (4,4)15' (2,5)14' (0,4)13' (9,0)12' 
(7,1)11' (5,2)10' (3, 3)9' (1,4)8, (6,0)7' (4, 1)6' (2,2)5' 
(0,3)4' (3,0)3' (1,1)2, (0,0)1. 

For the pattern Fig. 2, the representations are 

(8,7)36' (6,8)35' (4,9)34' (2, 10)33, (0, 11h2, (9,5)31' 
(7,6)30' (5, 7)29' (3, 8)28' (1,9)27' (10,3)26' (8,4)25' 
(6,5)24' (4,6)23, (2,7)22' (0,8)21' (11,1)20' (9,2)19' 
(7,3)18, (5,4)17' (3,5)16' (1,6)15' (10,0)14' (8,1)13, 
(6,2)12' (4,3)11' (2,4)10, (0,5)9' (7,0)8, (5, 1)7, 
(3,2)6' (1, 3)5' (4,0)4' (2,1)3, (0,2)2' (1,0)1. 

holds: 

(a) 6(P, q), if P ¥= 0 and q ¥= 0, 
(b) 3(P,q), if p = 0 or q = 0, 
(c) l(P,q), if p = q = O. 

Conjugate representations: 
The two representations 

D(p, q) and D(q,p) 

are conjugate to each other. Conjugate representations 
have the same multiplicity structure. Thus, if the 
multiplicities of the representation D(p, q) are known, 
the multiplicities of the representation D(q, p) are 
given by the mapping 

(p', q') - (q', p') (9) 

of the weights of D(p, q) onto the weights of D(q, p). 
When the direct product is formed, it should be 

noted that 

Sets of equivalent weights: and 
D(p, q) ® D(p', q') 

D(q,p) ® D(q',p') For the dominant weights given above the following 
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(-5;5)22' (-3-6) 16' (-1,-7) 11' (1,-8)11' (3,-9)16' (5,-10)22 

(-6,-3)21,(-4,-4)15,(-2,-5)10' (0,-6)7 ' (2,-7)10' (4,-8)15 ' (6.-9)21 

(-7.-1)20' (-5.-2)14' (-3,-3)9 ' (-1,-4)6' (1,-5) 6' 0.-6)9 ' (5,-7)14' (7.-8) 20 

(-8,1)20 ,(-6,0)13,(-4,-1)8' (-2.-2) 5' (O,-3)~, (2.-4)5 ' (4,-5)8' (6,-6)13' (8,-7)20 

(-9,3)21' (-7,2)14' (-5,1)8 ' (-3,0 ) 4' (-1,-1) 2' (1,-2)2 • (3,-3)4' (5,-4) 8 ' (7,-5) 14' (9,-6)21 

(-10.5)22·(-8,4)15' (-6,3)9' (-4,2)5' (-:2,1)2 ' (0,0)1 ' (2,-1)2' (4,-2)5 • (6.-3)9 • (8.-4)15' (10,-5)22 

(-9,6) 16' (-7,5)10' (-5,4)6' (-3.3)3 ' (-1,2)2 ' (1,1)1 ' (3,0 )2 • (5,-1) 6 ' (7 .... 2)10' (9,-3 \6 

(-8,7)11' (-6,6)7' (-4,5)6 ' (-2.4)5 , (0.3) 4 ' (2,2)? , (4.1).§. • (6.0)7 , (8,-1) 11 

(-7,8)11' (-5.7) 10' (-3.6)9 ' (-1.5) 8' (I.4).!! , (3,3)2- ' (5,2)10 ' (7,1~ 

(-6,9) 16' (-4,8) 15 ' (-2·7)14; (0.6)13 ' (2.5)14 ' (4,4)15 ' (6,3) 16 

(-5,10)22' (-3,9)21' (-1,8) 20' (1,7)20 ' (3,6)l! • (5,5)22 

FIG. 3. Subpattern of pattern in Fig. 1. In this subpattern the weights are given, not only their d.w. numbers. From this subpattern all 
three multiplicities can be obtained, in particular the multiplicity y of the direct product D(M) ® D(M'). The representations D(M) are 
limited to those contained in the subpattern while the representation D(M') can be chosen completely arbitrary. 

(-3,-7)18' (-1,-8)13' (1,-9) 13' (3,-10\8 

(-4,-5) 17' (-2,-6) 12' (0,-7)8 ' (2,-8)12 ' (4,-9)17 

(-5,-3)16' (-3,-4)11' (-1,-5) 7' (1,-6)7 ' (3,-7)11 ' (5,-8) 16 

(-6,-1)15' (-4,-2) 10' (-2,-3)6' (0,-4)4 ' (2,-5)6 ' (4,-6)10 ' (6,-7)15 

(-7.1)15 (-5,0)9 , (-3,-1) 5' (-1,-2) 3 ' (1,-3) 3 ' (3,-4)5 ' (5,-5)9 ' (7,-6)15 

(-8,3) 16 (-6,2)10 ' (-4,1)5 ' (-2,0) 2 (0,-1)1 ' (2,-2)2 ' (4,-3)5 ' (6,-4) 10 ' (8,-5)16 

(-9,5)17 ' (-7,4)11 ' (-5,3)6 ' (-3,2) 3 (-1,1)1 (1,0) .! , (3,-1) 3 ' (5,-2)6 , (7,-3)11 ' (9,-4)17 

(-10,7)18' (-8,6)12 ' (-6,5)7 ' (-4,4) 4 (-2,3)3 ' (0,2)! , (2,1)1 , (4,0) .i , (6,-1)7 ' (8,-2)12' (10.-3)18 

(-9,8)13 ' (-7,7)s, (-5,6) 7 (-3,5)6 (-1,4) 5 ' (1,3)2. ' (3,2).§. , (5,1)1. , (7,0) S ' (9,-1) 13 

(-8,9) 13' (-6,S)12 ' (-4,7)11 ' (-2,6)10 ' (0,5)2- , (2,4)10 ' (4,3)11 ' (6,2)12' (S,I)11 

(-7,10)18' (-5,9)17 ' (-3,8) 16 ' (-1,7)15' (1,6)15 ' (3,5)1~ • (5,4)17' (7,3)1.8. 

FIG. 4. Subpattern of pattern Fig. 2. The rest as in Fig. 3. 

are related to each other by the mapping (9). with 

B. SO(5) Ml ~ M2 ~ 0 (d.w. condition). 

Simple roots: 

Weights: 

(31=(0,-1), (32=(-1,1), 
R = H3, 1). 

m = (m1, m2), ml , m2 = k or ml , m2 = ik, 
k integer, 

dim (M) = t(2Ml + 3)(2M2 + l)(Ml + M2 + 2) 
X (Ml - M2 + 1) 

o 

1 

-1 

2 

-1 

1 

-1 

Diagram for multiplicity of weights y: 

o 234 

-1 
-1 1 

-1 

o 
1 
2 
3 

Diagram for multiplicity y: 

-1 

1 

o 
Ml - M2 + 1 

Ml + M2 + 2 

2Ml + 3 
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Diagrams for branching multiplicity y: 
(1) Subgroup SO(4), Lm = m: 

o 2 

1 0 
-1 -1 - 1 

1 2 

For a dominant weight of SO(4) we have 

m = (ml' m2), ml ~ Im21· 
(2) Subgroup SO (3)1 , Lm = teml + m2), 

subgroup SO(3)2' Lm = ml, 

subgroup SO(3)a, Lm = 2m} + ma: 

o 1 

-1 0 

Representations: 

The representations of the pattern Fig. 5 are 

(10, 10)66, (10,9)65' (10,8)64' (10, 7)63' (10,6)62, 
(10, 5)61' (10,5)61' (10,4)60' (10,3)59' (10,2)58, 
(10, 1)57' (10,0)56' (9, 9)55' (9, 8)54, (9, 7)53, (9, 6)52' 
(9,5)51' (9,4)50' (9,3)49' (9,2h8, (9, Ih7' (9,0)46' 
(8,8)45' (8, 7)44' (8,6)43' (8,5)42' (8,4)41' (8, J.)40' 
(8,2)39' (8,1)38' (8,0)37' (7,7)36' (7,6)35' (7,5)34, 
(7,4)33' (7,3)32' (7,2)31' (7,1)30' (7,0)29' (6,6)28' 
(6, 5)27' (6,4)26' (6,3)25' (6, 2)24, (6, 1)23, (6,0)22' 
(5,5)21' (5,4)20, (5, 3)19' (5,2)18' (5, 1)17' (5,0)16' 
(4,4)15' (4,3)14' (4,2)13' (4,1)12' (4,0)n, (3,3)10' 
(3,2)9' (3, 1)8' (3, 0)7, (2,2)6' (2,1)5' (2,0)4' (1, 1)3, 
(1,0)2' (0,0)1' 

The representations of the pattern Fig. 6 are (it is 
understood that each weight given below has to be 
multiplied by the factor i): 

(21,21)66' (21, 19)65, (21, 17)64, (21, 15)63, (21, 13)62' 
(21, 11)61, (21,9)60' (21, 7)59' (21,5)58' (21,3)57, 
(21,1)50' (19,19)55, (19,17)54' (19,15)53, (19,13)52, 
(19,11)51' (19,9)50' (19,7)49' (19,5)48, (19,3)47' 
(19, 1)46, (17, 17)45, (17, 15)44, (17, 13)43, (17, 11)42, 
(17,9)41' (17,7)40' (17,5)39' (17, 3)3S' (17,1)37' (15, 
15)36' (15,13)35, (15,11)34' (15,9)33' (15,7)a2' (15, 
5)31, (15, 3)30' (15,1)29' (13, 13)28, (13, 11)27' (13,9)26' 
(13,7)25' (13,5)24' (13,3)23' (13, 1)22' (11,11)21' 
(11,9)20' (11,7)19, (11,5)18' (11,3)17' (11,1)16' 
(9,9)15' (9,7)14' (9,5)13' (9,3)12' (9,1)n, (7,7)10' 
(7,5)9' (7,3)8, (7,1)7, (5,5)0' (5,3)5' (5, 1)4, (3,3)3' 
(3, 1)2, (1, 1)1· (Also see Figs. 7-9 for preceding 
diagrams.) 

Sets of equivalent weights: 
For the dominant weights given above there holds 

(a) S(mI' m2), if mI :;6 m2' m2:;6 0, 
(b) 4(mI , ma), if mI = m2:;6 0 or ma = 0, 
(c) t(m1 , m2), if mI = m2 = O. 

c. G2 

Simple roots: 
{it = (0, -1, 1), {i2 = (-1,2, -1), 

R = (3, -1, -2). 
Weights: 

m = (mt, ma, m3), m1 + m2 + ma = 0, 
mi integers. 

Again, as in the case of SU(3), the patterns are given 
in the (p, q) notation, 

dim (p,q) 

= 1 h(p + 4)(q + 1)(p + q + 5H(2p + q + 9) 
x i(p - q + 3H(p + 2q + 6) 

with 
p ~ 0, q ~ 0, p ~ q (d.w. condition). 

[It should be remarked that, while to every (p, q}-p 
and q some nonnegative integer-there corresponds a 
representation in SU(3), this is not the case for G2 • 

There are values p and q satisfying the d.w. condition 
in G2 which do not correspond to a representation.] 

Diagram for multiplicity of weights y: 

° 1 2 3 4 5 6 7 8 9 10 

0 
1 -1 1 

-1 2 
1 -1 4 

-1 1 5 
-1 6 

Diagrams for branching multiplicity y: 
(1) Subgroup SU(3): L(p,q) =!(p - q,p + 2q): 

012 345 6 

1 0 
-1 -1 1 

1 3 
-1 4 

(2) Subgroup SU(2)1, L(p, q) = Hp + q), 

subgroup SU(2)2' L(p, q) = i-(-p + q), 

subgroup SO(3)1' L(p, q) = i(p - q), 

subgroup SO (3)2 , L(p, q) = t(4p + 5q). 

Their diagram is (j); 1, (j + 1); -1, or equivalently 

o 1 

1 -1 0 
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66 

55 65 

50(3)2: j - 0 

1 

FIG. 5. Dominant weight number pattern for SO(S). The representations D(m, , m.), m, , m. integer, are given in the text. The dominant 
weights j of the three subgroups SO,(3), SO(3). , and SO(3). are given on the sides of the pattern. For the subgroup SO(3). all weights 
of a line are projected by L(m, , m.) onto the weight j which stands in the same line. For the subgroup SO(3h all weights of a column 
are projected onto the weight j standing in that column. For the subgroup SO(3). all weights along a straight line-as drawn in the 
pattern- are projected onto the weight j lying on that line. 

66 

55 65 

45 54 64 

36 44 53 63 

28 35 43 51 62 

21 27 34 42 51 61 

SO(3)2 :1 

m 
- 2: ' 

m-

50(3)1 : III - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

j - i . 
FIG. 6. As in Fig. 5. The representations are given in the text and correspond to D(m, , m2) with m,. m. half-integer. 



                                                                                                                                    

(0,0)1 

11,-1)3 ' (1,0)2 ' 11,1)3 

(2,-2)6' (2,-1)5' (2,0)4 ' (2,1)5 ' (2,2)6 

(3,-3)10' (3,-2)" (3,-1)8' (3,0)7' (3,1)8 ' (3,2), ' (3,3)10 

(4,3)14 ' (4,4)15 

(5,3)19 ' 

(6,2)24 ' 

0,1)30 ' 

FIG. 7. This figure represents the mapping L(m) of Fig. 5 onto the dominant weights of the SO(4) subgroup of SO(5). The dominant weight numbers, however, refer to SO(5) [while 
the weights are those of SO(4)J. The branching law corresponding to the restriction of SO(5) to its SO(4) subgroup is very simple as well as very familiar. Figure 7 has been given for 
reasons of illustration and to achieve some kind of completeness. See also Fig. 11. 

(-5,-5)21' (-5,-4)20' (-5,-3)19' (-5,-2)18' (-5,-1)17' (-5,0)16 ,(-5,1)17 (-5,2)18' 

(-4,-5)20' (-4,-4)15' (-4,-3)14' (-4,-2)13' (-4,-1)12' (-4,0)11 ' (-4,1)12 

(-3,-5)19' (-3,-4)14' (-3,-3)10' (-3,-2)9 (-3,-1)" (-3,0)7 

(-2,-5)18' (-2,-4)13' (-2,-3), (-2,-2)6' (-2,-1)5' 

(-1,-5)17' (-1,-4)12' (-l,-3)s, (-1,-2)5 

(O,-5)l6 ,(0,-4)11' (0,-3)7 

(1,-5)17' (1,-4)12' 

(2,-51 18 ' 

(-5,3)19 ' (-5,4)20' (-5,5)21 

(-4,2)13 ' (-4,31 14 , (-4,4)15 (-4,5)20 

(-3,I)S (-3,21, ' (-3,3)10 (-3,4)14' (-3,51 1, 

(-2,0)4 ' (-2,lls ' (-2,2)6 (-2,3), ' (-2,4)13' (-2,5118 

(-1,-1)3 ' (-1,0)2 ' (-1,1)3 {-1,2)5 ' {-I,3)s ' (-1,4)12' (-1,5117 

{O,-2)4 {O,-1)2 ' (O,O)! {O,11 2 (0,2)4 (0,3)7 (0,4)11 ' {O,S)16 

(1,-3)S ' (1,-2)5 ' (1,-1)3 (1,01
1 ' (1,l)~ (1,2)5 ,(1,3)8 f (1.4)12 ' (1,51 17 

{2,-4)13 ' (2,-3), ' {2,-216 (2,-1)5 ' (2,O)~ {2,1)1 (2,2)! (2,3), ' (2,4113 ' (2,S)IS 

(3,-51 19 ' (3,-4)14 ,(3,-3)10 (3,-2), ' (3,-I)S ' (3,O).! (3,1)! (3,2)! {3,3)!!! ' 0,41 14 ' {l,S)I' 

(4,-5)20 ,(4,-4)15 {4,-3)14' (4,-2)13' (4,-1)12' (4,O)!! ' (4,I)ll ' (4,21ll ' (4,31ll ' (4,4~12' (4,51 20 

(5,-5)21 {5,-4)20' (5,-3)1" {5,-2)18' (5,-1)17' {S,Ol16 ' (5,1)17 ' (5,2)IS ' {S,l)i,' {5,4)20' (5,5)21 

FIG. 8. Subpattern ofd.w. pattern given in Fig. 5. See Fig. 3. 

~ 
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'"cI 
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~ .... 
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(') 
t"' 
:> 
00 
00 .... 
(') 
:> 
t"' 

a 
::c 
o 
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'"cI 
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.... 
o 
00 
.....:a 



                                                                                                                                    

(-11 ,-l1lz1 , (-11,-9)20' (-11,-7) 19' (-11,-5)18' (-11,-3)17' (-11,-U I6 , (-11,1)16' (-11, 3) 17' (-11,5)18' (-11, 7)19' (-11,9)20 (-11,11)21 

(-9,-11)20,(-9,-9)15,(-9,-7)14 .(-9,-HI3 ,(-9,-3)-12 ,(-9,-1)11'(-9;1)1,1 ,(-9,3)12 ,(-9,5)1l ,(~9,7)14 (-9,9)15' (-9,11)20 

(-7,-11)19,(-7,-9)14 ,(-7,-7)10 ,(-7,-5)9 ,(-7,-3)8 ,(-7,-1)7,(-7.1)7 ,,(-7,3)8 ,(-7,5)9 

(-5,-11)18.(-5,-9)13,(-5,-7)9 .(-5,-5)6,(-5,-3)5,(-5,-1)4,(-5,1)4 ,(-5,3)5 

(-3,-11)17,(-3,-9)12,(-3,-7)8,(-3,-5)5 ,(-3,-3)3 ,(-3,-1)2 ,(-3,1)2 

(-1,-11)16' (-1,-9)11' (-1,-7) 7 • (-1,-5) 4 ' (-1,-3)2 ,(-1,-1)1 

(1,-11)16,(1,-9)11 ,(1,-7)7 ,(1,-5)4 ,(1,-3)2 

(3,-11)17' (3,-9)12 ,(3,-7)8 ,(3,-5)5 

(5,-11)18' (5,-9)13 ,(5,-7)9 

(-7,7)10' (-7,9)14,(-7,U)19 

(-5,5)6 ' (-5,7)9 ,(-5,9)13' (-5,11)18 

(-3,3)3' (-3,5)5 ,(-3,7)8' (-3,9)12,,(-3,11)17 

(-1,1)1' (-1,3)2 ,(-1,5)4' (-1,7)7 ,(-1,9)11,(-1,11)16 

(1,-ll 1 • 

(3,-3)3 ' 

(5,-5)6 ' 

(1,1)! ,(1,3)2 ,,(1,5)4 ,(1,7)7 ,(1,9)11 ,(1,11)16 

(3,-1)2,(3,ll! ,(3,3)1 ,(3,5)5 ,(3,7)8 ,(3,9)12 ,(3,11)17 

(7,-11)19,(7,-9)14 (7,-7)10' 

(9,-11)20 (9,-9)15' 

(5,-3)5 ,(5,-1)4 ,(5,1).! ,(5,3)1 ,(S,S)! ,(5,7)9 ,(5,9)13,(5,11)18, 

(7,-5)9,(7,-3)8' (7,-1)7 ,(7.,1)1 ,O,3)! ,O,5)! ,(7,7).!!!,(7,9)14 ,<7,11)19-

(9,-7)14' (9,-5) l,.3' (9,-3)12 ,(9'-~)11' ",I)ll ,(9, 3)g ,(9,5)ll' (9, 7)!! ,(9'~)1l • (9,11)20 

SU(Z)Z: j. ~, m· 

o 1 Z 3 4 5 6 7 8 9 10 

SO(3)1: j • 

(11,-11)21 (11,-9)20(11,-7) 19' (11,-5)18' (11,-3)17(11,-1)16 (ll,l)ll' (11, 3)!I(ll,5)g' (11, 7)o!!, (11.9)!Q.' (ll,ll)!! 

FIG. 9. Subpattern of d.w. pattern given in Fig. 6. See Fig. 3. 

SO(3)Z: j ~ 

SU(Z)I: .. - 0 1 2 3 4 S 6 7 8 9 10 11 12 1314 IS 16 17 18 19 20 

j - i 

FIG. 10. Dominant 
weight number pat­
tern for G •. The rep­
resentations D(p, q) 
corresponding to the 
d.w. numbers are 
given in the text. The 
dominant weights of 
the four subgroups 
SO(3h, SO(3)., 
SU(2h and SU(2). 
are given on the sides 
of the pattern. For 
SU(2h all weights 
(corresponding to 
d.w. numbers) of a 
column are projected 
by L onto the weight 
j of SU(2), standing 
in the same column. 
For the other sub­
groups the projection 
is as indicated by the 
straight lines drawn 
in the pattern. (All 
weights along such a 
straight line are pro­
jected by L onto the 
weight j of the sub­
group under con­
sideration which lies 
on that straight line.) 

.... 
o 
00 
00 

tc 

o 
:::c c 
tc 
tI1 
:::c 



                                                                                                                                    

(-7,-4'15' 

(-4,-7'15' 

(0,0)1 

3 ,(1,0)2' (0,1)2' 3 

5 ,(2,0)4' (1,1)3' (0,2)4' 5 

, (3,0)6' (2,1)5' (1,2)5' (0,3).6' 8 

11 ,(4,0)9' (3,1)8' (2,2)7' (1,3)8' (0,4)'9' 11 

IS ,(5,0)12' (4,1) 11' (3,2)10' (2,3)10' ,1,4)11' (0,5)12' IS 

19 ,(6,O)16,(5,l)i),(4,Z)14' (3,3')13' (2,4)14' (1,5)15' (0,6)16' 19 

• 24 (7,O)2y,(6,l)19' (5,2)18' (4,3)17' (3,4)17' (2,5)18' (1,6)19' (0,7)20 24 

29 , (8,0)25' (7,1)24 ' (6,2)23' (5,3)22' (4,4)21 ' (3,5)22' (2,6)23 (l,7)24' (0,8)25' 
29 

35 , (9,0)30' (8,1)29' (7,2)28' (6,3)27 ' (5,4)26' (4,5)26 (3,6)27' (2,7)28' (1,8)29' (0,9)30' 
lS 

(10,0)36' (9,1)35' (8,2)34 ' (7,3)33' (6,4)32 (5,5)31' (4,6)32' 0,7)33' (2,8'34' (1,9)3S' (0,10)36 

FIG. 11. This figure represents the mapping L of pattern Fig. 10 onto weights of the subgroup SU(3). The weights of this pattern are weights of SU(3). the d.w. 
numbers, however, refer to group G •. It should be noted, that in distinction to Fig. 7, weights of G. contribute which are mapped onto nondominant weights of the 
subgroup SU(3). (Namely, those weights of G. whose image in this pattern is characterized solely by the d.w. number of the mapped G. weight.) 

(-8,-2)14' (-9,0)1]' (-10.2)14' (-11,4)15 

(-5,-5)12' (~,-3)1l' (-1,-1)10' (-8,1)10' (-9,3)11" (-10,5)12' 

(-z .... ,) 14' (-3,-6)11' <-4,-4), ' (-,,-2)8' (-'.0)7 ' (-1,2)8 

(0'-')13' (-1,-7)10' (-2'-')8' (-3,-3)6' (-4,-1), , 

(2,-10)14' (1,-8)10' (0,-6), ' (-1,-4), , 

(4,-11\5' (3'-'h' (2,-7)8 

(5,-10)12' 

(-11,7)15 

(-8,4), • 

(-5,_), , 

(-2.-2)., 

(1;5) 5 

(4.-8)9 ' 

(7;11)15' 

(-9,6)11' (-10,8)I' 

(-6,3)6 ' (-7,5)8' (-',1)10' (-9,9)13 

(-3,0)3 ' (-4,2)4' (-5,4)5' (-6.6)1 (-1,8)10' 

(0.-3) J I (-1,-1)2' (-2.1) 2' (-3,3)3 (-4,5)5' 

().-6)6 • (2,-4)4 ,(1.-2)2' (O'O'l (-1,2)2 • 

(6,-9)11' (5,-7)8 ,(4,-5)" (3,-3) 3 (2,-1)2' 

(8,-10)140 ,-8)10_ (6,-6)7 (5,-4)" 

<',-9)11 (8,-1)10' 

(-8,10)14 

(-5·7)8 ' (-6.9)11' 

(-2,4), • (-3.6)6 ' 

(1.1).! , (0,3)3 

(4.-2)4 • (3,0)1 • 

(7,-5)8 ' (6,-3)6 I 

(1o,-8h' (9,-6)11' 

FIG. 12. Subpattern of Fig. 10. See figure caption of Fig. 3. 

(-1,11)15 

(-4,8), • (-5.10)12 

<-1,5)5 • (-2.7) •• (-3.9)11' (-.,11)15 

(2,2).! ' (1,4)5 (0,6)1 (-1,8)10' (-2,10)14 

(5,-1)5 ' (4,1)1 (3,3)§. (2,5)8 ( 1,7)10' (0")13 

(8,-4), ' 0,-2)8 ' (6.0)1 (5,2)! (4.4)! • (3,6)11' 

(11.-7)IS' (10,-5)12' (9,-J)lP (8.-1)10' (7,l)!Q.' (o,3)!!, 

(11.-4)15' (10,-2)14' (9'O)ll' 

(2,8)14 

(S.S)~ (4,7)15 

(a,2)!!, (7,4)ll 
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(3) Subgroup SU(2)1 X SU(2h: 

L(p, q) = rHp + q); -H -p + q)]. 

The diagram is given as 

(j,f); 1, (j + I;j'); -1, (j;j' + 1); -1, (j + I;j' + 1); 1, 

where j and j' refer to the two subgroups, respectively. 

Multiplicity ji: 

0 q + 1 p+4 p+2q+6 2p + q + 9 2p + 2q + 10 

-1 0 

-1 1 tep - q) + 1 
-1 t(p + 2q) + 2 

-1 p+4 

1 -1 p+q+5 
-1 !e2p + q) + 6 

Representations: 
The representations of the pattern Fig. 11 are 

(10, 10)36, (11, 8)35' (12, 6)34, (13, 4)33, (14, 2)32' 
(15,0)31' (9,9)30' (10,7)29' (11,5)28' (12,3)27' 
(13, 1)26' (8, 8)25' (9,6)24' (10,4)23' (11,2)22' 
(12,0)21' (7, 7)20' (8,5»)9' (9,3)18, (10,1)17' (6,6)16' 
(7,4»)5' (8,2»)4, (9,0)13' (5, 5)12' (6,3)11' (7, 1)10' 
(4,4)9' (5,2)8' (6,0)7' (3,3)6' (4, 1)5, (2,2)4' (3, 0)3, 
(1,1)2, (0,0)1' 

Sets of equivalent weights: 
For the dominant weights given -above there holds: 

(a) 12(P, q) 
(b) 6(P, q) 

(c) l(P, q) 

if 
if 
if 
if 

P ~ 0, q ~ 0, and p r6 q, 
P ~ 0, q ~ 0, and p =q, 
P ~ O,q = 0, 
P = q = O. 

• Supported in part by the National Science Foundation, Wash­
ington, D.C. under NSF Grant GP-9623. 

t Visiting member. 
1 The literature on the subject is very extensive, and it is rather 

doubtful whether any kind of completeness could be achieved by the 
author. We therefore prefer to quote a few publications on the sub­
ject which together cover a rather wide range of references. 

2 J.-P. Antoine and D. Speiser, J. Math. Phys. 5, 1226, 1560 
(1965); J. McConnel, Proc. Roy. Irish Acad. 65A, No.1 (1966). 

3 (a) B. Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento 34, 
1101 (1964); (b) A. J. Macfarlane, L. O'Raifeartaigh, and P. S. Rao, 
J. Math. Phys. 8, 536 (1967). 

4 A. P. Stone, J. Math. Phys. 11,29 (1970). 
~ G. Racah, Group Theoretical Concepts and Methods in Ele­

mentary Particle Physics, F. Giirsey, Ed. (Gordon and Breach, New 
York, 1962). 

6 N. Straumann, Helv. Phys. Acta 38,481 (1966). 
7 (a) A. U. Klymyk, Academy of Sciences, Ukrainian SSR, 

Institute for Theoretical Physics, Kiev, No. 67-17, 1967; (b) R. M. 
Delaney and B. Gruber, J. Math. Phys. 10,252 (1969). 

8 For technical reasons, the boldface numerals are represented in 
the patterns by underlined numerals. 

9 Some may have multiplicity zero. The d.w. numbers greater 
than p obviously do not belong to this representation and are there­
fore to be ignored. The weights corresponding to these d.w. numbers 
may also be looked upon as having multiplicity zero. 
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Linear Integral Equations for a Certain Class of H-Functions 
Applicable to the Theory of Neutron Transport and 

Radiative Transfer* 

E. E. BURNISTON 
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607 

AND 

C. E. SIEWERT 

Department Of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27607 

(Received 16 April 1970) 

A matrix version of the classical Riemann-Hilbert problem defined on an open contour is discussed. 
The problem is reduced to a quasi regular integral equation for cases where the sufficient HOlder con­
tinuity condition is satisfied and the component indices are nonnegative. As an illustration of this 
procedure, linear integral equations (rather than the usual nonlinear. forms), for Chandrasekhar's 
functions Hl(p} and Hr(p} are established in a form amenable to solution by numerical iteration. 

I. INTRODUCTION 

In general, the use of the singular eigenfunction 
expansion technique, introduced by Casel for treating 
problems in neutron transport theory to solve bound­
ary value problems in "particle" transport analysis, 
requires solutions to singular integral equations in 
order to establish the various expansion coefficients.2-4 
Once the appropriate singular equations are devel­
oped, the methods of Muskhelishvili5 can be used to 
convert the boundary value problem to an equivalent 
Riemann-Hilbert problem, and in many cases2 

closed-form solutions may be obtained. 
Following Case's original paperl on the subject of 

singular eigenfunction expansions, the method has 
been extended to include many different models in 
neutron transnort theory and radiative transfer. For 

.~ , .,- I • ~ 

example, the degenerate kernel model for energy 
transfer has been discussed by Mika,6 the case of 
anisotropic scattering in I-speed neutron transport 
theory has been thoroughly investigated by McCor­
mick and Kuscer, 3 and several studies in "multigroup" 
theory have been reported by Siewert and Zweifel,4.7 
Siewert and Fraley,S Mourad and Siewert,9 and 
Shultis.l° 

The usual procedure,1.2 once the normal modes of 
the considered equation of transfer are established, is 
first to attempt the proof of a full-range expansion 
theorem. In developing this proof, the singular 
integral equations encountered can normally2 be 
reduced to a special case of the inhomogeneous Rie­
mann-Hilbert problem which can then be solved 
straightforwardly even for the case of matrices.9 

The considerably more interesting half-range expan­
sion theorem2 cannot, in general, be established quite 
so readily; in fact, no constructive proofs for the 
muItigroup or matrix models considered by ShultislO 

or Mourad and Siewert,9 for example, have been 
reported. Although for some cases the proof of the 
half-range theorem applicable to ma.trix models has 
been converted to the need to solve systems of regular 
integral equations,lO.11 there have been no rigorous 
proofs of the existence of solutions to these equations; 
in some instances, however, this approach has been 
shown to be feasible computationally for non­
multiplying media.12 Another approach used for half­
range applications has been exhibited by Metcalf and 
ZweifeP3 and Mourad,14 who have shown it possible 
to solve by numerical iteration the singular integral 
equations encountered in two different matrix prob­
lems. 

A more direct method for solving half-range prob­
lems with the singular eigenfunction expansion 
technique is to pursue the homogeneous' Riemann­
Hilbert problem.5 However, as Leonard and Ferziger16 

and Kuscer16 have illustrated, multigroup models 
normally lead to a matrix form of the Riemann­
Hilbert problem, and closed-form solutions are not 
generally available. We should thus like to discuss 
the analysis required to reduce these analytically 
formidable problems to forms computationally more 
feasible. 

II. GENERAL ANALYSIS 

For multigroup application of Case's method of 
normal modes,l the proof of the required half-range 
expansion theorem reduces to the need to solve a 
homogeneous Riemann-Hilbert problem for the 
normally called X matrix. l5 Here a matrix X(z) , 
holomorphic in the complex plane cut from zero to 
one along the real line, is sought such that the bound­
ary values from above ( + ) and below ( - ) the cut are 
related by 

X+(.u) = G(.u)X-(,u), ,u E [0, 1], (1) 

3091 
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where G(,u) is a given matrix. We seek here the 
fundamental solution to Eq. (1), and thus X(z) and 
X±(,u) are required to be nonsingular in the finite 
plane. 6 

Since, in general, there exists no analytical solution 
to Eq. (1), we wish to make use of Muskhelishvili's 
theory5 to convert Eq. (1) to a quasi regular linear 
integral equation for X-(,u) , or alternatively for 
Chandrasekhar's H-matrix equivalent.17 

If w~ now stipulate that G(,u) obeys the HOlder 
conditionS on the interval [0, 1] and further that 
G(O) = G(1) = I, I being the unit matrix, then we can 
write [see Ref. 5, p. 386, Eq. (126.5)] 

X-(,u) = Xoo(,u) + ~ (1[G-1(,u)G(v) - I]X-(v) ~ 
2m Jo v -,u 

+ ~ [G-I(,u) - I]l X-(v) ~, (2) 
27T1 0, v -,u 

where the arbitrary arc CI has been added (with the 
proviso that there be a continuously turning tangent) 
to the real-line segment [0, 1] to yield a closed 
contour C, as depicted in Fig. 1. Further, we have 
denoted the principal part of X(z) at infinity by 
Xoo(z). 

In order to establish Eq. (2), we have also defined 
G(,u) £ I for ,u E CI . A similar procedure for closing 
the contour has been used by Leonard and Ferziger15 

and Kuscer,16 though in the latter case a term due to 
the integral on CI appears to be missing [see Ref. 16, 
p. 267, Eq. (113)]. 

We note that Muskhelishvili's derivation5 of the 
equation equivalent to our Eq. (2) was based on the 
proposition that the matrix G(,u) was HOlder con­
tinuous on C, and that assumption is maintained here. 
Clearly, the fact that G(,u) is taken to be a HOlder 
matrix is sufficient to ensure that Eq. (2) is quasi­
regularS; however, Leonard and FerzigerI5 applied 
Muskhelishvili's analysis without modification to a 
multigroup problem where the G matrix is not of the 
Holder class, and the assertion that their equivalent 

z plane 

FIG. 1. The contour C in the z plane. 

to Eq. (2) is quasiregular is not immediately justified. 
[Clearly, simple continuity, as opposed to Holder 
continuity, is not sufficient to ensure that Eq. (2) is 
quasiregular.] 

Since we are seeking to develop an integral equation 
for X-(,u) only on the real-line segment ,u E [0, 1], we 
rewrite Eq. (2) for the two cases ,u E [0, 1] and,u E CI : 

1 i l 
dv X-(,u) = Xoo(,u) + -. [G-I(,u)G(v) - I]X-(v)--

2m 0 v -,u 

+ ~ [G-I(,u) - I] ( X-(v) ~ , 
2m JOI v - ,u 

"" E [0, 1], (3a) 
and 

X-(,u) = Xoo(,u) + ~ (I[G(V) - I]X-(v) ~, 
2m Jo v -,u 

,u E CI • (3b) 

Equation (3b) is clearly an explicit expression which 
relates X-(,u) for ,u on CI to Xoo(,u) and values of 
X-(v) , where v is confined to the real-line segment 
[0, I]. This equation can thus be entered into the last 
term of Eq. (3a) to.yield 

1 il I dv X-(,u) = Xoo(,u) + -. [G- (,u)G(v) - I]X-(v) --
2m 0 v -,u 

+ ~ [G-I(,u) - I] ( (Xoo(v) 
2m JOI 

+ ~ (I[G(V') - I]X-(v')~) ~, 
2m Jo v - v v - ft 

,u E[O, 1]. (4) 

We should now like to consider the repeated integral 
in the above equation and therefore introduce the 
definition 

I(,u) £ ( {(I [G(v') - I]X-(v') ~} ~ , 
J 01 Jo v - v v - ,u 

,u E (0, 1). (5) 

Since the inner integral in Eq. (5) is nonsingular 
[because G is Holder on C and G(O) = G(l) = I), we 
invert the order of integration to obtain 

I(,u) = (1 ([G(v') _ I]X-(v') ( _,_1 __ 1_ dV) dv', 
Jo JO l V - V V - ,u 

,u E (0, 1). (6) 

Performing now the integration over v in Eq. (6), we 
find 

I(,u) = f[G(v') - 1][ln e~ -1) 

- In (! - l)JX-(v') ~, ,u E (0, 1). (7) 
,u v -,u 
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Equation (7) may now be substituted for the 
repeated integral in Eq. (4) to yield 

X-eft) = Xa,(ft) + ~ [G-1(ft) - I] [ Xoo(v) ~ 
2m JOl v - ft 

1 il dv + - K(v, ft)X-(v) --, ft E [0, 1], (8) 
27Ti 0 v - p 

where K(v, p) is given by 

K(v, ft) = G-I(p)G(v) - I + ~ [G-1(p) - I] 
2m 

x [G(v) - 1][In e -1) -In e -1) 1 
(9) 

Finally, the integral defined on CI in Eq. (8) may be 
written as 

r Xoo(v) ~ = -p [\00(')1) ~ + 7TiX oo(ft), JO l v - p Jo v - P 
(10) 

so that the desired equation in terms only of variables 
on the line segment [0,1] is obtained: 

X-eft) = XooCu) + [G-1(p) - I] 

X (tXooCP) - ~ p e Xoo(v) ~) 
2m Jo v - ft 

+ ~ [lK(v, p)X-(v) ~, P E [0, 1). 
2m Jo v - P 

(11) 

Equation (11) represents the basic version of the 
classical result [see Ref. 5, p. 386, Eq. (126.5)] 
modified for an open contour and is based on the 
proposition that the given G-matrix is Holder 
continuous on the interval [0, 1] and further that 
G(O) = G(l) = I. 

It is clear that once X-(p) is determined, as say from 
Eq. (11), X(z) follows immediately through the 
appropriate Cauchy integral; however, there remains 
the task of proving the equivalence between the 
original problem and Eq. (11), the ordinary integral 
equation for X-eft). Furthermore, the solubility of 
Eq. (11) needs to be established in order to ensure 
that a solution to the original problem exists. It is 
stated by Muskhelishvili (Ref. 5, p. 389) that con­
ditions sufficient for proving the required equivalence 
and solubility are that neither the accompanying 
problem, 

':I'+(ft) = G-l(fl)':I'-Cft), ft E C, (12) 

nor the associate problem, 

has a nontrivial solution vanishing at infinity.s Here 
the transpose of G(p) is denoted by GT (ft). 

Although there seems to be no general method for 
calculating the so-called component indicess for the 
original Riemann-Hilbert problem given by Eq. (1), 
it appears that, for problems normally encountered in 
neutron transport theory and radiative transfer, the 
G matrix is such that its indices are nonnegative.16 We 
thus restrict our attention to those problems for which 
the G matrix leads to nonnegative component indices. 
It now follows that the boundary value problems 
defined by G-l and [GT]-l will have nonpositive 
component indices, and therefore the only solution 
of the accompanying or associate problems which 
vanishes at infinity must be the trivial solution. . 

III. QUASIREGULAR FREDHOLM EQUATIONS 
FOR HtC",) AND Hl",) 

We should like to apply the analysis of the previous 
section to two special cases pertinent to the study of 
polarized light in a free-electron atmosphere.s.17 We 
thus seek solutions X1(z) and X2(z) of the Riemann­
Hilbert problem given by Eq. (1) for the two scalar 
cases: 

A~(p) 
Gip) = --, p E [0,1], a = 1 or 2, (14) 

A;(ft) 

with A;=(p) being the boundary values of the function 

A.,(z) = (_I)a + 3(1 - z2)(1 + tz e ~). (15) ll/-t - z 

Since we require here the canonical solutions, i.e., 
solutions which are nonvanishing in the finite plane 
and which yield' ll'onvanishing boundary values 
X; Cfl) , oc = 1 or 2, on the cut ft E [0, 1], we follow 
Muskhelishvili5 and first calculate the required indices 
NI and N2 of the two problems: 

1 
Na = -. [arg Ga(ft)]c, oc = 1 or 2, (16) 

2m 

where [ ]0 is used to denote the increase of the 
function in brackets as the contour C is traversed in 
the positive direction. It is a simple matterS to show 
for the functions Ga(p) considered here that 

Nl = 1 (17a) 
and 

N2 = 0. (17b) 

Consequently, from the remarks of the previous 
section, it follows that the integral equation for 
X;(ft) is equivalent to Eq. (1) and, furthermore, that 
Eq. (II) is soluble, the solution being unique to within 
a multiplicative constant. 
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It follows from Eq. (17a) that Xl(z) will have a 
simple zero at infinity, and thus XlOO(v) == O. In a 
similar manner, X2oo (1') must be a constant, which we 
arbitrarily choose equal to unity in order to normalize 
our results in the established manner.s Since the 
principal parts of the functions X,.(p,) have been deter­
mined, we can now write the forms of Eq. (11) 
appropriate here: 

XI(t-t) = ~ ilKl(V, t-t)XI(v) ~, t-t E [0,1], 
2m 0 v - t-t 

where 

K,.(v, t-t) = G";\t-t)G,.(v) - 1 + ~ [G;\t-t) - 1] 
2m 

x [Giv) - 1][ln e -1) - In e -1) 1 
(19) 

Equation (18a) is clearly a homogeneous equation 
for X;(p,), and thus we wish to select a normalization 
consistent with that used previously, since the desired 
canonical solution is fixed only to within an arbitrary 
multiplicative constant. In the process of establishing 
the exact form of Xl (z), Siewert and FraleyB normalized 
their solution such that 

(20) 

Now setting t-t = 0 in Eq. (18a), we find 

XI(O) = Xl(O) = ~ il[Gb) - I]XI (v) dv, (21) 
2m 0 v 

which, when the explicit forms of G1(v) and Eq. (20) 
are used, yields the identity 

11 XI(V) -./5 
If"z(v)--dv = -, 

o AI(v) 2 
(22) 

where we have introduced Chandrasekhar's char~ 

acteristic function17 

(23) 

We thus seek a solution to the homogeneous Eq. (18a) 
such that X1(O) = .)5 or, alternatively, such that it is 
subject to the integral constraint given by Eq. (22). 

Rather than pursue the analysis for X;(p,) , we 
prefer ~o write our equations in terms of Chandra­
sekhar's functionl7 Hz(p,), 

H / ,,) = 2.)5 XICt-t) E [0 1] (24) 
Z\f" 5, AI(t-t) , t-t " 

and thus convert Eq. (18a) to the equivalent 

1 il AI(v) dv 
Hlt-t} = -. -_- Kb, t-t)HzCv) --. (25) 

2m 0 A1(p,) v - t-t 

Furthermore, the normalization Hz(O) = I follows 
from Eqs. (15), (20), and (24), whereas the alternative 
integral constraint follows from Eq. (22): 

flf"z(v)HzCv) dv = 1. (26) 

In the process of simplifying the algebra once the 
explicit form of Al(Z) is used in Eq. (25), it becomes 
possible to split off a term proportional to the integral 
given in Eq. (26), and thus by using that identity we 
are able to convert the homogeneous integral equation 
for Hz(t-t) to an inhomogeneous form, the solution of 
which necessarily is normalized in the desired manner. 
We find finally that Hz(t-t) is the solution to the 
Fredholm equation 

Hz(t-t) = 2g1(t-t)(2 - 3t-t2) 

+ 9g1C/-t) (1(1It-t(1 - v2)(1 - t-t2)flC/-t, 11) 

4 Jo v-t-t 

+ 2t-t(v 3+ t-t»)Hb) dv, (27) 

where 
g,.(t-t) ;=: [A~(t-t)A~(t-t)]"-l, a; = 1 or 2, (2Sa) 

A;(t-t) = (-1)" + 3(1 - t-t2)(1 - t-t tanh-l t-t) 

± t7Tit-t(1 - t-t2), IX = 1 or 2, (28b) 
and 

fl(t-t, v) = In (1 - t-t)'l.) -In (1 - V)2). (2Sc) 
t-t(1 + t-t) v(l + v) 

For the sake of brevity, we state simply that the 
expressions 

X 2oo(v) = 1, (29a) 

X 2(0) = ')2, (29b) 

H (v) = 2 /2 Xt(lI) (29c) 
r Y At(v)' 

and 

(29d) 

with 
(2ge) 
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can be used in a manner analogous to that used for 
the 0( = 1 case to find the resulting version ofEq. (18b) 
for H.(p,): 

Hlft) = g2(P,) 3../2/l(1 - Ii) In - /l [ (
1 ?) 

,u(1 + /l) 
+ 4(4 - 3/l2)] 

+ 9gi/l) (1 (v,u(1 - v2)(1 - /l2)t::.(,u, v) 
4 Jo V-/l 

- 2,u(v
3
+ ,u»)Hr(V) dv. (30) 

Equations (27) and (30) clearly are not so concise 
as Chandrasekhar's nonlinear equations17 : 

Hi,u) = 1 + ,uH,.(/l) (\Y«(v)H«(v) ~ , Jo v + /l 
0( = 1 or r. (31) 

Furthermore, for the case of scalar Riema'hn-Hilbert 
problems, exact analytical solutions are available; 
however, the extension to matrices cannot be made 
analytically, whereas it is felt that the method em­
ployed here may be used to advantage for certain 
classes of matrix Riemann-Hilbert problems. 
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It is shown that A(q, N), the number of ways of arranging q indistinguishable dumbbells on a 2 X N 
rectangular array of compartments, is.exactly described by the recursion relation 

A(q, N) = A(q, N - 1) + 2A(q - 1, N - 1) + A(q - 1, N - 2) - A(q - 3, N - 3). 

For large values of N the normalization of the distribution generated by this recursion relation is found 
to be 0.665(3.214)N and the maximum number of arrangements occurs when the array is approximately 
61 % occupied. 

l. INTRODUCTION 
There are important aspects of a number of physical 

phenomena, e.g., magnetism, adsorption, crystalliza­
tion, which can be treated by considering the occupa­
tion statistics of a regular space lattice or array. One 
of the interesting problems arising from this approach 
is that of determining the number of possible arrange­
ments of dumbbells on a lattice space. Here the 

lattice space is considered to be a rectangular array of 
compartments and the dumbbells occupying two 
adjacent compartments. A 2-dimensional form of this 
problem is encountered in the theory of adsorption of 
diatomic molecules.1 

As is generally true for problems of this nature, 
exact solutions have been found for the I-dimensional 
case,2-5 but exact solutions for spaces of higher-order 
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can be used in a manner analogous to that used for 
the 0( = 1 case to find the resulting version ofEq. (18b) 
for H.(p,): 

Hlft) = g2(P,) 3../2/l(1 - Ii) In - /l [ (
1 ?) 

,u(1 + /l) 
+ 4(4 - 3/l2)] 

+ 9gi/l) (1 (v,u(1 - v2)(1 - /l2)t::.(,u, v) 
4 Jo V-/l 

- 2,u(v
3
+ ,u»)Hr(V) dv. (30) 

Equations (27) and (30) clearly are not so concise 
as Chandrasekhar's nonlinear equations17 : 

Hi,u) = 1 + ,uH,.(/l) (\Y«(v)H«(v) ~ , Jo v + /l 
0( = 1 or r. (31) 

Furthermore, for the case of scalar Riema'hn-Hilbert 
problems, exact analytical solutions are available; 
however, the extension to matrices cannot be made 
analytically, whereas it is felt that the method em­
ployed here may be used to advantage for certain 
classes of matrix Riemann-Hilbert problems. 
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It is shown that A(q, N), the number of ways of arranging q indistinguishable dumbbells on a 2 X N 
rectangular array of compartments, is.exactly described by the recursion relation 

A(q, N) = A(q, N - 1) + 2A(q - 1, N - 1) + A(q - 1, N - 2) - A(q - 3, N - 3). 

For large values of N the normalization of the distribution generated by this recursion relation is found 
to be 0.665(3.214)N and the maximum number of arrangements occurs when the array is approximately 
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tion, which can be treated by considering the occupa­
tion statistics of a regular space lattice or array. One 
of the interesting problems arising from this approach 
is that of determining the number of possible arrange­
ments of dumbbells on a lattice space. Here the 

lattice space is considered to be a rectangular array of 
compartments and the dumbbells occupying two 
adjacent compartments. A 2-dimensional form of this 
problem is encountered in the theory of adsorption of 
diatomic molecules.1 

As is generally true for problems of this nature, 
exact solutions have been found for the I-dimensional 
case,2-5 but exact solutions for spaces of higher-order 
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FIG. 1. There are 11 
possible ways of arrang­
ing two indistinguishable 
dumbbells on a 2 X 3 
array. 

dimensionality have been obtained only for very 
special cases,6.7 i.e., a 2-dimensional array completely 
covered with dumbbells. Consequently, approximation 
methods have been utilized8- 1o to attack this problem. 

In the present paper we are concerned with the 
occupation statistics for dumbbells on a pseudo-2-
dimensional rectangular array-the 2 X N array. We 
wish to determine the number of ways of arranging 
dumbbells on a 2 X N rectangular array of compart­
ments (see Fig. 1). 

II. DERIVATION OF RECURSION RELATION 

In this section we seek to determine a recursion 
relation for A(q, N), the number of arrangements of q 
indistinguishable dumbbells on a 2 X N rectangular 
array of compartments. For the purposes of this 
calculation we shall define the following arrays: 
(i) An oc(N) array (see Fig. 2a) is defined to be an 
array of compartments arranged in two adjacent, 
aligned rows of N compartments each; (ii) a peN) 
array (see Fig. 2b) is one in which the compartments 
are arranged in two adjacent, aligned rows; one row of 
N compartments and one row of N + 1 compart­
ments. 

A(q, N) is then the number of ways of arranging q 
indistinguishable dumbbells on an oc(N) array, and we 
define B(q, N) as the number of ways q indistinguish­
able dumbbells may be arranged on a peN) array. 

Theorem 1: 

B(q, N) = A(q, N) + B(q - I, N - I). (1) 

Proof: Let b(q, N) be the set of all possible arrange­
ments of q indistinguishable dumbbells on a peN) 

array; c(q, N) is the subset of b(q, N) in which the 
extra compartment is vacant, and d(q, N) is the subset 
of b(q, N) in which the extra compartment is occupied. 
Then every arrangement in c(q, N) differs from every 
arrangement in d(q, N) by the condition of occupation 
of the extra compartment, i.e., c(q, N) !l d(q, N) = 4>, 
a null set. In addition, every member of b(q, N) will be 
found either in c(q, N) or d(q, N), i.e., c(q, N) U 
d(q, N) = b(q, N). 

We conclude that #b(q, N), the number of members 
of the set b(q, N), is given by 

#b(q, N) = #c(q, N) + #d(q, N) == B(q, N). (2) 

The extra compartment of the P array is unoccupied 
in the set c(q, N) so that by definition #c(q, N) == 
A (q, N). If the extra compartment is occupied, then 
the adjacent compartment in the same row is also 
occupied. Hence, all other possible arrangements 
must involve the remaining q - 1 dumbbells on the 
remainder of the array, which is a P(N - 1) array. 
The number of elements in d(q, N) is therefore 
B(q - 1, N - 1), i.e., #d(q, N) == B(q - 1, N - 1). 
The theorem then follows from Eq. (2). 

Corollary 1: 
q 

B(q, N) = IA(q - j, N - j). (3) 
;=0 

Proof' Use Theorem 1 to evaluate B(q - 1, N - 1), 
i.e., 

B(q-I,N-I)=A(q-l,N-l) 

+ B(q - 2, N - 2). (4) 

Substitution of this into the theorem yields 

B(q, N) = A(q, N) + A(q - 1, N - 1) 

+ B(q - 2, N - 2). 
Repeated use of Eq. (4) gives 

B(q, N) = A(q, N) + A(q - 1, N - 1) 

+ ... + A(O, N - q) 
q 

= IA(q - j, N - j). 
;=0 

N 
A 

( ... 

1IIIIIlfllllii (0) 

(5) 

a(N)-array 

N 

FIG. 2 (a) An (1.(N) array; 
(b) A (3(N) array. 

J A'--__ ----., 

111111 { lllill ( b) 
,B(N)- array 
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Theorem 2: 

A(q, N) = A(q, N - 1) + 2B(q - 1, N - 2) 

+ A(q - 1, N - 1) 

+ A(q - 2, N - 2). (6) 

Proof". Let a(q, N) be the set of all possible arrange­
ments of q dumbbells on an rJ.(N) array and let el (q, N), 
e2(q, N), ... , e5(q, N) be subsets of a(q, N) in which 
the Nth column of the array is occupied in a manner 
shown in Fig. 3. In other words, the ek(q, N) are 
defined on the basis of the manner in which the two 
compartments forming the Nth column are occupied. 
Since every member of ek(q, N) differs from any and 
every member of e/q, N)(k "" j), we state that 
ej(q, N) n ek(q, N) = 4>, k "" j. In addition, these 
five configurations are clearly the only possible Nth 
column configurations; thus 

5 

U ek(q, N) = a(q, N). 
k=l 

We conclude that 

#a(q, N) = #el(q, N) + #e2(q, N) 

+ #ea(q, N) + #e4(q, N) 

+ #es(q, N) == A(q, N). (7) 

The set el(q, N) contains only those arrangements 
in which the Nth column is unoccupied. All q dumb­
bells are then arranged on the remaining rJ.(N - 1) 
array; hence #e1(q, N) == A(q, N - 1). 

Both sets ,e2(q, N) and ea(q, N) have one compart­
ment of the Nth column occupied and one compart­
ment empty. Necessarily, this implies that one 
compartment of the (N - 1 )th column is also occu­
pied. In each of these sets the remaining q - 1 dumb-

FiG. 3. The state of 
occupation of the Nth 
column defines the sub­
sets el , e 2 , ea , e4 , and eo. 

1111111!Emle, 
a (N -I)-array Nth column 

11111111111111 e2 

'------v------' 
/3 ( N - 2 )·array 

1111/ II! 111/11 e, 
'------v-----' 

/3 (N - 2 )·array 

111I " I Ii II ,,~ e. 
\ J 

a (N .::- I)·array 

IIIIIII!! III Ii eo 
\ ) 

a (N -2)-array 

bells are arranged on an array composed of the 
original array minus the three precluded compart­
ments, i.e., on a (3(N - 2) array. We may then write 
#e2(q, N) = #ea(q, N) == B(q - 1, N - 2). 

One dumbbell covers both compartments of the 
Nth column in the set e4(q, N). Thus, the remaining 
q - 1 dumbbells cen be arranged on a rt.(N - 1) 
array, i.e., #e4(q, N) == A(q - 1, N - 1). 

In the set e5(q, N) two dumbbells cover the Nth 
column [and also the (N - l)th column]. The remain­
ing q - 2 dumbbells are arranged on the rJ.(N - 2) 
array; thus #e5(q, N) == A(q - 2, N - 2). Applica­
tion of Eq. 7 yields Theor~m 2. 

Corollarv 2: 

A(q,N)=A(q,N-l)+2A(q-I,N-I) 

+ A(q - 1, N - 2) - A(q - 3, N - 3). 

(8) 

Proof' Use Corollary 1 to evaluate B(q - 1, N - 2) 
in Theorem 2, i.e., 

A(q, N) = A(q, N - 1) 
q-l 

+ 2IA(q - 1 - j, N - 2 - j) 
j=O 

+ A(q - 1, N - 1) + A(q - 2, N - 2). 

(9) 

If Eq. (9) is used to evaluate A (q - 1, N - 1) and we 
form the difference A(q, N) - A(q - 1, N - 1), we 
obtain Corollary 2 by noting that 

q-l 

A(q - 1, N - 2) = IA(q - 1 - j, N - 2 - j) 

Corollary 3: 

j=O 

0'-2 
- IA(q - 2 - j, N - 3 - j). (10) 

j=O 

A(q, q) = f'q, (11) 

where fq is the qth Fibonacci number. 

Proof' Since, if q > N, no arrangements are 
possible, i.e., A(q, N) = 0, the special case in which 
the array is completely filled has the recursion 

A(q, N) = 2A(q - 1, N - 1) - A(q - 3, N - 3) 

or 

A(q, q) = 2A(q - 1, q - 1) - A(q - 3, q - 3). 

(12) 

The initial conditions A(O, 0) = A(l, 1) = 1 and 
the use of Eq.(I2)yieid the Fibonacci sequence. Thus, 
the number of arrangements possible for q = iN 



                                                                                                                                    

3098 R. B. McQUISTAN AND S. J. LICHTMAN 

I~ 0 I 2 3 4 5 6 7 8 9 10 

0 I 

I I I 

2 I 4 2 

3 I 7 II 3 

4 I 10 29 26 5 

5 I 13 56 94 56 8 

6 I 16 92 234 263 114 13 

7 I 19 137 473 815 667 223 21 

8 I 22 191 838 1982 2504 1577 424 34 

9 I 25 254 1356 4115 7191 7018 3538 789 55 

10 I 28 326 2054 7646 17266 23431 18336 7622 1444 89 

FIG. 4. The number of arrangements when indistinguishable 
dumbbells are placed on a 2 X N array for Nand q in the range 
0-10. 

dumbbells on a filled array is the qth Fibonacci 
number. 

Figure 4 shows the number of arrangements of q 
indistinguishable dumbbells on a 2 X N array for q 
and N in the range 0-10, according to Eq. (8). 

III. NORMALIZATION 

In this section we attempt to determine 
N 

;):.N == ~A(q, N), 
q=O 

(13) 

the normalization of the statistics defined by the 
recursion given in Eq. (8). By Corollary 2 we find the 
recursion relation for ;):.X to be 

;):..v = 3;):..v-l + ;):.N-2 - ;):.N-3 (14) 

with the initial conditions ;):.0 = 1 and ;):.1 = 2. 
Utilizing the results of Zeitiin,ll we find the generating 
function of ;):.X to be 

__ --....:l:....-_x ___ _ ~ A N 
- £..,UNX • 

1 - 3x - X2 + X3 N=O 

This generating function may be rewritten as 

1 - x k} 
= 

1 - 3x - X2 + X3 1 - SIX 

(15) 

+ k2 + ka ,(16) 
1 - S2X 1 - Sax 

where the k's are constants and the S's are the zeros 
ofxa - 3x2 - X + 1, i.e., 

SI = 3.214320, S2 = 0.460811, Sa = -0.675131. 

Thus, the equivalent 
expanded as 

generating function may be 

kl k2 ka --=--+ + 
1 - SIX 1 - S2X 1 - Sax 

~ N k SN k SN) N (17) = £..(k1S 1 + 2 2 + 3 a X • 
N=O 

Since the absolute values of S2 and S3 are less than 
unity, S~· and S~· approach zero as N --+ 00. Thus in 
the limit we have 

lim /).X = klS~ (18) 
N .... oo 

As X --+ S"11, only the first term on the right-hand side 
of Eq. (16) is important, so that we may write 

lim ( 1 - X _ kl ) = O. (19) 
"' .... 8,-1 1 - 3x - X2 + X3 1 - SIX 

Utilizing L'Hospital's rule', we may determine k1 : 

k, = (1 - ;J (~ _ ~ _ 3 ) ~ 0.665 

Thus we may write 
(20) 

lim;):.N = klSf ~ 0.665(3.214)N. (21) 

This normalization may be compared with that 
obtained for single-particle statistics, 2N , and with 
I-dimensional dumbbell statistics3 

12(N - q) = ~[(1 + v's)N _ (1 - ./5)NJ, 
q=O q .J5 2 2 

which for large N becomes 0.447yN, where y is the 
golden mean (1.618). 

IV. EVALUATION OF THE MEAN VALUE 
(EXPECTATION) FOR LARGE N 

In this section we attempt to determine (), the 
coverage [() == qjN] at which the distribution is a 
maximum. Here we define the mean value fl,V to be 

flN == ~oqA(q, N)/qtA(q, N) (22) 

and assume that 

lim flN = koN lim;):.N = koNkiSl)N, (23) 
N .... oo N-+oo 

where ko is a constant. 
By Coro\1ary 2 we have 

N N-l 

IqA(q, N) = I qA(q, N - 1) 
q=O q=O 

N-l 
+ 2 ~ (q + 1)A(q, N - 1) 

q=O 
N-2 

+ ~ (q + I)A(q, N - 2) 
q=O 
N-3 

- I (q + 3)A(q - 3, N - 3) 
q=O 

= 3flN-l + flN-2 - flN-3 

+ 2;):.N-l + ;):.N-2 - 3;):.N-3· (24) 



                                                                                                                                    

EXACT RECURSION RELATION FOR 2 x N ARRAYS OF DUMBBELLS 3099 

12 

N = 22 

.1"""' .......................... 
A' .... 

,;' "-, '\ 
/ \ 

10 

N 
N.6 I \ 

/ \ 0-

I 
I 

2 I 
I 

I \ 
I \ 

0~~~~~~-L~~4-~~~~~~ o 2 4 6 8 10 12 14 16 18 20 22 

MAX 
q-

FIG. 5. A graph showing the logarithm of the number arrange­
ments of q dumbbells on a 2 X 22 for all possible q. There are 
approximately 1.9 X 1010 ways of arranging I3 dumbbells on a 
2 X 22 array. 

For large values of N, Eq. (24) yields 

koNSf = 3ko(N - l)Sf-l + ko(N - 2)Sf-2 

- ko(N - 3)Sf-a + 2sf-1 + sf-2 
- 3sf-a• (25) 

We may divide this by Sf and, noting that 

sf = 3sf-l + sf-2 
- sf-a, (26) 

we obtain 
111 
-(2 - 3ko) +"2(1 - 2ko) - -(3 - 3ko) = 0 
SI SI S~ (27) 

or 

k = 1 _ S~ + SI ~ 0.6064927. (28) 
o 3S~ + 2S1 - 3 

Thus, the distribution reaches a maximum when the 
dumbbells occupy 61 % of the compartments. Figure 5 
shows A(q, 22) as a function of q. In this case the 
maximum occurs at q = 13 or () = 0.59. 

ACKNOWLEDGMENTS 

The authors wish to express appreciation to 
Professor L. Parker for many helpful discussions and 
to R. Ristic for drawing the figures. 

* Present address: University of Wisconsin-Madison, Madison, 
Wisconsin. 

t Supported by the National Science Foundation (GY 6109). 
1 J. K. Roberts, Proc. Roy. Soc. (London) A161, 141 (1937). 
2 E. G. D. Cohn, J. DeBoer, and Z. W. Salsburg, Physica 21, 

137 (1955). 
3 D. Lichtman and R. B. McQuistan, J. Math. Phys. 8, 2441 

(1967). 
4 R. B. McQuistan and D. Lichtman, J. Math. Phys. 9, 1680 

(1968). 
5 R. B. McQuistan, J. Math. Phys. 10,2205 (1969). 
6 H. N. V. TemperJey and M. E. Fisher, Phil. Mag. 6,1061 (1961). 
7 P. W. Kasteleyn, Physica 27,1209 (1961). 
8 H. A. Bethel, Proc. Roy. Soc. (London) AlSO, 552 (1935). 
• R. H. Fowler and G. S. Rushbrooke, Trans. Faraday Soc. 33, 

1272 (1937). 
10 J. K. Roberts and A. R. Miller, Proc. Cambridge Phil. Soc. 35, 

293 (1939). 
11 D. Zeitlin, Am. Math. Monthly 74, 235 (1967). 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 10 OCTOBER 1970 

Extension of the Riemann-Lebesgue Lemma* 

PAUL B. KANTOR 

Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106 

(Received 23 May 1969; Revised Manuscript Received 20 March 1970) 

We show that, in the limit of large )., integrals of the form 

_fb f(x)dx 
H().) = a u(x) + eilz 

are essentially given by S R' [f(x)/u(x)] dx where the region R'is the union of all those subintervals in which 
lui ~ 1. The corrections to this expression are of two kinds: terms 0(1/).) which depend on the details 
of averaging to remove logarithmic singularities in H().) and terms O[(ln ).)/).]. Some examples are given. 
If lui :s;; 1, the leading term in H vanishes and H().) is bounded by (In ).)/).. 

I. INTRODUCTION 

It is frequently useful to be able to bound integrals 
of the form 

G(A.) = ff(x)eil:l) dx 

for large values of the parameter A.. Typical physical 

problems would be the behavior of wavepackets at 
large times and the behavior of the Born approxima­
tion for scattering amplitudes at large energy. 1 The 
mathematical tool is, of course, the Riemann-Lebesgue 
lemma, which ensures that 

I G(A.) I ~ const v(j)A.-1• 
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lemma, which ensures that 

I G(A.) I ~ const v(j)A.-1• 
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Here v(j) denotes the total variation2 of the function f 
in the interval [a, b]. 

The study of multiple scattering from several particles, 
using separable potentials and the closure approxi­
mation,3 leads to expressions of the form 

r f(x). dx = HCA). 
JR u(x) + e';'x 

The purpose of the present paper is to show that 
H(A) is "essentially" given by 

D = r f(x) dx, 
JR' u(x) 

where R' ,is the union of all those subintervals of R in 
which lui;;:: 1. 

There are four complications which we encounter. 
(i) The function H(A) may have recurring logarithmic 

singularities as A grows without bound. We deal with 
this by defining an averaged function of A: 

lH!<1 • 
H<1(A) = L\-I H(A') dA'. 

A-!<1 

L\ must be small enough so that only one singularity 
appears in the integrand for any value of A. Note that 
the limit of H(A) as A -+ 00 is independent of L\, 
provided that R' is not empty. 

(ii) Again because u(x) may have unit modulus, the 
corrections to H are not quite bounded by 1/ A. 'J'he 
best bound we can obtain is (for L\ < 1) 

IH<1(A) ~ f!I ~ C(ln A)/)' lIn L\ - 11· 

(iii) The function f must be of bounded variation, 
as in the Riemann-Lebesgue lemma. Our proof re­
quires that lui satisfy the stronger condition of piece­
wise monotonicity. This insures that the variation of 
un for any n can be bounded uniformly with respect to n. 

(iv) For purely technical reasons we have had to 
make the following additional assumptions. We do not 
know whether they are necessary. 

For every xo, such that lu(xo)1 = f, there is a 
neighborhood N of Xo contained in [a, b] in which 

(a) u is differentiable, 

(b) 3 B2 31 u'(x) - u'~xo) 1 < B
2

, 

u(x) + e'.!x 

(c) 3 D > 0 3 I lu(x) I - lu(xo) I I > D, 
x - Xo 

(d) 3 B131/(X) - f(~o) I < BI • 
u(x) + e'Ax 

Using condition (iii), we can divide [a, b] into a finite 

number of subintervals of three different kinds: 
(A) lui ~ R < 1, 
(B) lui ~ S > 1, 
(C) R ~ lui ~ Sand lu(x)1 = 1 has exactly one 

root. 
In Sec. II we find the limiting form of H().) for each 

of these cases. In Sec. III we combine these results. 
Finally, in Sec. IV we discuss examples and possible 
extensions of this technique. 

Before presenting the proof we remark that the 
complex nature of eilx is essential for the simple form of 
D. For example, with the real function sin Ax, in case 
(B) one may show that 

f 1 dx =f 1 dx + o(!). (1) 
u(x) + sin Ax [U(X)2 - l]! A 

II. DISCUSSION OF THREE CASES 

Case A: We have the uniformly convergent ex­
pansion 

0() 

[u(x) + eiAX]-l = e-iA'" L [u(x)e-iA"']n( _l)n. 
n=O 

Let v(u) be the variation of lui. Since lui is piecewise 
monotonic (we denote the number of "pieces" by N), 

v(u) ~ 2NR 

and, because of the monotonicity, 

v(un) ~ 2NRn 
and 

sup lunl ~ Rn. 

Hence, the function unfis of bounded variation, and 
there is a constant K such that4 

v(J· un) ~ 2NRn maxf + Rnv(f) 

~ KRn. 

We now use the expansion of the denominator in the 
integral defining H()') and apply the Riemann­
Lebesgue lemma to every term in the sum: 

J u(x)nl(x)e-J.x(n+1) dx 

< 4 [v(fu n) + sup lu'1l] 
- A(n + 1) 

4 R n 

~ - -- [v(f) + (2N + 1) sup III] 
An + 1 

4 Rn 

== - -- D(f, N). 
An + 1 

Thus 

f(x)[u(x) + iJ."'rI dx ::s;; 4D(f, N) .!.Iln (1 - R)I. 
A R 
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This completes the discussion of intervals of type A. 
They do not contribute to the limiting value at large A. 

Case B: Suppose lu(x)1 ~ S > 1. Then we may 
write 

x [u(x eiAX]-l = f(x) (1 _ l/u(x) ). 
l() ) + u(x)· [l/u(x)] + e-i)·x 

The first term in brackets is independent of A. The 
second satisfies all the hypotheses of Case A with R 
replaced by liS. Thus 

J lex) dx =Jf(X) dx + o(!). 
u(x) + eiJ.X u(x) A 

Case C: We now consider the case where lui assumes 
the value 1 exactly once in the interval of interest. The 
phase is unimportant in our argument; so we assume 
u(xl ) = 1. Now we choose an e > 0 such that, when 

Ix - xII < e, 

X lies in the neighborhood N specified in condition (iv) 
of Sec. I. We have 

and 

, u'(x) - u'(x1) I B ., < 2' 
u(x) + e"'x 

Since the integral exhibits logarithmic singularities 
at A = (7Tlx1)(2n + 1), we extract them with the aid 
of the following two relations: 

f(x) _ f(x) - f(x l ) f() 1 
u(x) + eiJ.., - u(x) + eW " + Xl u(x) + eO,x' 

----'--.- = - In [u(x) + e',lX] 1 1 ( d . 
u(x) + et).x u'(x) - iA dx 

u'(x) - u'(x1) . 1 + ei).X ) 

= u(x) + ei).X - lA u(x) + i).x . 

Now choose 0 =:;; min {e, l/A}. Note that the definition 
of € does not depend on A so that, as A-+- 00, 0 will 
eventually be III We will show that, with suitable 
averaging over A, 

iXl+t~f(X)[U(X) + ei).xrl dx = 0 (!). 
Xl-t~ A 

Using the first relation above, we have 

f f(x). dx <f If(x) - f(x l ) I dx 
u(x) + et).x - Iu(x) + et).xl 

+ If(Xl) Illxl+t~ 1 i).., I dx. 
Xl-tO u(x) + e 

The first term on the right-hand side is bounded by 
Bl/A. By elementary geometry we have 

1 + ei).oo 2 
----=----!-=----. - < < 2. 
u(x) + e'J.x - 1 + u(x) -

Thus 

i
XI+t~ f(x) 

. '" dx Xl-to u(x) + e' x 

=:;; ~l + H; + 2) If(xl)1 

+ 1If(Xl)l\ J :x In [u(x) + ei
)."'] dx ,. 

This last integral exhibits the logarithmic singularity. 
Since the product AO is less than 1, the imaginary part 
of the integral is bounded by 1. To eliminate the diver­
gence, we average over A - !~ =:;; A' =:;; A + t~; 

av J :x In [u(x) + eiAX
] dx =:;; c(lln ~I + 1). 

Hence the integral in these dangerous regions is 
bounded by 1/,1, multiplied by a factor which depends 
in a well-defined way on the averaging over A. 

III. PROOF OF THE THEOREM 

Since u has only a finite number of oscillations, we 
can cover the range of integration with a finite number 
of intervals of type A, B, or C. Since the intervals of 
type C are of length 11 A, the values of Rand S for the 
intervals of type A and B will be quite close to 1. How­
ever, for sufficiently large A, we can be sure that 1 - R 
and S - 1 are at least as large as DIA, where D is 
defined by condition (c). Inserting this in the bounds 
for case A, we find 

H!;,(A) = r f(x) dx + Kl In A + K2 1 + Iln~l. 
JtypeBu(X) A A 

The first correction term is due to intervals of type A 
and B, while the second is due to intervals of type C. 

IV. EXAMPLES 

Integrals of the form discussed here do not arise 
frequently in the mathematical literature, where ex­
pressions of the form eix usually arise from contour 
integration. An example arising in the physical situa­
tion discussed in Sec. I will be presented elsewhere.3 

Examples for which the limiting form of the integral 
is known by other means can be found by considering 
Fermi-Dirac integrals. 

Let 
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r' 

FIG. I. The deformed contour r' in the complex I; plane. 

Of course, this is not yet the form in which we are 
interested. 

However, the integrand is regular except at the 
singularities of/and at P(I; - fl) = (2n + 1)1Ti. Since 
the integrand falls as e-P Re l at infinity, we can almost 
deform the contour of integration to the axis fl + iy. 
We can apply our technique as follows: Let the con­
tour r' be as shown in Fig. 1. Assume that / has no 
singularities in the first quadrant. Then 

Assuming/to be of bounded variation on r', we can 
apply our lemma, using u(y) = e-pa < 1. We can 
maintain this condition with b - 0; for example, let 
b = lIP. Thus 

('Xl f(l;) dl; _ (/l f(l;) de + o(!) 
Jo e(l-/l)P + 1 - Jo e(l-/l)P + 1 P , 

which is the familiar result. 
Further examples can be constructed by considering 

the integral of the exact derivative 

!£ {g(x) In [u(x) + eiA
"']}, 

dx 

which is easily seen to be equal to 

-iAg(X)U~) + iAg(X) + ig'(x) arg [u(x) + i.l."'] 
u(x) + e' '" 

+ g(x)u'(~) + g'(x) In lu(x) + ei.l."'!. 
u(x) + e'A'" 

Ifwe setg(x) = /(x)/u(x) , the first term is seen to be 
an integral of the desired type multiplied by A. Thus we 
examine the rest of this equation for terms of order A. 
When lu(x)1 > I, there are none but iAg(X), and the 
integral is given by 

f
----'f:...o(-'X)-.-, dx -fg(X). 
u(x) + e''''''' 

When u(x) < 1, there are several terms of order A, 
with only the last two being negligible. For large A 
and sufficiently smooth g, we can replace 

and 

ib d . 
- {g(x) In [u(x) + e'A"']} by iAg(X)xl! 

a dx 

arg [u(x) + ei.l."'] by iAX. 

A single partial integration then yields 

iAib g(x)u(x) dx 
a u(x) + e'k'" 

= iA fg(X) dx 

+ iA fXg'(X) dx + 0(1) - iAg(X)xl! 

= 0 + 0(1). 

Of course, when u(x) can assume the value 1, the 
logarithmic correction enters in several terms. 

This "example" serves as an analog to the usual 
heuristic proof of the Riemann-Lebesgue lemma based 
on partial integration. It would be nice to find some g 
and u for which every term can be integrated in terms 
of elementary functions, but I have been unable to do 
so. 

V. DISCUSSION 

By extending the Riemann-Lebesgue lemma to 
cases where the oscillating factor appears as the argu­
ment of a rational function, we can discuss the high­
energy limit of certain very siJ:?1ple multiple scattering 
problems. Subject to possible convergence difficulties, 
the discussion can be extended to meromorphic func­
tions of ei.l.x. Unfortunately, we have not found a 
relation of these ideas to the calculus of residues and 
are unable to extend the argument to holomorphic 
functions of ei.l.x • This last extension would be partic­
ularly useful in more realistic multiple scattering 
problems, where operators of the form (1 - V1GOV2) 

must be inverted.3 
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A method for obtaining a perturbation expansion of various eigenvalue distributions corresponding 
to a certain class of perturbed ensembles of random matrices is given. The terms in the expansion can 
be written down immediately as diagrams analogous to those used in other kinds of perturbation theory. 
Further, part of the expansion can be summed explicitly, and the result of the summation read off the 
diagrams. In addition, a new perturbing ensemble is introduced. It has the advantage that the number 
of matrix elements which are perturbed simultaneously and ~he size of the perturbation can be varied inde­
pendently. The expansion given is an expansion in the number of perturbed matrix elements rather than 
the usual expansion in the size of the elements. Finally, the conditions for convergence of the expansion 
are discussed. . 

1. INTRODUCTION 
There has been recent interest in the problem of 

how a small perturbation to the Hamiltonian of a 
complex system effects the statistical properties of 
the energy levels.1- 6 The primary purpose of such 
work is to ascertain the possibility of determining 
whether or not a particular quantity is an exact 
invariant or only an approximate invariant by 
measurement of these statistical properties. Of par­
ticular concern is the question of how a small time­
reversal invariant term in a Hamiltonian would 
manifest itself in the statistical properties of the energy 
spectrum. 2.4. 6 

The ensemble which has received the most attention 
is a simple generalization of the Gaussian ensemble. 
That is, the unperturbed ensemble is assumed to be 
Gaussian, say of width oct, and the perturbing 
ensemble is also assumed to be Gaussian, say of 
width y-t. Then it is assumed that the relative strength 

of the perturbation is given by (ocjy)t. One is, of 
course, interested in the limit where oc/y is small. 

In studying this ensemble one encounters mathe­
matical difficulties which seem to be inherent in it. In 
particular, if one considers the case where the un­
perturbed distribution is orthogonal (time-reversal 
invariant) and the perturbing distribution is unitary 
(not time-reversal invariant), it appears that the results 
will be purely unitary or orthogonal in the lim N -
+ OCJ (N is the dimensionality of the matrices) unless 
y - + OCJ with N in exactly the right way.2.6 This 
results from the fact that the number of nonvanishing 
off-diagonal matrix elements is of order N2. The 
convergence of a perturbation expansion in general 
depends not only on the size of the off-diagonal 
elements, but also on the number of such elements, 
since each succeeding term in the expansion involves 
another summation. 

However, the physical interpretation of letting y 
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1. INTRODUCTION 
There has been recent interest in the problem of 

how a small perturbation to the Hamiltonian of a 
complex system effects the statistical properties of 
the energy levels.1- 6 The primary purpose of such 
work is to ascertain the possibility of determining 
whether or not a particular quantity is an exact 
invariant or only an approximate invariant by 
measurement of these statistical properties. Of par­
ticular concern is the question of how a small time­
reversal invariant term in a Hamiltonian would 
manifest itself in the statistical properties of the energy 
spectrum. 2.4. 6 

The ensemble which has received the most attention 
is a simple generalization of the Gaussian ensemble. 
That is, the unperturbed ensemble is assumed to be 
Gaussian, say of width oct, and the perturbing 
ensemble is also assumed to be Gaussian, say of 
width y-t. Then it is assumed that the relative strength 

of the perturbation is given by (ocjy)t. One is, of 
course, interested in the limit where oc/y is small. 

In studying this ensemble one encounters mathe­
matical difficulties which seem to be inherent in it. In 
particular, if one considers the case where the un­
perturbed distribution is orthogonal (time-reversal 
invariant) and the perturbing distribution is unitary 
(not time-reversal invariant), it appears that the results 
will be purely unitary or orthogonal in the lim N -
+ OCJ (N is the dimensionality of the matrices) unless 
y - + OCJ with N in exactly the right way.2.6 This 
results from the fact that the number of nonvanishing 
off-diagonal matrix elements is of order N2. The 
convergence of a perturbation expansion in general 
depends not only on the size of the off-diagonal 
elements, but also on the number of such elements, 
since each succeeding term in the expansion involves 
another summation. 

However, the physical interpretation of letting y 



                                                                                                                                    

3104 J. F. McDONALD AND L. D. FAVRO 

approach infinity as N goes to infinity is somewhat 
obscure. Since this results in making all the matrix 
elements of the perturbation go to zero, it might 
appear that the result of this would be to eliminate the 
effect of the perturbation entirely. This is not true 
because the total number of elements increases as each 
of them goes to zero. The problem with this ensemble 
is that the ratio r:t./y is not simply a measure of the 
relative strength of the perturbation. It is also, in some 
sense, a measure of how many matrix elements are 
simultaneously perturbed on the average. Therefore, 
in the next section we introduce a 2-parameter distri­
bution function in which one can vary the size and the 
number of perturbing matrix elements independently. 
This distribution function (and others of the same 
form) has the additional advantage that it lends itself 
readily to diagrammatic summation techniques. 

2. THE DISTRmUTION 

Two approaches to the problem of perturbing a 
random ensemble of matrices have been used in 
previous work. 6-9 In one case it is assumed that the 
unperturbed matrix element distribution is completely 
known. In the other case it is assumed that the only 
thing that is known about the unperturbed matrix 
element distribution is its eigenvalue distribution.7 

Here we choose the latter approach because of its 
simplicity. 

We will denote the unperturbed joint eigenvalue 
distribution by fNCA) = fN()'l, ... ,A.N)' where )., 
represents the N eigenvalues. The only assumption 
we make aboutfN().,) is that it is invariant with respect 
to the labeling of the A.i , and it is normalized to unity. 

The perturbed distribution for the matrix elements 
will then be given by 

P(H) = f dN).,p(H, )")1 N().,) , (1) 

where p(H, ).,) is the perturbing distribution which in 
previous work was taken to be Gaussian; i.e., 

p(H, ).,) ex: exp [-y Tr (H - ).,)2]. (2) 

From the work of Porter and Rosenzweig as 
corrected by Leff, it is known that this Gaussian 
form of the perturbing distribution is the only one for 
which the matrix elements are statistically independent 
and which is representationally invariant.8 There are 
two simple extensions of that distribution which might 
form the basis of a more rapidly converging perturba­
tion expansion. Each has a finite probability for the 
vanishing of the off-diagonal matrix elements. The 
first is a distribution in which the requirement of 

statistical independence of the matrix elements has 
been relaxed9 : 

p(H, ).,) = (1 + ,8)-1 [ (If 6(Hii - Ai») ([1; 6(Hij») 

+ ,82tN(N-1l(Y/1TyiN(N+1) 

x exp [-y Tr (H - ).,)2JJ (3) 

This distribution function is representationally in­
variant in the sense that the product of 6 functions 
in it may be regarded as a limit of a Gaussian distribu­
tion and hence is only a function of Tr [(H - ).,)2]. 
The second term in the distribution simply adds a 
fraction ,8 of a Gaussian perturbation to the unper­
turbed distribution. 

The second distribution is one in which one main­
tains statistical independence but not representational 
invariance: 

p(H, ).,) = (1 + ,8)-N<N+1)/2 

X II {6(Hii - Ai) + ,8(Y/1T)t 
i 

X exp [-y(Hii - Ai)2]} 

X II [6(Hi/J + ,8(2Y/11i exp (-2yH7k»). 
j>k 

(4) 

In this ensemble the distribution of each matrix 
element consists ofa broad Gaussian with a sharp 
spike in the middle. 

The parameters in these two distributions have 
been chosen such that in either distribution the 
probability for the vanishing of an off-diagonal ele­
ment, say H21 , is (1 + ,8)-1 and the mean square value 
(H:1 ) is ,8/[4y(1 + ,8)].10 The first one, however, has 
the disadvantage that the vanishing of one off­
diagonal element implies the vanishing of all of them 
(i.e., the probability that one element is zero is the 
same as the probability that all elements are zero 
simultaneously). This follows from the fact that the 
integral over the product of 15 functions is independent 
of the range of integration so long as the origin is 
included. For the second distribution the average 
number of diagonal matrix elements which are non­
zero is N(N - 1),8/[2(1 + ,8)],11 Furthermore, it has 
the advantage that it leads itself readily to a perturba­
tion treatment by simply multiplying out the terms in 
(4) explicitly. It is this second distribution which we 
shall study here. 

As a measure of the strength of the perturbation, 
we shall take the mean square value of Hi;, i > j, 
divided by the parts of the Hi; which are simultane­
ously nonzero. This may be interpreted as the mean 
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square size of one of the nonzero elements, i.e., 

(5) 

The number of nonzero elements is independent of 
this and may be varied by changing {3. 

3. THE n-LEVEL CORRELATION FUNCTION 
AND DIAGRAMS 

In this section we illustrate some techniques which 
can be used with the ensemble (4). For simplicity the 
discussion will be restricted to the calculation of the 
n-Ievel correlation function (i.e., the joint distribu­
tion for n eigenvalues). 

We first multiply out the product in the perturbing 
distribution explicitly. This will give a sum of terms. 
The general term in the sum for the perturbed matrix 
element distribution will be12 

Plt.lm.km = [a(Y/7T)in{3(2Y/7T)ir 
X J dNAfN(A)' exp [-y(Hilil - Ail)2] .•. 

X exp [-y(Hitit - Ait)2] exp ( - 2yH~'k,) ... 
X exp (-2yH~mkm) . blt.lm.km(H-A), (6) 

where it = (iI' ... , i1), etc., and 

blt.lm.km(H-A) = IT b(Hii - Ai) IT b(Hik)' (7) 
i*I,. j>k <i.k);e(lm.km) 

In this term the set Hilil through Hitit of the diagonal 
elements are perturbed (represented by factors like 
exp [-y(Hilil - Ai ,)2D and the set H;,k, through 
Hi k of the off-diagonal matrix elements are per­
turb;'d (represented by factors like exp [-2yH:,k,]). 
All of the other matrix elements are unperturbed 
(represented by b functions). The perturbed distri­
bution is then given by 

(8) 
where 

(9) 
with 

KN = N(N - 1)/2. (10) 

The sum over the j's and k's includes only terms with 
all (jT' kT), 'T = 1, ... ,m, different, and further 
includes distinct terms once and only once. 

In order to obtain the n-level correlation function, 
one must make a change of variables from the matrix 
elements Hi;' i ~ j, to the eigenvalues Ei , i = 1,' .. , 
N, and KN other variables W. Since INC)..) has been 

assumed to be symmetric in the Ei , the result will be 
independent (except for labeling, of course) of which 
Ei remain. For definiteness, let El , ••• ,En be the 
remaining eigenvalues, and let/MEl, ... , En) denote 
the n-Ievel correlation function corresponding to 
fN(E). 

In the following discussion it will be useful to think 
of the individual unperturbed eigenvalues as "parti­
cles" with perturbing off-diagonal matrix elements 
causing interactions between them. Thus H2l , for in­
stance, may be thought of as causing an interaction 
between Al and A2' A perturbing diagonal element 
causes a "self-interaction" of the particle with itself. We 
may continue this particle analogy further by drawing 
diagrams in which the vertices (indicated by symbols 
such as 0, e, and 6) are particles (eigenvalues) and 
the lines connecting them are interactions (perturbing 
matrix elements). This use of diagrams simplifies the 
bookkeeping associated with summing terms in the 
perturbation expansion. 

Consider first the case n = 1 (i.e., single eigenvalue 
distribution). If one examines (6), it is clear that the 
only matrix elements which influence the functional 
dependence on El are those Hil which are perturbed 
(i.e., have a Gaussian distribution) and those Hi;' 
i ~ j ,which are indirectly connected to Hll by per­
turbed matrix elements. That is, if zeros are put in the 
Hamiltonian matrix for the unperturbed off-diagonal 
matrix elements (i.e., those with a b-function distri­
bution) and the Hamiltonian is put in reduced form, 
it is only the block containing Hll which is relevant. 
This is because for a particular term in the expansion 
the matrix elements are statistically independent and 
thus the disjoint blocks are statistically independent. 

In terms of diagrams, the situation may be thought 
of as a series of unconnected clusters of particles. 
Each cluster represents one of the blocks. The cluster 
of interest is the one which contains the particle of 
interest, namely El . The statistical independence of the 
matrix elements and the nonconnected nature of the 
diagrams allow the variables occurring in the clusters 
not containing El to be integrated out immediately. 
The problem then is to find the single eigenvalue 
distribution in the usual way for the remaining 
sub matrix (cluster). Let us denote the dimensionality 
of this submatrix by s. 

Consider first those Pi"im,km such that s = 1 (i.e., 
those terms corresponding to matrices having no 
nonzero off-diagonal elements in the first row or 
column). There are two classes of such terms. In the 
first class Hll is not perturbed. The contribution to 
the single eigenvalue distribution from such a term is 
simply a1(3n'fME,), The dist~ibution IME,) is the 
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A Q ....- ~ ~ Q..!J 
(a) (b) (c) (d) (e) (I) 

l>--4--<I Q-... ~ ~ ~ Q........Q 

(g) (h) (i) (j) (k) (I) 

~ ~ .....,..... .....Q.... ~ ~ 
(m) (n) (0) (p) (q) (r) 

O-.,.....Q ~ 
(5) (t) 

<l ~ 
(u) (v) (w) (x) (y) (z) 

FIG. I. All possible diagrams for the perturbation expansion of 
the single eigenvalue distribution to order s = 3. 

single eigenvalue distribution for the unperturbed 
ensemble. Since this result does not depend on the 
particular values of (ii' jm ,km), the calculation of 
the contribution from all such terms, with I and m 
fixed, simply involves counting the number of ways 
such a contribution will arise. It is easily seen that 
this number is 

whereKN is defined by (10) and where (~) denotes 
the binomial coefficient. We can now sum over I and 
m to obtain the total contribution: 

CN(1 + a)N-1(1 + fJ)"CN-IljJv(E l ) 

= (1 + a)-l(l + fJrN +lf1(El). (11) 

This summation amounts to adding the contributions 
from all possible diagrams in the clusters not con­
taining El • The diagram for IMEl ) will simply be 
denoted by 6.13 

The calculation in the second case, i.e., the case 
in which Hll is perturbed, goes through in an analog­
ous manner. The only differences are that the above 
coefficient is multiplied by a and that/ME) is replaced 
by 

(Y/1T)t f dA.d~(A·l) exp [-y(El - Al)2]. 

This last expression represents the "particle" El 
interacting with itself via Hu , and will be denoted by 
the diagram in Fig. 1 (b). 

Next we consider clusters with s = 2. There are 
four cases. First, we can have the case in which there 
are two unperturbed diagonal elements Hll and, 
say, Hii which are connected by a perturbed off­
diagonal element (in this case Hil)' The contribution 
from such a term is the single eigenvalue distribution 

corresponding to the 2 x 2 matrix-element distribu­
tion 

(2y/rr)tf '1v(Hll , Hii) exp (-2yml)' 

This contribution will be denoted by the diagram in 
Fig. l(c). Since the result will not depend on i, the 
total contribution can again be found by counting 
the number of ways it occurs for fixed I and m and 
then summing over I and m. This coefficient is found 
to be 

CN(N - l)fJ(1 + a)N-2(1 + fJ)"N-' 
= fJ(N - 1)(1 + ar2(1 + fJ)-2(N-3). (12) 

In the second case Hii is also perturbed. The contri· 
bution from such a term is the single eigenvalue 
distribution corresponding to 

~2 (y/rr) f dAd'1v(H ll , Ai) 

x exp ( - 2yH:l ) exp [-y(Hii - Ai)2]. 

This is indicated by Fig. led). Again, since the result 
does not depend on i, the necessary sums are easily 
carried out. The result can be found in Table I. The 

TABLE I. Coefficients and matrix-element distributions corre­
sponding to the diagrams given in Fig. 1. Note that 

Bii == (YI1T)! exp [-y(H" - ,1,,)2] 
and 

Coefficient Matrix·element distribution 

a Al 
I f1(Hu ) 

b /1Al f dAt/1(AI)Bll 

C PA~ f~(Hu, H •• )B21 

d /1PA~ f dA.f~(Hu, A.)B .. B 21 

e /1PA~ f dAlf~(AI' H .. )Bu B 21 

f /12PA f dAI dA.~(AI' A.)Bu B u B 21 

g P'A~ f~(Hu, H .. , H •• )B21B s2t5(H31) 
h /1P'A~ f dAlf~(At. Hu, H •• )BllB IlB •• t5(Hs1 ) 

/1p2A~ f dA.f~(Hll' ,1,2, H s.)B .. B 21B •• t5(H 81) 

j /1p2A~ f dA.f~(Hll' H .. , A.)B.sBnB .. t5(H 31) 
k /1'P'A~ f dAI dA.f~(A" ,1,., H •• )BllB .. Bn B •• t5(H31) 

I /1'p2A~ f dAI dA.f~(Al, H u , A.)Bu B.sB OlB •• t5(H 31) 

m /12P'A~ f dA. dA.f~(Hl1' ,1,., A.)B •• B •• B.,B •• t5(H .. ) 
n /1'p2A~ f dAl dA2 dA.f~(A" ,1,., A.)Bu B u B •• B 21B •• t5(H8I) 

0 tP'A~ f~(HlI' H. 2 , H •• )B21B 31t5(H •• ) 

P t/1fJ'A~ J dAt/~()." H •• , H •• )Bu B 21B 31t5(H3.) 

q /1P'A~ f dA.f~(HlI' ,1,., H •• )B .. B 21B 31t5(H •• ) 
r /1'p2A~ J dA, dA.f~(A" A., H •• )BllBnBnB31t5(H.2) 
s t/1'fJ'A~ J dA. dA.f~(Hll' A., A.)Bu B.sB .. B 81t5(H I.) 

t/1·P·A~ S dA, dA. dA.f~(A" A., A.)BllBu B.sB21B 31t5(H .. ) 
u tP·A~ f~(Hll' H." H •• )B21B 31B •• 
V !/1p. A~ f dAt/~(A" H 2O , H.3)BllB u B 31B .. 
W /1P'A~ J dA.f~(Hll' A., H.1)Bo.B"B31B .. 
x /1op. A! S dA, dA.f~(}." A., H •• )BllB .. B u B 31B •• 
y t/12fJ'A! J dA. dA.f~(Hll' A., A.)B .. B.sBIlB8IB •• 
z ta"P'A! S dA, dA. dA.f~(AI' A., A.)BllB .. B •• B 21B OlB3I 
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diagrams and coefficients for the other two cases (i.e., 
Hn perturbed but Hii not perturbed, and finally both 
Hn and Hii perturbed) are given in Fig. I and Table 
I, respectively. 

If one next considers s = 3, there are 20 distinct 
cases. The procedure is the same, and the results are 
given in Fig. t and Table J. One can continue this 
procedure for any value of s. All possible diagrams 
for any value of s can be written down immediately. 
The matrix-element distribution from which the 
contribution arises then can immediately be written 
down. These are given for s = I, 2, 3 in Table J. In 
addition, the coefficient corresponding to a given 
diagram is given by the expression 

p-1A!(1apb, (13) 
where 

A; == (N - n)! (1 + (1rS(1 + prS(2N-s-llI2, (14) 
(N - s)! 

s is the number of vertices in the diagram (i.e., 
dimensionality of the submatrix involved), a is the 
number of self-interactions (represented by closed 
loops attached to the vertices), b is the number of 
interacting pairs (represented by the connecting lines 
in the diagram), and p is the number of permutations 
of the vertices which leave the connectivity of the 
diagram unchanged. l4 It should be noted that factor 
p-l(N - I)!/(N - s)! occurring in (13) is simply the 
number of ways that an s-fold cluster containing E1 
can occur for a particular set of clusters not involving 
E1 • The coefficients for s = 1,2, 3 are given in Table I. 
The total expansion to order s = 3 is the sum of all 
the diagrams in Fig. I with the corresponding coeffi­
cients given in Table T. 

The problem for the 2-level correlation function 
can be treated in an analogous manner. Now two 
eigenvalues are not integrated out. In the diagrams 
we let 6" correspond to E1 and 0 to E2 • The existence 

FIG. 2. Sample dia­
grams for single eigen­
value distribution with 
s = 5, illustrating the 
definition of "connec­
tivity," as defined in 
Footnote 14. 

Q {3 

z 
y 8 

(0) 

Q {3 

Z 
8 (b) Y 

FIG. 3. Some sample 
diagrams for the 2-level 
correlation function. 0 11:1 

(0) (b) (c) (d) 

of two unique eigenvalues produces one difference 
from the single-level case. The matrix elements Hn 
and H22 may be in the same cluster or different 
clusters. However, the counting problem is analogous, 
and the coefficient for a diagram is given by the 
expression 

(15) 

where the symbols are defined exactly as before if 
Hn and H22 are in the same cluster while, if Hn and 
H22 are in different clusters, s is the number of vertices 
in both clusters (i.e., the sum of dimensions of the 
two matrices), p is the product of the values of p for 
each cluster, as defined above, a is the number of 
self-interactions in both diagrams, and b is the total 
number of interactions between pairs in both dia­
grams. Some sample diagrams are given in Fig. 3, 
and the matrix-element distribution arises as well as 
the coefficient are given in Table II. 

At this point the generalization of the above 
results to the n-level correlation function should be 
clear. One first writes down all possible diagrams. 
In order to obtain the matrix-element distribution 
corresponding to a particular diagram, one first 
integrates out all the variables in the clusters which 
do not contain AI"'" An' The matrix-element 
distribution is then 

f dAl ... dAJN(Al' ... , As) 

x (If (Y/7T)! exp [-y(Hii - Ai)2]) 

X (~(2Y/7T)!' exp [-2ym;]) (g b(HhZ») , (16) 

where s is the number of vertices, TIi is over the self­
interacting vertices, TIi>; is over the vertices connected 

TABLE II. Coefficients and matrix-element distributions corre­
sponding to the diagrams given in Fig .. 3. 

Coefficient Matrix-element distribution 

a A~ f~(Hll' H •• )i5(H21) 

b fJA~ Fa(Hll , H •• )E21 

c ifJ3A: ft(Hll , H 2O , H 33 , Hu)E"E3.Eui5(H31)fJ(H41)fJ(H43) 
d a3fJ'A: J dA,dA3dA.[';,(Al> H •• , A3, H u , H •• , A.) 

x EllE3.E •• E.,E3,E4,E •• E .. fJ(Hu)fJ(H61)fJ(H3') 
x 15(Hu )fJ(H43)fJ(H.J15(H os)fJ(H.4)15(H .. )fJ(H •• ) 
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in pairs, and IIh>! is over those vertices which are 
free (i.e., not connected to any other). The contribu­
tion from the diagram is then the n-Ievel correlation 
function corresponding to this matrix-element distri­
bution (which can be found in the usual way) times 
the coefficient 

(17) 

where, of course, s ~ n and where the symbols are 
just the obvious generalizations of those given above 
for n = 2. 

It should be noted that the above perturbation 
techniques are not restricted to the ensemble given 
by (4). In principle they can be used for any distribu­
tion for which the matrix elements are all statistically 
independent and for which the distribution for each 
matrix element can be written as a sum of an unper­
turbed distribution and a perturbing distribution. 
For example, the Gaussian ensemble can be treated 
analogously if one notes that (2) can be written in 
the form 

II (b(Hii - Ai) 
i ~ + {(Y/7T) exp [-y(Hii - Ai)2] - b(Hii - Ai)}) 

X II (b(Hjk) + {(2Y/7T)~ exp [-2yH;k] - b(Hjk)})' 
j>k 

(18) 

Here the unperturbed distribution for each matrix 
element is a b function, while the perturbing distribu­
tion is the difference of an exponential and a b 
function. The details of the calculation, as well as the 
validity of the expansion (i.e., convergence in the 
limit of large N), of course depend on the particular 
distribution involved. In the next section we examine 
the convergence of the expansion for the distribution 
given by (4). 

4. CONVERGENCE OF THE PERTURBATION 
EXPANSION IN THE LIMIT OF LARGE N 

In the limit in which the dimensionality N of the 
matrices goes to infinity, the finite sums in our 
perturbation expansion become infinite series. These 
infinite series are partially summed series in powers 
of the parameter f3 which measures the number of 
matrix elements which are simultaneously perturbed. 
Each term in the series contains a coefficient which 
depends on f3, N, n, and s. Each also contains a 
function of the eigenvalues Ei , which is essentially 
an average over the unperturbed distribution. In some 
sense these eigenvalue-dependent functions are "well­
behaved" functions, since the integral of each is unity. 
We will discuss the convergence of the series when 
each of them is replaced by unity.15 One then only 

need consider the asymptotic behavior of the coeffi­
cient for large N. 

When nand s are small compared to N, the coeffi­
cient is given approximately by 

p-lf3aHNs-n(l + prS (2N-S+1)/2. (19) 

This asymptotic coefficient has some properties 
which at first sight seem to be contradictory. 

First, consider the case in which fJ goes as N-2 
(which corresponds to having only a finite number of 
matrix elements perturbed simultaneously). In this 
case all of the coefficients except the first one (with 
s = n and a + b = 0) vanish, and one is left with the 
unperturbed distribution. This is reasonable, since 
one does not expect a finite number of matrix elements 
to. make any substantial changes in the eigenvalue 
distributions for an infinite matrix. 

Next consider the case in which f3 behaves as N-l 
(which corresponds to the number of perturbed 
elements being of order N). In this case only those 
diagrams with a + b = s - n contribute, and those 
have coefficients given by 

-1f3-s-n -fJs p e, (20) 

where P = Nf3. This will clearly converge in s pro­
vided P > O. Thus, making the number of perturbed 
elements larger has produced a finite, but converging, 
correction to the unperturbed distribution. One is 
then led to ask what happens when the number of 
terms is made still larger, say of order N2. This corre­
sponds to making fJ independent of N. In the limit N 
going to infinity, we then find that (19) goes to zero. 
This is a surprising· result because the previous 
discussion (and common sense) seem to indicate that 
increasing the number of perturbed matrix elements 
causes the series to converge more slowly. What has 
happened is that infinitely many terms in the series 
are contributing equally (roughly speaking) and 
hence each of them individually must vanish. An 
interesting sidelight is that in lim fJ -+ + 00 the series 
converges again, but it is the last term in the series 
[with s = N and a + b = N(N - 1)/2] which gives 
the entire contribution. 

The discussion above shows that the only non­
trivial large dimensionality limit of our expansion is 
in the case with f3 proportional to N-l. The perturba­
tion expansion simplifies considerably in this case. 
The only terms which contribute are those with a = 0 
and b = s - n. These correspond to a particularly 
simple class of diagrams. First of all, there are no 
loops, i.e., self-interactions. Next there are n disjoint 
diagrams with one and only one vertex corresponding 
to E 1 , E 2 , ••• ,En in each diagram. Finally, each 
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(a) n = I 
A + ai (b-e) + a~ { ~ (~) + (~)} + ... 

(b) n = 2 

a~ (A 0) + a~ {(......... 0) + (A o--e)} 

+ a! {~(~ 0) + (~ 0) 

+ (6 ~)} + ... 

FIG. 4. The perturbation expansion for n = I, 2 to order s = 3 
for the case fJ ~ 1/ N in the limit of large N. Note that 

ai = p,-ne-sp. 

disjoint diagram is a simple chain; i.e., if the vertices 
are arranged in a straight line, the only interactions are 
only those between nearest neighbors. For a particular 
value of s, all the diagrams can be obtained by taking 
all possible (distinct) permutations of the vertices in 
each disjoint diagram.16 The perturbation expansions 
for n = 1, 2 to order S = 3 is shown in Fig. 4. 

5. A SAMPLE CALCULATION 

To illustrate the above results we shall calculate the 
first correction to the n-level correlation function. 
For simplicity we restrict our discussion to iN(A) of 
the form 

N 

IN(A) = 11/MAi ). (21) 
i=l 

In addition we assume the {3 = PIN and consider only 
lim N --+ + 00. 

In this case there will be a total of n diagrams in 
the first correction term. In each of these, (n - 1) of 
the particles (levels) have no self·interaction or 
interaction with other particles. The other level 
interacts with only one other. The diagrams differ 
only in the fact that in each one a different one of the 
Ai interacts. Thus, we need only consider one such 
diagram in detail. The others can be treated by 
simply relabeling the Ai' 

Consider the diagram where Al is the eigenvalue 
with the interaction. This diagram corresponds to 
the perturbed matrix-element distribution 

f dNA (UfMA;)) <5n+1
•
1(H - A)(2Y/1T)! 

x exp (-2yH~+l'l)' (22) 
where 

N 

<5 n+1'\H - A) == II <5(Hii - Ai) 11 <5(Hik) (23) 
;=1 i>k 

with (j, k) ¢ (n + I, I). It follows trivially that the 
contribution to the n-Ievel correlation function is 

n 

PN,n,l(E) == p(E1) IIIMEi ), (24) 
i=2 

where peEl) is the single eigenvalue distribution 
corresponding to the ensemble 

P(Hll' Hn+1' Hn+1,l) 

= fivCHn+1,n+1)(2Y/1T)! exp (-2yH!+1,1)' (25) 

In the usual manners it follows that 

peEl) = t r dCP I:OO dx 

x P(Hll , Hn+1,n+1' Hn+1, 1) lEI - xl, (26) 
where 

Hll = El cos2 cP + x sin2 CP, (27) 

Hn+1,n+1 = E1 sin2 cP + x cos2 CP, (28) 
and 

Hn+1.1 = (x - El) cos cP sin CPo (29) 

The total contribution from all diagrams in this 
correction term will be simply 

n 

L PN,n,i(E), 
i=l 

where i denotes the perturbed level. The coefficient 
for this term is, from (20), P exp [- (n + 1 )p]. 

In general the integrals that are required to evaluate 
p(Ei ) explicitly [i.e., (26)] are not trivial. Even in the 
seemingly simple case when 

fMA) = (a/1T)! exp (-a,A,2), (30) 

the integrals cannot be done in closed form.s Hence, 
since this calculation is just a sample to indicate the 
nature of the terms in the expansion and does not 
have direct physical interest, we will not carry the 
calculation any further here. Calculations of physical 
interest will undoubtedly require numerical compu­
tation. 

APPENDIX 

Here we show that for the ensemble given by (4) the 
average number of off-diagonal matrix elements which 
are nonzero is N(N - I )(3/[2(1 + (3)]. 

The proha.hility that n particular Hjk' j > k, are 
zero, while all the others are nonzero is defined by 
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where the last product includes the K N - n off­
diagonal elements not included in TI«. Here P(H) is 
given in terms of p(H, A) by (1) and kN == N(N - 1)/2 
is the total number of off-diagonal elements Hjk' 

j> k. If one inserts the distribution given by (4) into 
the above definition, the integrals are easily calculated, 
and one finds the given probability to be 

[{3/(1 + (3»)"'N p-n. 

Since this result is independent of which Hjk are zero 
and which are nonzero, the probability that any n 
are zero and the remaining are nonzero is 

Thus, the average number which are zero is given by 

KN 

(n>o = I np(n = 0). 
n=O 

The required sum is easily evaluated. The result is 

Thus, the average number of off-diagonal elements 
which are not zero is 
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A systematic technique is developed for the calculation of expectation values for I-dimensional 
problems by a direct use of the WKB quantization rule including the higher-order integrals without 
the introduction of wavefunctions. As an example of the technique we calculate the moments (r') for 
the Coulomb potential for 2 ~ P ~ -3, for all bound states of the system. Our results are exact except 
for p = -3, in which case the inclusion of the higher-order integrals substantial1y improves the accuracy 
of the calculation. 

I. INTRODUCTION 

One of the constantly recurring calculations in 
quantum mechanics is the evaluation of expectation 
values and sum rules for the various states of a system 
with a given Hamiltonian. When the wavefunction 
of the state is known, the calculation of expectation 
values is in principle straightforward, but the evalua­
tion of sums involving off-diagonal elements of some 
operator, such as appear in second-order perturba­
tion theory for the energy, continues to be difficult in 
practice. Furthermore, when the wavefunction is not 
exactly known, it is not generally possible to calculate 
directly the expectation values, although some 
progress has recently been made in this area through 
the development of variational principles for expecta­
tion values other than the energy.l Moreover, varia­
tional techniques have also been developed for the 
calculation of sums involving off-diagonal matrix 
elements.2 

In this communication we examine the application 

ground state of the system.5- 7 However, little use 
has been made of the WKB method as a means of 
calculating expectation values, moments, and other 
quantities of interest. 8 

In Sec. II we show that a systematic technique can 
be developed for the calculation of expectation values 
and sum rules for I-dimensional problems by a direct 
use of the WKB quantization rule without the intro­
duction of wavefunctions. As an example of the 
technique, we calculate, in Sec. III, the moments 
(rP ) for the Coulomb potential for 2 ~ P ~ -3, for 
all bound states of the system. Finally, in Sec. IV we 
conclude with some remarks about the applicability 
of the technique to other systems. 

II. DERIVATION OF THE TECHNIQUE 

It is well known from perturbation theory that, if a 
small perturbation Il V'is added to a potential, then 
the energy of the perturbed state can be written as 

00 

of the WKB method to this problem. The standard 
application of this technique to the calculation is well where 
known, i.e., one merely makes use of the WKB 
wavefunctions to approximately calculate expectation 

Eill) = En(O) + ~ Enmllm, 
m=l 

Enl = (nl V' In), 

E = ~I (nl V'is) (sl V' In) 

(1) 

(2) 

values.s However, this technique does not readily lead 
to a simple systematic method of improving the 
calculation because the higher-order WKB contri­
butions to the wavefunction become progressively 
more singular near the classical turning points, and 
thus a more detailed analysis of the wavefunction in 
the neighborhood of these points is required. 

On the other hand, the WKB method has long been 

n2 ~ E - E ' • n. 
(3) 

and the higher-order coefficients are given in the 
standard textbook accounts.9 It then follows from 
Eq. (1) that 

(4) 

used to calculate the approximate eigenvalues of the and 
I-dimensional Schrodinger equation. The accuracy 

oEn(ll) I = (nl V' In) 
oil ).=0 

! o2En I = L' (nl V'is) (sl V' In) , of the method has been improved by the inclusion of 
the higher-order correction terms obtained by 2 OA2 

).=0. En - E. 
(5) 

Dunham.4 The inclusion of these terms in the quanti- with similar relations being valid for the higher-order 
zation condition has led to the calculation of eigen- derivatives. It is interesting to note that Eqs. (4) and 
values with considerable precision even for the (5) are valid even if the perturbation expansion given 
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by Eq. (1) does not exist (either has no radius of 
convergence or has a divergent higher-order coefficient) 
provided only that the right-hand sides of these 
equations are finite. lo 

Hence the expectation value of any function V' 
can be calculated by adding ).V' to the potential and 
finding the change in the energy to first order in ).. 
Similarly, the sum in Eq. (5) can be found by evaluat­
ing the change in the energy to second order in ).. 
In both cases all that is required is an independent 
method of calculating the perturbed energy of the 
state. 

The WKB method offers just such an independent 
means of calculation for potentials that are separable. 
Suppose we write the quantization condition for a 

Imr 

c, 

c, 

FIG. 1. The contour 
C, in the complex r 
plane encloses the 
branch points corre­
sponding to the zeros 
of q. The contour C2 
consists of two parts 
and is equivalent to 
C, . 

1-dimensional SchrOdinger equation as where 

f Qt{En , V(x» dx = n + t, (6) 

where Qt is an expression obtained from summing 
the first t integrals in the quantization condition4 and 
the path of integration is taken to enclose the zeros 
of Ql and no other singularities of Ql' Then the 
equation for En().) is 

f Qt{En().), V(x) + ).V'(x» dx = n + t· (7) 

Expanding Eq. (7) around). = 0 gives 

aEn().) I = -(a/a).) f QtCE, V + ).V') dx I (8) 

a). ),=0 (a/aE) f QlE, V) dx ;'=0' 

where E is determined by Eq. (6). Similarly, expres­
sions can be derived for the higher derivatives of 
En ().). It is of practical importance that the higher­
order WKB integrals generally decrease rapidly, 5-7 

so that we expect the right-hand side of Eq. (8) to be 
a rapidly converging expression as t, the number of 
integrals included in the quantization condition, is 
increased. As an example we calculate below the 
moments for the Coulomb potential. 

III. MOMENTS FOR COULOMB POTENTIAL 

The WKB quantization condition for spherically 
symmetric potentials has been found by Langerll and 
the first two higher-order integrals have been correctly 
derived.12 The quantization condition, correct to the 
third order in n2 , isl2 

NT is an integer ~ 0, and E < 0 is the energy of a 
bound state. The integrals are all taken about a con­
tour enclosing the zeros of q and no other singularities. 

For the Coulomb potential, V(r) = -ze2Ir, the 
only zeros of q are on the positive real axis. We 
integrate around the contour Cl as shown in Fig. 1, 
where the integrands have been made single valued 
by a cut connecting the zeros of q and with phases 
chosen so that q > 0 just above the cut. Since the only 
singularities of the integrands occur at the branch 
points and at r = 0 and infinity, we may deform C1 
into the equivalent contour C2 in which case we see 
that the only possible contributions to the integrals 
occur at the origin and infinity. We evaluate these 
integrals by expanding the integrands about the 
origin and infinity, keeping only the terms having 
the llr dependence necessary for calculating the 
residues. 

A. Coulomb Eigenvalues 

It is well known that the first-order integral gives 
the exact eigenvalues for the Coulomb potential and 
that the higher-order integrals in Eq. (9) are zero.l2 

Evaluation of the first-order integral gives 

27T(Nr + l)n = 1 q dr _ 1 q dr 
(2m)! joo r 10 r 

_ 27T( ze
2 

_ --..::n(_l +~l») 
- 2( -E)! (2m)!-' 
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Solving for the energy gives the well-known eigen­
values 

(10) 

where N = NT + I + 1 and ao = Ji2jme2
• 

B. First-Order Calculation of (rn) 

We add a term Arn to the potential. Using Eqs. (4) 
and (8) and retaining only terms from the first-order 
integral, we have 

n (-EN)! f rn
+2 dr 

(r) = --. 
71'ze2 q r 

(11) 

Evaluation of the residue at the origin gives 

_r _ ...! = 71'1 _ q-II f. n+2 d 2' (d)-n-2 
o q r (-n - 2)! dr r=O 

n ~ -2, 

= 0, n> -2. (12) 

Evaluation of the residue at infinity gives 

i rn+l dr -271'i ( d )n+I(q)-II 
:roo (qjr) -;: = (n + I)! d(ljr) ; l/r=O 

-271'i (d)n+l 
= (n + I)! ds 

( 
2 (1 + t)2Ji

2
S
2)-!/ x EN+ ze s - , 

2m 8=I/r=0 

n ~ -1, 

= 0, n < -1. (13) 

The derivatives can be evaluated with the aid of the 
formulaI3 

= al(~)m i ( I ) (m - k) (a~)k. (14) 
a k=om-k k b 

Using the above formula, we express (rn) in terms of 
the physical parameters, i.e., 

X 11( -t ) (n + 1 - k) (!.±l)2k, 
k=O n + 1 - k k 2N 

n ~ -1, (15) 

x -!2( -t ) (-n - 2 - k) (!.±l)2k, 
k=O - n - 2 - k k 2N 

n ~ -2. 

While these moments are, in general, only approxi­
mations, the approximations are good for large Nand 
I and exactI4 for n equal to 0, -1, and -2. Further­
more, one cannot help but notice the ease with which 
all the moments for all n, N, and I have been calculated 
by doing only one contour integral. 

The moments generated by the first-order integral 
for 2 ~ n ~ -3 are 

2 _ 2(5N4 
- 3N2

(l + t)2) 
(r) - ao 2 ' 

2z 

(r) = aoCN2 -2~ + t»), 
(rO) = 1, 

(r-
I

) = ao l (~2)' 

(r-
2

) = ao2(N3(;~ tJ, 
(r-

3) = ao3(N3/: t)3)' 

C. Second-Order Calculation of (rn) 

. (16) 

The accuracy of the calculated moments can be 
improved by the use of the higher-order integrals in 
Eq. (9). Expansion of the second integral to the 
first power in A. gives, from Eq. (8), the second-order 
correction to Eq. (11) as 

6.(rn) = 2( -EN)! ~ 
71'ze2 64m 

X 1 Dq2(2(n + 2) _ ~ Dq2)rn+2 dr. :r q5 2 q2 r 
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Evaluation of the residue at the origin gives 
'2 2 

~ 1 D; (2(n + 2) _ ~ D~ )rn+2dr 
2m Yo q 2 q r 

= 2(n +.2) 1 (ze
2
r
n

+3 + 2ENrnH)dr 
2~i j q5 r 

_ ~ 1 (z2e4rnH + 4ze2ENrn+5 + 4E~rn+6)dr 
4~i j q7 r 

= 2(n + 2) ze2(~)-n-3 -5 , 

(-n - 3)! dr q 1,=0 

4(n + 2)EN(!!.-)-n-4 -51 
+(-n-4)!dr q r=O 

5 Z2e4 ( d )-n-4 -7 
- 2(-n - 4)! dr q Ir=o 

10E Nze2 (d )-n-5 -71 
- (-n - 5)! dr q r=O 

10E2 
( d )-n-6 

- (-n _N6)! dr q-'llr=o' 

Evaluating the residue at infinity gives 

__ 1_1 Dq2(2(n + 2) _ ~ Dq2)rn+2 dr 
2~i~ q5 2 q2 r 

= 2(n ~ 2) 1 (2ENr
n
-

1 + ze
2
r
n
-
2
)dr 

2m j q5 r 

_ ~ 1 (4E~rn-l + 4ENze2rn- 2 + z2e4rn-3)dr 

4~i j q7 r 

= 4(n + 2) E (!£)n-\s )-51_ 
(n - 1)! N ds q 8-0 

+ 2(n + 2) ze2(~)n-2(S )-51_ 
(n-2)! ds q 8-0 

_ 10E~ (!!.-)"-\sq)-71_ 
(n - 1)! ds 8-0 

_ 10ENze
2
(!!.-)n-2(sqr71_ 

(n - 2)! ds 8-0 

5z2e4 (d ),,-3 -7 
- 2(n _ 3)! ds (sq) 18=0' 

The use of Eq. (14) permits the derivatives to be 
expressed in terms of the physical parameters. It is 
found that the five terms on the right-hand side of the 
above two equations all have the same functional 
dependence on these parameters. The corrections to 
the first-order moments are thus found to be 

fl.(r2) = 7a~N2f2z2, 
fl.(r) = aof8z, 

fl.(r-3
) = a;3z3f4N3(l + it. 

The moments for n equal to 1 and 2 become exact 
with the addition of the second-order corrections, 
while the moment for n = - 3 is still inexact. In all 
cases the second-order corrections provide a means 
for estimating the accuracy ofthe calculated moments. 
If further precision is required, the third-order correc­
tion term can be evaluated. 

D. Third-Order Calculation of (r") 

The inclusion of the third-order integral in Eq. (8) 
gives 

fl.2(r") = 2( -EN)! Ii' 
~ze2 8192m2 

X [1 (49)( Dq2)4(4(n + 2) _ .!!)r"+2 dr 
j ql1 Dq2 ').q2 r 

_ 116(Dq2)(D3q2) 
j q7 

X (n + 2) + (n + 2)3 _ 2-)r"+2 drJ. 
Dq2 D3q2 2q2 r 

Since the second-order correction gave exact 
results for - 2 ::;;; n ::;;; + 2, we expect the third-order 
correction for these moments will be zero, which is 
precisely true (as can be easily verified by performing 
the contour integrals above). For n = -3, the last 
integral in the above equation has a residue at the 
origin, the other integrals being zero. Evaluating this 
residue for the third-order correction yields 

-3 3 
fl.2 -3 ao z 

(r > = 16N3(l + i)7 

The moment for n = - 3, correct to third order, is 
then 

-3 a;3z3 (1 1 1) 
(r > = N3(l + i)3 + (21 + 1)2 + (21 + 1)4 . 

While the moment is still inexact, it is the correct 
series expansion for the exact moment, which can 
be written as 

a-3z3 

(r-
3

) = N3(l + °t)l(l + 1) 

a;3z 3 

=----~-----
N3(l + i)3{1 - [1/(21 + 1)2]} 

- 0 1+ +-~-a-3z3 
( 1 1 

- N 3(l + t)3 (21 + 1)2 (21 + 1)4 

+ (21 ~ 1)8 + .. J 
It is seen that the difference between the calculated 

third-order moment and the exact moment is small 
even for low values of I. For 1 = 1 the error is 0.14 %, 
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and for I = 2 the error is 0.0064 %. For I = 0 one 
could infer that the moment is infinite from the fact 
that the higher-order corrections do not appear to be 
converging. 

IV. DISCUSSION 

The above calculation demonstrates the feasibility 
of obtaining expectation values from the WKB 
approximation without the necessity of first obtaining 
the WKB wavefunction. This is particularly conven­
ient since it is often difficult to evaluate the integrals 
that represent the space dependence of the wave­
function. Furthermore, the higher-order corrections 
to the wavefunction involve integrals which become 
increasingly singular near the classical turning points 
of the effective SchrOdinger equation, and hence 
would require a more exact approach to determine 
the wavefunction in these regions. 

The technique yields a systematic way of improving 
the accuracy of the calculation by including the higher­
order integrals. Thus, for the Coulomb potential, 
(rn) for -2 ~ n ~ 2 is given exactly when the first 
two integrals are included, the third-or<ier integral 
then giving a zero contribution. Moreover, even 
when the inclusion of the third-order integral does not 
lead to the exact result as, in the calculation of the 
very singular term (,-3), contributions from the 
higher-order integrals rapidly decrease giving not 
only excellent results even for low quantum numbers, 
but a means to estimate the accuracy of the calcula­
tion. Since the relative smallness of the higher~ord'er 
integrals appears to be a general property of the 

WKB expansion, we anticipate that similar results 
will obtain for other potentials. Furthermore, by 
performing coordinate transformations that preserve 
the boundary conditions, it is possible to make the 
contributions of the higher-order integrals smaller15 

and thus improve the accuracy of the calculation. 
Finally, we note that, when the relevant integrals 

can be analytically evaluated, this technique is capable 
of yielding analytic expressions for expectation values 
for all quantum states by performing only a trivial 
calculation, as is evident in the case of the moments 
for the Coulomb potential. 
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The evaluation of the partition function of the 2-dimensional ice model is equivalent to counting the 
number of ways of coloring the faces of the square lattice with three colors so that no two adjacent faces 
are colored alike. In this paper we solve a generalized problem in which activities are associated with the 
colors. If one of the colors is regarded as a particle and the others as forming a baCkground, then the 
model is reminiscent of the hard-square lattice gas. It is found to undergo a phase transition with infinite 
compressibility at the density p = 1/3. 

1. INTRODUCTION 

The 2-dimensional ice model was solved by Lieb1. 2 

in 1967. Lenard (see Ref. 2) has pointed out that the 
model is equivalent to counting the number of ways 
of coloring the faces of the square lattice with three 
colors, so that no two adjacent faces are colored alike. 
Calling these colors 1, 2, and 3, it follows that the 
partition function for a lattice with Nt faces can be 
written as 

(Ll) 

where the summation is over all nonnegative integers 
Nl , N2 , and Na such that Nl + N2 + Na = Nt and 
G(Nl' N 2 , Na) is the number of allowed ways of 
coloring the faces so that Nl are colored 1, N2 are 
colored 2, and Na are colored 3. 

Clearly, these colors can be regarded as three types 
of particles, with an infinitely repulsive force between 
nearest neighbors of the same type. This suggests 
associating activities Zl' Z2' Za with the three colors 
and generalizing (1.1) to 

Z = "i zf1zf·zf3G(Nl , N 2 , Na), (1.2) 

where the summation is as before. Z is then the 
grand canonical partition function of the particle 
system, evaluated at close packing of the lattice. 

In this paper we solve this problem exactly in the 
thermodynamic limit when Nt becomes large. We 
find that 

where 
(1.3) 

(1.4) 

and W D is a function only of the dimensionless 
parameter 

B = (Z2Za + ZaZl + ZlZ2)/[3(ZlZ2Za)f]. (1.5) 

In fact, we find that WD is simply an algebraic 
function of B. If t is the root of the equation 

B3 = (1 - 3t2)3/(1 - 9t 2) (1.6) 

such that ° :::;; t < t (since from its definition B ;;::: 1 
there is always one and only one such root), then W D 

is given by 

W~ = 64(1 - 9t2)*/[27(1 + t)a(l - 3t)]. (1.7) 

From (1.6) and (1.7) we can see that W D is an 
analytic function of B in the interval 1 < B < 00, 

while at B = I it has a branch point. Since, for real 
positive activities, B = I only when Zl = Z2 = Za, it 
follows that W is an analytic function of Zl , Z2 , and Za, 
except when they are all equal. 

When Zl = Z2 = Za = I, the partition function (1.2) 
reduces to (1.1), and we regain the ice model. In this 
case, B = 1 and t = 0, so that (1.4) and (1.7) give 

W = (t)f, (1.8) 

which is Lieb's result. 
Another special case that is particularly interesting 

is when 
(1.9) 

Colors 1 can then be regarded as particles and colors 
2 and 3 as forming a background. Since no two such 
particles can occupy adjacent faces of the lattice, the 
model is reminiscent of the hard-square lattice gas. a 
In fact, any allowed coloring of the lattice corresponds 
to a unique hard square configuration, and any hard 
square configuration corresponds to at least two 
colorings, since the empty squares can always be 
colored 2 and 3 in one of two possible checkerboard 
fashions. 

Unfortunately, the correspondence is not simply 
2-to-l, since the hard squares may enclose "lagoons" 
of empty squares such that no empty square inside the 
lagoon borders one outside. Such a lagoon can be 
colored in a checkerboard fashion independently of 
that used for the other empty squares. For instance, 
the empty squares in the hard square configuration 
shown in Fig. 1 can be colored 2 and 3 in four ways. 

Nevertheless, this case of the coloring problem 
resembles the hard squares gas in that it has only 
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FIG. I. A hard square configura­
tion that corresponds to four 
possible 3-colorings of the lattice 
(the hard squares being colored 1). 

infinitely repulsive nearest-neighbor forces. Further, 
since the probability of occurrence of lagoons such as 
that of Fig. 1 is quite small at low densities, the two 
models should agree fairly closely in this regime. In 
particular, as four particles are needed to form a 
lagoon, the first three virial coefficients of both 
models should be the same. 

Making the substitutions (1.9) into the previous 
equations, we see that the density p of particles is 
given by 

dlog W 
p=z 

dz 
(1.10) 

and lies between 0 and the close-packed value t. It is 
found that Wis a continuous function of p, monotonic 
increasing except at p = t, where its derivative 
vanishes and z = 1. Neglecting the density-inde­
pendent Boltzmann factor, we see that the compres­
sibility Kr is given by 

K"TI = P d log W (1.11) 
dp 

and near p = i is found to behave as 

K'l' "-' 2/[9Ip - il]· (1.l2) 

Thus the system undergoes a phase transition with 
continuous density and infinite compressibility, the 
values of p, z, and W at the critical point being 

Pc =!. Zc = I, We = (t)!. (1.13) 

Despite the simplicity of the result (1.7), its deriva­
tion is quite lengthy, involving the theory of elliptic 
functions, and is given in Secs. 2-7. In Sec. 8 the 
pseudo hard-squares model mentioned above is 
discussed in more detail and graphs of log Wand 
dOog W)/dp given. It is found that the results do 
approximately agree with those of the true hard­
square lattice gas at low densities (say p < 0.2), but 
there are considerable differences in the transition 
region and above. 

2. THE TRANSFER MATRIX 

Consider a square lattice of M rows and N columns, 
and suppose it to be wound on a torus so that column 

N is followed by column 1 and row M by row 1. Then 
the total number of faces of the lattice is 

(2.1) 

Suppose aJl the faces are colore~ I, 2, ~r 3 so th~t no 
two adjacent faces are colored alike. It IS conve.men.t, 
though not essential, to describe such a coloTlng In 

ice model terms. To do this, we order the colors 
cyclically (so that 2 follows I, 3 follows 2, and I 
follows 3) and place arrows on aJl the bonds of the 
lattice so that an observer facing along an arrow sees 
the color on his right as following the one on his left. 
Then the four arrows at a vertex are found to satisfy 
the ice condition, namely that there are two pointing 
in and two pointing out. 

It can then be seen that the number of down (or up) 
arrows in each row of vertical bonds is the same. 
Suppose there are n down arrows in each ro,:. Then 
the coloring of the faces of a row can be speCified by 
the color (1 of the extreme left-hand face and the 
positions Xl' X 2 , ••• , Xn of the down arrows. 

The general coloring of a row is shown in Fig. 2. 
The color numbers increase from left to right across 
an up arrow and decrease across a down arrow, and 
are to be interpreted mod 3. For example, colors 
1, 4, 7, 10, etc., are the same. The cyclic boundary 
condition implies that colors at the extreme left and 
right must be the same, and so Nand n must satisfy 
the relation 

N - 2n = 3J, (2.2) 

where J is an integer. 
Noting that the jth down arrow has the effect of 

repeating colors (1 + Xi - 2) and (1 + Xi - 2) + 1 in 
the otherwise increasing sequence, we can see that 
the product of the activities of the colors in the row is 

where 

n 

D(X) = ~ II ~«(1 + Xi + j), (2.3) 
j=l 

(2.4) 

(2.5) 

~ r d1ld21 ... r~~lx'l~-+;1 r~-~Xll 
2 3 XI-I XI xl+1 

l ~+xn lcr+xn I -2n + 1 -2n 1,,+N-2n 

'0- 1. Xn '0+1 N 

FIG. 2. Coloring of a row of the lattice; the arrows lie on vertical 
bonds and the numbers between are the colors of the faces. (The 
second line is to be regarded as to the right of the first.) 
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and the mod 3 convention, i.e., 

(2.6) 
has been used. 

The transfer matrix can now be constructed in the 
same way as for the ice model,2 except that it is 
multiplied by a diagonal matrix with elements D(X) 
and it is necessary to keep track of the color of the 
left-hand face of each row. Let /a (Xl , XS, .•. , X,.) be 
the elements (corresponding 'to the row-coloring of 
Fig. 2) of the eigenvector of the transfer matrix. Then 
! and the corresponding eigenvalue A are given by 

').fix1, ... , xn) 

= D(X) ( 2 I'" 2 ft/+l(Yl"", Yn) 
Jll~111t=~1 tin=oXn-l 

"'. "'. N ) + 1I1~1 1I~"': .. 1I~",!t/+2(Yl' ... , Y n), (2.7) 

where I ~ Xl < X2 < ... < Xn ~ N,/a+3 =/a, and! 
is to be replaced by zero on the right-hand side of (2.7) 
when two successive y's become equal (e.g., Yl = 
Xl = Y2)' 

In the limit of M large, the partition function Z is 
given by 

(2.8) 

where A. is the largest eigenvalue of Eq. (2.7). Thus, 
from (1.3) and (2.1), 

;.,.....,wN 

when N becomes large. 

(2.9) 

3. DIAGONALIZATION OF THE TRANSFER 
MATRIX 

By analogy with the method of the ice1.2 and 
similar4 models, we now attempt to solve the eigen­
value equation (2.7) by trying a solution for the 
eigenvector! which is the sum of products of single­
particle wavefunctions. Some consideration of the 
translation symmetries of the problem suggests the 
ansatz 

n 

fixl' ... , xn) = ! A",lo"""''' IT G",lxj), (3.1) 
p j~l 

where 
Xi = x; + U + j (3.2) 

and the summation is over all n! permutations 
OC

l
, ••• , oc" of the integers 1, ... , n. Thus there are n 

single-particle functions Gl(x'),"', G2(x') to he 
determined, together with the n! coefficients A. 

The condition /t/+3 = /a can be satisfied by requiring 
that for each function G",(x') there exists P'" such that 

(3.3) 

for all integers x' and that 

PI + P2 + ... + p" = O. (3.4) 

Thus -the single-particle functions are plane waves 
mod 3 with wavenumbers PI"'" p", and ! is 
translation invariant in the sense that it is unchanged 
by replacing each Xj by Xj + 3. 

As a first step, we insert the single product / = 
Gl(X~)G2(X;) ... G,,(x~) into Eq. (2.7). Using (2.3), 
we see that the right-hand side becomes 

n 

~ IT g(xj)[H;Cxi_l) - H;Cxim 
j=l 

n 
+ ~ IT g(xi)[H;Cxj) - H j (xi+1)]}' (3.5) 

j=1 

where x~ = U + I, X~+1 = N + n + u + I, and 

N 

H",(x) = ! G..(y) + const. (3.6) 
11=0:+2 

However, (3.5) spuriously includes terms which arise 
when two y's are equal in (2.7). These must be sub­
tracted; for instance, the terms coming from the case 
Yl = Xl = Yz in the first set of summations give a 
correction 

-~(ll '(Xi») Gl(xi + l)Gs(xi + 2) 

" 
X IT [H;(xi_l) - H;(xj)] (3.7) 

;=3 
to (3.5). 

Expanding each product in (3.5) gives 2" terms, of 
which all but one contain either x~, x~+1' or two 
functions H of the same variable. If n is even, the two 
other terms (one from each product) reinforce one 
another to give a contribution 

n 

2~ IT [,(xi)H;(xi)] (3.8) 
j=l 

to the right-hand side of (2.7). This is also a product of 
single-particle functions and can be made to equal the 
left-hand side of (2.7) by requiring that 

(3.9) 

for oc = I, ... , n and all integers X, and that 

(3.10) 

The constant in Eq. (3.6) may depend on iX, but not 
on x. By comparing (2.6), (3.3), and (3.9), it is 
apparent that this constant must be chosen so that 

(3.11) 



                                                                                                                                    

THREE-COLORINGS OF THE SQUARE LATTICE 3119 

i.e., H,,(x) is also a plane wave mod 3. Equations (3.6) 
and (3.9) then reduce to a cubic eigenvalue equation 
determining #" and the single-particle function G,.(x) 
in terms of p". 

From (3.10) it is clear that A iii unchanged by 
permuting the single-particle functions and hence 
#1' ... , #.,.. Thus one can try the general form (3.1) 
in Eq. (2.7) and attempt to choose PI' ... ,p.,. and the 
coefficients A so as to cancel all the remaining un­
wanted terms on the right-hand side. Since the 
correction terms such as (3.7) are of the same type as 
the terms in the expansion of (3.5) which contain two 
functions H of the same variable, these can be made to 
cancel by requiring that 

s"./l(x)A .... "./l .... + s/l.,.(x)A .... /l." .... = 0 (3.12) 

for all integers x, where 

s".p(x) = H,,(x)Hp(x) + G,,(x + I)Gp(x + 2). (3.l3) 

The coefficients A in (3.12) differ only in that the two 
successive indices rJ. and {J are interchanged. 

It is also necessary to cancel the terms in (3.5) 
containing x~ and x~+l . This can be done by perform­
ing a single cyclic shift of rJ.1 , ••• , rJ..,. and noting that 
the terms containing x~ in the original permutation 
are the same as those containing x~+l in the second, 
which leads to the condition 

H"l«(J + I)A"l ..... "n 
= H"l(N + n + (J + I)A,,2 ..... "'n."1 (3.14) 

for (J = 1, 2, 3. It can be shown that the conditions 
(3.12) and (3.14) are, in fact, sufficient to ensure that 
all the unwanted terms in the transfer matrix equation 
cancel. 

It remains to show that PI, ... , P.,. and the A's can 
be chosen to satisfy these conditions. To do this, it is 
first necessary to solve Eqs. (3.6), (3.9), and (3.11) for 
the single-particle functions. From (3.6) it can be seen 
that 

G,,(x) = H,,(x - 2) - H,,(x - 1). (3.15) 

Substituting this result into (3.9), using (3.11), and 
setting 

(3.16) 

we find that three successive values of H,.(x) can be 
written as 

H,,(x - 1) = #"V" + v",(x + 1), 

Hix) = /i"Y", - '(x - Ig(x + 1), (3.17) 

H,,(x + 1) = /i"V" + /i,,'(x - 1), 

while #" and v" must satisfy the relation 

#:11" + #,,11: + 3B#"1I,, - 1 = 0, (3.18) 

where 
3B = '(1) + ,(2) + '(3), (3.19) 

i.e., B is given by (1.5). We have used the relation 

(3.20) 

which follows from (2.5). 
Substituting (3.15) and (3.17) into the definition 

(3.13) of s",./I(x) and using (3.20) give 

'(x)s"./l(x) = u"./l + '(x - I)v",./l + '(x)w"./I' (3.21) 

where u",./l' v"./l' and w"./l are independent of x, being 
given by 

(3.22) 

W",./l = #,,1I"#/l1l/l + 11". 

Using (3.18), we now find an essential and otherwise 
not obvious result, namely, that 

u",./l/u/l.", = v"./l/v/l." = w",./l/w/l.,,' (3.23) 

Thus the ratio s".p(x)/s/l.,,(x) is also equal to the 
common ratio in (3.23). Selecting the simplest 
expression in (3.22), we can say that 

s"./l(x)/s/l.,,(x) = v"./l/vp.". (3.24) 

The condition (3.12) is therefore independent of x and 
can be satisfied by choosing the A's so that 

where Ep = ± 1 is the sign of the permutation 
rJ.I , •.• , rJ..,.. 

Finally, the condition (3.14) must be satisfied. 
From (2.2) it is apparent that (J + 1 and N + n + (J + 
1 differ by an integer multiple of 3; thus, using (3.11), 
we obtain 

A"l ... ·."n = exp [i(N + n)p"JA"2""'''n''''l' (3.26) 

By substituting (3.25) into (3.26) and using (3.22), it 
follows that the condition (3.14) is satisfied provided 
that 

(3.27) 

for rJ. = 1,2, ... , n. 
The results of this section can now be summarized: 

Equations (3.16) and (3.18) define #" and 11" as func­
tions of p". Thus (3.27) is a set of n equations for the n 
unknown wavenumbers PI' ... , Pn' Once these are 
satisfied, the ansatz does indeed give a solution of the 
transfer matrix equations, with the eigenvalue A 
given by (3.10). 
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It should be noted that (3.27) has solutions where 
two or more of the wavenumbers Pa are equal. How­
ever, such solutions should be ignored since all the 
elements of the eigenvector f can then be seen to 
vanish. 

4. EQUATIONS FOR THE MAXIMUM 
EIGENVALUE 

Equations (3.16), (3.18), (3.27), and (3.10) can be 
written more explicitly by defining a set of quantities 
gl' ... ,gn such that 

(4.1) 

Equation (3.16) then becomes 

'JI = _ig-le-li~a 
IX IX , (4.2) 

and from (3.18) it follows that ga = g(Pa), where the 
function g == g(p) is defined by 

g3 _ 3Bg + 2 sin (ip) = 0-. (4.3) 

Using (4.1), (4.2), and the condition (3.4), we can 
write Eqs. (3.27) as 

n 

eiNPa = (-t-I IT e-i8a.P (4.4) 

for oc = 1, ... ,n, where 
P=l 

and 
e-i8a.p = Fp.a/Fa.p, (4.5) 

F
IX

• p = ei[!p",+'Pp]ga + ri[p",+!pp]gp. (4.6) 

Lastly, using (4.1), we see that Eq. (3.10) f9r A. 
becomes 

A. = 2( - )!n~/(glg2 •.. gn). (4.7) 

The problem is now to find the solution PI' ... 'Pn 
of (4.3)-(4.6) which gives the largest value of A.. 
Equation (4.7) suggests that this solution is obtained 
when the function g of P is chosen to be the numerically 
smallest root of the cubic equation (4.3). Since B can 
be seen from its definition (l.5) to be not less than one, 
the smallest root g of (4.3) is a real function of P, of 
period t1T, and odd. By taking the appropriate 
logarithm of both sides of (4.5) and l!sing (4.6), it 
follows that O«.P == O(p«, pp) is a real function of 
Pa and pp such that 

8(Pa'PP) = -8(pp,p«) = -8(-p«, -pp). (4.8) 

Using these properties, we find that (4.4) has 
solutions such that the wavenumbers PI, ... ,Pn are 
real and occur in pairs p, -p. By analogy with the 
ice1,2 and similar4 models (or by considering the case 
when N» n), we expect the maximum eigenvalue A. 
to be given by taking the logarithms of both sides of 
(4.4) so that 

n 

Np« = 1T(2oc - n - 1) - 2, 0a.P (4.9) 
P-I 

for oc = 1, ... ,n. This choice of the logarithms 
ensures that 

PI < P2 < ... < Pn' (4.10) 

Pn+!-a = -Pa' (4.11) 

and gives the solution of (4.4) which has the most 
closely packed distribution of distinct p", about the 
origin. 

5. TRANSFORMATION TO DIFFERENCE 
KERNEL FORM 

In all the ice-type modelsL 2.4 it is found that a 
transformation 

(5.1) 

exists such that 0a.p depends only on the difference 
between u'" and up, i.e., 

(5.2) 

In this case, it is by no means obvious that such a 
transformation exists, but let us suppose that it does 
and consider the consequences. 

Equation (5.2) is equivalent to asserting that the 
functions O(pa' pp) and u(pa) - u(Pp) of the two 
variables Pa and pp are functionally dependent, so that 
their Jacobian must vanish identically, i.e., 

u'(p) 

aO(p, q) 

ap 

-u'(q) 

aO(p, q) == 0, 

aq 
(5.3) 

where PIX and pp have been replaced by P and q and 
u'(p) is the derivative of the function u(p). 

By taking the limit of q ---+ 0 in (5.3) and using 
(4.3)-(4.6), it follows that 

u'(p) = L/[B - g2(p»), (5.4) 

where L is an arbitrary constant. Substituting this 
form for the functions u'(p) and u'(q) back into (5.3) 
and using (4.3)-(4.6), we find that (5.3) is indeed 
satisfied. This establishes the required identity (5.2). 

When pp = 0, it also follows from (4.3)-(4.6) that 
gp = 0 and O",.P = Pa' By inverting the relation be­
tween P and u so as to regard P as a function p(u) of u, 
it follows that 

(5.5) 

It therefore becomes necessary to use (4.3) and 
(5.4) to express g and p as functions of u. Equation 
(4.3) can be used to evaluate dg/dp in terms of g; 
dividing the result into (5.4) gives 
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Changing to the variable x = g2, we can integrate 
Eq. (5.6) by using elliptic functions (Sec. 3.147.2 
and 8.11-8.15 of Ref. 5). Let a, b, and c be the three 
roots of the cubic equation 

x(3B - X)2 - 4 = o. (5.7) 

Since B ~ 1, these roots are real and positive and can 
be ordered so that 

a > b ~ c > O. (5.8) 
Choosing 

L = t[(a - c)b]! (5.9) 

and u to be zero when p and g are zero, we find that 
g is given as a function g(u) of u by 

g2(U) = ac sn2 (u)/[a - c + c sn2 (u»), (5.10) 

where sn (u) is the usual elliptic sn function, with 
modulus 

k = (a - b) C)!. 
(a - c)b 

(5.11) 

P is now given as a function of u by Eqs. (4.3) and 
(5.10). Alternatively, Eq. (5.4) can be inverted to give 

dp 
du = h(u), (5.12) 

where 
h(u) = [B - g2(U)]/L. (5.13) 

6. THE THERMODYNAMIC LIMIT , 
Using (5.5), we can write Eq. (4.9) in terms of the 

new variables Ul , ••• , un as 
n 

Np(u,.) = 1T(21X - n - 1) - LP(u" - up) (6.1) 
P=l 

for IX = 1, ... , n. It can be seen from the above that 
p is a monotonic increasing odd function of u; thus, 
from (4.10) and (4.11), Ul ,'" ,Un are arranged in 
increasing order and are distributed symmetrically 
about the value zero. 

We are interested in the thermodynamic limit when 
the width of the lattice. becomes large, so that n, 
N --+ 00, the ratio nlN remaining fixed. As with the 
ice-type models,1.2· 4 we expect Ul' ••• , Un to approach 
a continuous distribution along the real axis in some 
interval (-Q, Q), so that a distribution function p(u) 
can be defined such that Np(u)au is the number of 
u" lying between u and u + duo Thus the total number 
of u" is 

n = NJQ p(u) du, (6.2) 
-Q 

while the value of IX corresponding to u" = u is 

IX = NJu p(u') du'. (6.3) 
-Q 

In this limit, (6.1) therefore becomes the integral 
equation 

p(u) = 21Tiu p(u') du' - fQ p(u - u')p(u') du' (6.4) 
o -Q 

[by using the fact that p(u) must be an even function]. 
The eigenvalue A and hence the partition function 

can be obtained from (4.7). First note that from (1.4), 
(2.4), and (2.9) 

N- l log (A/2;) = log W D (6.5) 

(N large). Since the g" occur in pairs g, -g, it follows 
that, in the thermodynamic limit, (4.7) becomes 

log WD = -tfQ p(u) log g2(U) duo (6.6) 
-Q 

Equation (6.4) determines p(u) in terms of the 
known function p(u) and the constant Q. Q can then 
be determined in terms of n/N from (6.2) and Wn 
evaluated from (6.6). 

Differentiating (6.4) and using (5.12) give 

h(u) = 21Tp(U) -fQ h(u - u')p(u') du'. (6.7) 
-Q 

From (5.10), (5.13), and the theory of elliptic func­
tions,5 it can be seen that h(u) is an even function of 
u, of period 2K, where K is the complete elliptic 
integral of the first kind of modulus k. Thus, when 
Q = K, Eq. (6.7) can be solved by Fourier series. 

h(u) is also periodic with period 2iK', where K' is 
the complete elliptic integral of the first kind of 
modulus 

k' = (1 - e)! = (b - c)a)! (6.8) 
(a - c)b 

[from Eq. (5.11)]. The only singularities of h(u) in the 
complex u plane are simple poles at 

u = ±iT + integral multiples of 2K and 2iK', (6.9) 

where 
sn (iT) = i[(a - c)/c]!. (6.10) 

From the cubic equation (5.7), it follows that 
a, b, and c satisfy the dimensionless relation 

a!=M+c!. (6.11) 

Using this result together with (5.11), (6.10), and the 
addition theorems for elliptic functions (8.156) and 
(8.157) of Ref. 5, we find that 

T = iK'. (6.12) 

Also, using (5.9)-(5.11) and the differentiation 
formulas for elliptic functions, we find the residues of 
g2(U) at ±iT to be 

Res [±iT I g2(U)] = ±iL. (6.13) 
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The coefficients of the Fourier series for h(u) can 
now be found6 by integrating around a rectangle in the 
complex u plane with vertices at - K, K, K + 2iK', 
and -K + 2iK' and by using Cauchy's residue 
theorem. This gives 

1T 00 eillmulK 
h(u) = - I (6.14) 

K m=-oo r-m + 1 + rm 
where 

(6.15) 

Equation (6.7) can now be solved by Fourier series to 
give 

1 00 eillmulK 
p(u) = - I (6.16) 

2K m=-oo rm + r-m 

Substituting the expression (6.16) into (6.2), we find 
that 

n = iN (6.17) 

when Q = K. Thus there are as many up arrows as 
down arrows in each row of the lattice. Intuitively, we 
expect this to be the case which gives the maximum 
eigenvalue A of the transfer matrix and, hence, the 
correct values of Wand W D • 

To evaluate W D, we first obtain the coefficients of 
the Fourier series for log g2(U) by integrating around 
the above mentioned rectangle in the complex u plane 
and taking account of the branch cuts on the segments 
[0, iT] and [2iT,2iK'] of the imaginary axis.7 This 
gives 

I 
2() 41TK' 2 ~ (1 - r2m) cos (1Tmu/K) 

og g u = - -- - k . 
9K m=l m(l + rm + r2m) 

(6.18) 

Using (6.16) and (6.18) in Eq. (6.6), we find that 

1TK' 00 rm _ r3m 
log WD = - + I 

9K m=l m(1 + r2m)(1 + rm + r2m) 

( 6.19) 

Equation (6.19) is the essential result of this and 
the four previous sections. Together with (5.7), (5.8), 
(5.11), and (6.15) it defines W D as a function of the 
dimensionless parameter B introduced in (1.5). 

7. ELIMINATION OF ELLIPTIC FUNCTIONS 

The above working leans heavily on the theory of 
elliptic functions. It is remarkable that the. series in 
(6.19) can be summed so as to completely eliminate 
these functions and integrals, giving simply an alge­
braic expression for WD in terms of the roots a, h, and 
c of the cubic equation (5.7). 

To show this, we generalize (6.19) by multiplying 
the summand of the series by cos (1Tmu/K). The 
summand can then be written as the sum of two terms 

to give 

log WD = lim [Sl(U) + S2(U)], (7.1) 
u-+o 

where 

Sl(U) = 1TK' + i (1 - r2m) cos (1Tmu/K) , (7.2) 
3K m=l m(l + r2m) 

S2(U) = _ 21TK' _! (1 - r2m) cos (1Tmu/K). (7.3) 
9K m=l m(l + rm + r2m) 

By comparing (6.18) and (7.3), it is apparent that 

S2(U) = t log g2(U). (7.4) 

Also, using the series expansions for log sn2 (u) 
(8.146.20/23 of Ref. 5), one finds that 

Sl(U) = -6 log k 
3 2 

-!I Ilogsn2 [iu + !ocK + i,BiK']. (7.5) 
«=0 p=o 

By substituting the expressions (7.4) and (7.5) into 
Eq. (7.1) and using (5.10) and the periodicity and 
symmetry properties of sn (u), it follows that 

W _ 4[ae/(a - c)]! 
D - k6 22 ' 

1 '1'71'1]2'1]3'1]41 
(7.6) 

where 
'1]1 = sn (iT), '1]2 = sn (K + iT), 

'1]3 = sn (lK), '1]4 = sn (iK + iT). (7.7) 

The numbers '1]1"", '1]4 can be evaluated by 
using (5.Il), (6.10), and the addition theorems for 
elliptic functions, giving 

'1]1 = i[(a - e)/e]!, '1]2 = (h/e)!, 

'1]3 = (1 - k')!/k, 1'1]412 = ('I]: - 'l]i)/(l - k2'1]~'I]:). 
(7.8) 

Using (5.Il), (6.8), and (6.Il), we can simplify these 
expressions to give 

W
D 

= 4abe! 
[(a - e)3a]! - [(b - e)3b]!' 

(7.9) 

The formula (1.7) quoted in the introduction can 
now be established by noting that, if B is parameter­
ized according to (1.6), the roots of Eq. (5.7) are 

c = (1 - 9t 2)i, 

a = tc(3y + 1)2, (7.10) 

h = ic(3y - 1)2, 
where 

=(~)~ y 1 - 9t2 
(7.11) 

Substituting these expressions into (7.9), we obtain the 
result (1.7). 
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8. HARD SQUARES MODEL 

Having evaluated the partition function for the 
general 3-coloring problem, let us now specialize to 
the case when color 1 is regarded as a particle and 
colors 2, 3 as forming a background. Thus we set 

(8.1) 

where z is the activity of the particles. As was discussed 
in the introduction, this system is reminiscent of the 
hard-square lattice gas. 

From (1.4), 

while from (1.5) B is now given by 

B = (1 + 2z)/(3zi ). 

(8.2) 

(8.3) 

It is easy to see that one of the roots a, b, and c of 
Eq. (5.7) is z-i, the others therefore being given by a 
quadratic equation. Owing to the requirement that 
a, b, and c be ordered so that a > b > c, two cases 
arise which must be discussed separately. 

A. 0 < z ~ 1,0 < p ~ t 
When z ~ 1, it is found that the roots of (5.7), in 

their correct ordering, are 

where 

a = z-ii(£ + 1)2, 

b = z-i, 

C = z-i!(£ - 1)2, 

£ = (1 + 8z)!. 

Using these results in (7.9) and (8.2) gives 

where 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

Since Z '" WNt is the grand-partition function of 
this system, log W is the grand potential P/kET (P 
being the pressure, kE Boltzmann's constant, and T 
the temperature). Thus the density p of particles per 
lattice site (or face) is 

p = z d log W (8.8) 
dz 

Substituting the expression (8.6) into (8.8) and using 
(8.5) and (8.7), we find that 

as z increases from 0 to 1, p varies from 0 to t, while 
W goes from I to the ice-model value (t)i. 

It is of some interest to consider Was a function of 
p. Eliminating £ and X from Eqs. (8.5)-(8.9), we find 
that W2 is the positive root of the equation 

W4 - ,u2(4 + 8,u - 27,u4)W2 - 16,u6 = 0, (8.10) 

where 
,u = 1 - p. (8.11 ) 

From this result the vi rial expansion for the grand 
potential can be obtained, namely 

log W = p + 2tp2 + 4tp3 + Itp4 

- 31~p5 - 179tp6 - • • •• (8.12) 

Comparing this with the corresponding expansion for 
the hard-square lattice gas, 3 we find that the first three 
coefficients are indeed the same, as expected. 

From (8.10) it can be seen that the only singularities 
in the complex p plane of the function W2 are branch 
points at the four points 

p = i[(J2) + 1][(J2) ± i], 
H(J2) - 1][(J2) ± i], (8.13) 

while the only zero is at p = 1. Thus, log W is analytic 
in a circle, with center at the origin, of radius [(J2) -
1]/J3 ~ 0.239. This radius is therefore the radius of 
convergence of the virial expansion (8.12). 

B. z ~ 1, t ~ p < t 
When z > 1, the roots of (5.7) are still given by 

(8.4), except that now band c must be interchanged to 
ensure the correct ordering a > b > c. Thus, c = z-i, 
and from (7.10) the parameter 1 is the positive root 
of the equation 

z = (1 - 9/2)-1. (8.14) 

From (1.7) and (8.2) it follows that 

W2 = 64/[27(1 + t)3(l - 3/)], (8.15) 

and (8.8) now gives 

p = (I + 3t)f(3 + 3t). (8.16) 

Thus, in this case, z and W2 are rational functions 
of t and p. In particular, eliminating t from (8.15) and 
(8.16) gives 

W2 = 4(1 - p)4/(1 - 2p). (8.17) 

p = (£ - 1)/[2£(1 + 2X)]. (8.9) From these results it can be seen that as z increases 
from 1 to 00, 1 goes from 0 to t, p from! to its 

By inspection of these equations, it can be seen that, close-packed value t, and W from (t)i to 00. 
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C. Nature of the Transition 

In Figs. 3 and 4 the grand potential log Wand its 
derivative with respect to density are plotted as 
functions of p for the physically permissible range 
o ~ p < t. It can be seen that log W is a continuous 
function of p, monotonic increasing except at the 
point p = t, where the algebraic form of W changes 
from (S.lO) to (S.17). Expanding both forms in Taylor 
series about p = t, we find that 

log W = flog t - !O(3p - 1)2 + O{(3p - 1)3}, 

(S.1S) 
where 

if p < t, 
0=-1 if p > t. (S.19) 

Thus the derivative of log W vanishes at the critical 
point p = t, and the isothermal compressibility, 
given by (1.11), becomes infinite, being given to first 
order by (1.12). 

Also shown in Fig. 3 are the numerical estimates of 
log W for the hard-square lattice gas.3 It can be seen 
that the two models agree at low densities as expected, 

'" o 

P 

FIG. 3. Equation of state of (a) the hard square model of this 
paper and (b) the true hard-square lattice gas." The circles indicate 
critical points. 

2.0 

~ o Q. 

~"C 1.0 

FIG. 4. Plot of d(log W)/dp, which is proportional to the inverse 
compressibility, for the hard square model of this paper. 

but that there are considerable differences in the 
transition region and above. 

It is interesting to note that both (S.lO) and (S.17) 
give functions W of density that are analytic through­
out the entire permissible range 0 ~ p < t. However, 
each applies only in its appropriate interval, [0, t] 
and [i, tJ, respectively, and one is not the analytic 
continuation of the other. 
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